Model-based control of cardiac alternans in a model of Purkinje fibers
Roman Grigoriev, Alejandro Garzon
This paper describes a systematic approach to suppressing cardiac alternans in Purkinje fibers using localized current injections. We investigate the controllability and observability of the periodically paced Noble model for different locations of the recording and control electrodes. In particular, we show that the loss of controllability causes the failure of the control approach introduced by Echebarria and Karma [Chaos 12, 923 (2002)] for longer fiber lengths. Furthermore, we explain how the optimal locations for the recording and control electrodes and the timing of the feedback current can be selected, accounting for both linear and nonlinear effects, effectively doubling the length of fibers that can be controlled.