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Abstract
This paper describes a systematic approach to sup-

pressing cardiac alternans in Purkinje fibers using lo-
calized current injections. We investigate the control-
lability and observability of the periodically paced No-
ble model for different locations of the recording and
control electrodes. In particular, we show that the loss
of controllability causes the failure of the control ap-
proach introduced by Echebarria and Karma [Chaos
12, 923 (2002)] for longer fiber lengths. Furthermore,
we explain how the optimal locations for the record-
ing and control electrodes and the timing of the feed-
back current can be selected, accounting for both linear
and nonlinear effects, effectively doubling the length of
fibers that can be controlled.
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1 Introduction
When excitable cardiac tissue is electrically paced at

a sufficiently high rate, the duration of excitation (or
action potential duration, APD) can alternate from beat
to beat [Mines, 1913] despite a fixed stimulation pe-
riod. This rhythm, known as alternans or 2:2, has been
identified [Pastore et al., 1999; Watanabe et al., 2001]
as an early stage in a sequence of increasingly com-
plex instabilities leading to the lethal type of arrhyth-
mia known as ventricular fibrillation (VF) [Cherry and
Fenton, 2008]. Hence, suppression of alternans can be
considered as a way of mitigating VF.
In this paper we focus on control of alternans in a spe-

cific type of cardiac tissue, Purkinje fibers, which con-
ducts the electrical excitation from the atria to the ven-
tricles. Echebarria and Karma [Echebarria and Karma,
2002] were the first to investigate suppression of al-
ternans in a model of Purkinje fibers by adjusting the
pacing interval based on the difference between the
two most recent APDs. Their approach, referred to as

the pacing interval adjustment (PIA) method here, is a
particular implementation of the empiric delayed feed-
back control of Pyragas [Pyragas, 1992]. The earliest
implementation of Pyragas’ approach to cardiac tissue
is due to Hall and Gauthier who managed to suppress
alternans in small patches of frog heart muscle tissue
[Hall and Gauthier, 2002]. While PIA control has the
benefit that no model of the dynamics is required, it
also has limitations: numerical simulations of the No-
ble model showed that PIA is unable to suppress al-
ternans in fibers longer than about 1 cm [Echebarria
and Karma, 2002]. This theoretic prediction was veri-
fied experimentally by Christini et al. [Christini et al.,
2006]. Studies of other models of cardiac dynamics
also find a limit on the fiber length that can be con-
trolled by a single electrode [Rappel et al., 1999] using
a non-model-based approach.
This limitation relates many factors, such as the num-

ber and location of electrodes used for control as well
as the law used to compute the feedback current. This
paper presents the analysis of these factors. To enable
direct comparison with the results of Ref. [Echebarria
and Karma, 2002], we consider a configuration with
one electrode recording the transmembrane potential
and one control electrode (not necessarily collocated)
applying the feedback current in the form of one well
localized pulse per pacing interval. We also use the No-
ble model [Noble, 1962] for the ion channel dynamics

∂tz = D∂2
xz+ F (z)− Ipg(xp)− Icg(xc), (1)

where z(x, t) = [u, a, b, c] is the vector of cellular state
variables: the scaled transmembrane voltage u and the
gating variables a, b, and c of the local ionic model
F (z). D is a 4× 4 matrix whose only nonzero element
D11 describes electric coupling between cells. All pa-
rameter values are chosen as in Ref. [Echebarria and
Karma, 2002]. While not the most accurate model of
Purkinje fibers, the Noble model captures the essential
dynamics and provides an opportunity for direct com-



parison of our results with previous studies.
The last two terms in (1) describe the pacing and feed-

back currents Ip(t) and Ic(t), while g(xi) ≡ [g(x −
xi), 0, 0, 0], where g(x − xi) is the spatial distribution
of the current density applied by an electrode centered
at xi, which we take to be a normalized Gaussian with
width σ = 0.1 cm. Although it can be argued that
control may be more effective when applied to one of
the gating variables (i.e., a, b, or c here) [Muñoz et al.,
2010], in practice it is much easier to control the cur-
rent, so this is the approach we pursue here. The loca-
tion of the pacing electrode in this study is xp = 0.25
cm, while the location of the control electrode xc is to
be chosen later. No-flux boundary conditions are im-
posed at both ends of the fiber, ∂xu|x=0,L = 0.
The model (1) with Ic(t) = 0 possesses a time-

periodic solution z0(t), corresponding to a normal
rhythm with a 1:1 response, with the period T deter-
mined by the pacing current Ip(t) = I0p(t mod T ),
where

I0p(t) =

{
I0, 0 < t < ∆Tp,
0, ∆Tp < t < T,

(2)

and the pulse duration ∆Tp was chosen equal to 5 ms.
As is well known [Guevara et al., 1984], this rhythm is
linearly stable for slow pacing rates. For faster pacing it
becomes unstable and is replaced by a limit cycle oscil-
lation which corresponds to the state of alternans. The
goal of control is to suppress the transition to alternans
by extending the linear stability of the normal rhythm
to shorter T . This can be achieved by monitoring the
transmembrane voltage using a recording electrode at
xo and applying an appropriately chosen feedback cur-
rent Ic(t) through the control electrode. In particular, in
PIA the recording and control electrodes are collocated
with the pacing electrode (xo = xc = xp), and the
pacing period becomes a function of the action poten-
tial duration APDn following the nth pacing impulse,
Tn = T +∆Tn, with

∆Tn = γ(APDn −APDn−1)/2, (3)

which corresponds to Ic(t) = Ip(t−T−∆Tn)−Ip(t−
T ).
Consider the dynamics of small perturbations δz =
z − z0 about the target state z0, governed by the lin-
earization of (1)

∂tδz = D∂2
xδz+ Jδz− Icg(xc), (4)

where J(t) ≡ DF/Dz|z0(t) is the Jacobian of F (z)
evaluated along the periodic orbit z0(t). Introducing
the stroboscopic section tn = τ + nT , the evolution
can be recast in terms of a map which, in the absence
of control, has the form

δz(tn+1) = U(τ + T, τ)δz(tn), (5)
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Figure 1. Stability diagram, showing the number of unstable modes
for normal rhythm. White indicates the region in parameter space
where normal rhythm is stable. Alternans can be successfully sup-
pressed using PIA control only in the light gray region. Model-based
control is successful everywhere in the gray shaded regions. Feed-
back is computed using the complete system state in the dark gray
region or using local voltage recordings in the medium and light gray
regions. All control methods we investigated fail in the black region.

where U(tf , ti) denotes the time evolution operator of
(4) for the time interval (ti, tf ) and τ = 0 defines
the timing of the pacing impulse. The stability of z0
is determined by the eigenvalues λi of the map (5).
Here we assume |λ1| ≥ |λ2| ≥ · · · . It can be shown
that λi are independent of τ and that the eigenmodes
of U(τ + T, τ) for arbitrary τ can be computed as
ei(τ) = U(τ, 0)ei(0) using the eigenmodes for τ = 0.
The periodic solution z0(t) is found using a combi-

nation of a matrix-free Newton-Krylov method [Knoll
and Keyes, 2004] and generalized minimal residual
method (GMRES). The latter is implemented by the
MATLAB (Mathworks, Inc.) routine gmres. The
spectrum of U(T, 0) is then found using the implic-
itly re-started Arnoldi iteration method [Lehoucq and
Sorensen, 1996], implemented by the MATLAB rou-
tine eigs. For the sake of efficiency, this method was
also applied in its matrix-free form using a routine
that calculates the matrix-vector product, in this case
U(T, 0)δz, instead of the explicit matrix representa-
tion of U(T, 0). The matrix-free method is based on
numerical integration of (1) using the explicit Euler
method and finite differences with ∆x = 0.01 cm and
∆t = 0.01 ms. The number of unstable eigenvalues
(|λi| > 1) found for a grid of pairs (L, T ) is shown in
Fig. 1. We find that, for the range of L values con-
sidered, the normal rhythm z0(t) becomes unstable at
nearly the same period (T ≈ 270 ms) and alternans de-
velops, which is consistent with Ref. [Echebarria and
Karma, 2002].

2 Controllability
In the presence of feedback Eq. (5) must be modi-

fied. For simplicity we assume the feedback current is
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Figure 2. Controllability and observability of the two unstable
modes for L = 1 cm and T = 210 ms. The star indicates the
location of the pacing electrode. The grayscale shows the magnitude
of the indicated eigenmodes. The mode structure is similar for other
values of L and T .

applied during a brief time interval (tn, tn + δt). For
δt � T ,

δz(tn + δt) ≈ δz(tn)−Qng(xc), (6)

where Qn is the total electric charge delivered by the
control electrode during that interval. Hence the stro-
boscopic map becomes

δz(tn+1) = U(τ + T, τ)δz(tn)−Qnb, (7)

where b = U(τ + T, τ)g(xc). A more convenient de-
scription of the dynamics can be obtained by project-
ing (7) onto the basis {ei(τ)}. This requires the eigen-
modes fi(τ) of the adjoint evolution operator

U†(τ + T, τ)fi(τ) = λ∗
i fi(τ). (8)

The adjoint eigenmodes fi(0) are computed using the
matrix-free approach described previously. The ac-
tion of the operator U†(t, 0) is computed by time-
discretizing U(t, 0) and evaluating the adjoint of the
resulting composition of operators. The relationship
fi(τ) = (λ∗

i )
−1 U†(T, τ)fi(0) is then used to compute

the eigenmodes for other values of τ .
When properly normalized, the eigenmodes ei(τ) and
fi(τ) satisfy the orthogonality condition

〈fi(τ), ei(τ)〉 ≡
∫ L

0

f∗i (τ) · ej(τ)dx = δij . (9)

Therefore, we can expand the perturbation

δz(tn) =
∞∑
i=1

ξni ei(τ), (10)

where ξni = 〈fi(τ), δz(tn)〉. Applying the operation
〈fi(τ), ·〉 to both sides of (7) we obtain

ξn+1
i = λiξ

n
i −BiQ

n, (11)

where Bi = 〈fi(τ),b〉 = λi 〈fi(τ),g(xc)〉 ≈
λif

u
i (xc, τ), since g(x) is a narrow Gaussian (the su-

perscript u denotes the voltage component of fi).
In the limit ∆Tn � ∆Tp � T , which corresponds to

small deviations from normal rhythm, PIA control can
be cast in a form very similar to (11):

ξn+1
i ≈ λiξ

n
i − λi [f

u
i (xp,∆Tp)

− fu
i (xp, 0)]

Qp

∆Tp
∆Tn, (12)

where Qp is the charge delivered by one pacing impulse
of duration ∆Tp and ∆Tn was defined in (3).
When fu

i (xc, τ) ≈ 0 for some i, the feedback cur-
rent has no effect on the dynamics of mode i (the mode
becomes uncontrollable) and the instability cannot be
suppressed, regardless of how the current is chosen. On
the other hand, the larger |fu

i (xc, τ)| is, the smaller the
feedback current can be. The structure of the adjoint
eigenmodes, therefore, determines where the control
electrode(s) should be placed and how the timing of the
control impulse should be chosen. Similar conclusion
was made for spiral waves in a two-dimensional tissue
model in Ref. [Allexandre and Otani, 2004].
Fig. 2 shows the absolute value of the adjoint eigen-

modes for the two unstable modes of our system. Us-
ing the same electrode for both pacing and control is
not only convenient from the experimental perspec-
tive, this choice also provides near optimal controlla-
bility. As Fig. 2 illustrates, |fu

i (xp, τ)| reaches near-
maximal values for all unstable modes, such that they
can be made controllable by appropriate choice of τ .
Therefore, in this study we set xc = xp. Controlla-
bility also requires that the control impulse be deliv-
ered much later than the pacing impulse. We discov-
ered that the optimal interval 0.3T . τ . 0.6T , where
|fu

i (xp, τ)| takes nearly maximal values for all unstable
modes (hence requiring the smallest control current),
is essentially independent of L. As Fig. 4 shows, this
corresponds to the plateau phase of the action potential.
However, as we will see next, there may be other con-
ditions that impose additional restrictions on the choice
of τ .
For PIA, feedback timing does not fall into the op-

timal range. On the contrary, for every i, |fu
i (xp, τ)|

has a deep minimum in the range 0 < τ < ∆Tp, as
Fig. 3 shows. As the right-hand-side of (12) shows,
when feedback is imposed by shifting the timing of
the pacing impulse, the magnitude of the difference
∆fu

i ≡ fu
i (xp,∆Tp) − fu

i (xp, 0) determines con-
trollability instead of |fu

i (xp, τ)|. As Table 1 shows,
|∆fu

i | is of order unity only for i = 1 (the leading
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Figure 3. fu
i (xp, τ) for (a) L = 1 cm and (b) L = 2 cm. In

both cases T = 210 ms. Only i-values for unstable modes are
shown: i = 1 (solid line), i = 2 (dashed line), i = 3 (dot-dashed
line). The gray shade indicates the range 0 < τ < ∆Tp.

mode is controllable). All sub-leading modes are, at
best, weakly controllable, indicating that PIA control
has virtually no effect on their dynamics and hence
is expected to fail. This is in perfect agreement with
Ref. [Echebarria and Karma, 2002], which showed
that feedback only affects the dynamics of the leading
mode.
Once xc and τ have been selected, the feedback stabi-

lizing the target state can be computed using any stan-
dard control-theoretic method. We start by truncat-
ing (11), keeping only the unstable and possibly some
weakly stable modes. The evolution equation for the
m remaining modes can be written in matrix form as
ξn+1 = Aξn − BQn, where ξn = [ξn1 , · · · , ξnm],
A is a diagonal matrix with Aii = λi, and B =
[B1, · · · , Bm]. We compute the stabilizing feedback
using linear-quadratic regulator control (using MAT-

i 1 2 3 4

|∆fu
i |(a) 0.4080 0.0780 0.0054 0.0926

|∆fu
i |(b) 0.7909 0.0082 0.1086 0.0716

Table 1. The values of |∆fu
i | = |fu

i (xp,∆Tp) −
fu
i (xp, 0)| for (a) L = 1 cm and (b) L = 2 cm. Bold font

corresponds to unstable modes. In both cases T = 210 ms.
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Figure 4. Controllability and observability of the unstable modes
and sinus rhythm voltage for L = 2 cm, T = 220 ms, xc =
xp = 0.25 cm and xo = 1.8 cm.

LAB routine dlqr) which yields

Qn = −Kξn, (13)

with feedback gain K making A+BK stable.

3 Stabilizability
In experiment, the mode amplitudes ξni will not be di-

rectly accessible. However, it is possible to reconstruct
them from recordings of the transmembrane voltage us-
ing an auxiliary dynamical system known in control
theory as an observer or estimator. Similar to the PIA
implementation in Ref. [Echebarria and Karma, 2002],
we will use a single electrode to record the voltage, but
will use one measurement per pacing interval in con-
trast with PIA, which requires continuous measurement
of u to determine the APD. An electrode of finite spa-
tial extent and centered at xo can be modeled by writing
the recorded voltage as vn =

∫
g(x − xo)u(x, tn)dx.

We also assume that the voltage in the normal rhythm
v0 =

∫
g(x − xo)u0(x, τ)dx is unknown and needs

to be determined. In principle, τ can be chosen inde-
pendently for observation and control; in this study we
choose τ to be the same for simplicity.
From the definition of δz and (10) we have

vn = v0 +
∞∑
i=1

ξni Ci, (14)

where Ci = 〈ei(τ),g(x − xo)〉 ≈ eui (xo, τ). Trun-
cating (14) to m modes and rewriting it in matrix form
yields vn = C†rn, where C = [C1, · · · , Cm, 1] and
rn = [ξn1 , · · · , ξnm, v0] is the vector of unknowns to be
determined. Once again, (14) allows an intuitive inter-
pretation. Whenever Ci ≈ eui (xo, τ) = 0, the mea-
sured voltage becomes independent of the mode ampli-
tude ξni (mode i becomes unobservable). This means
that ξni cannot be determined regardless of the proce-
dure used to extract it. If the unobservable mode is



unstable, we cannot expect the feedback to suppress
it either, so that observability of unstable modes im-
poses additional restrictions on the timing τ of volt-
age recordings and the position xo of the recording
electrode. From the observability standpoint, the opti-
mal choice of τ corresponds to the range where both
|eu1 (xp, τ)| and |eu2 (xp, τ)| are near maximal values.
This optimal range is L-dependent: we find 0.5T .
τ . 0.9T for L = 1 cm (see Fig. 2), but 0.8T . τ .
1.2T for L = 2 cm (see Fig. 4). On the other hand,
the optimal spatial location for the recording electrode,
regardless of fiber length, is found to be xo ≈ 0.9L.
We used the Luenberger observer [Zak, 2003] to re-

construct the mode amplitudes ξni from a series of volt-
age recordings vn, vn−1, · · · . Let us define

r̃n+1 = Ãr̃n + B̃Qn +H
[
vn − C†r̃n

]
, (15)

where Ã is a diagonal matrix with Ãii = λi for i =
1, · · · ,m and Ãii = 1 for i = m + 1, while B̃i = Bi

for i = 1, · · · ,m and B̃i = 0 for i = m+1. Then r̃n =
[ξ̃n1 , · · · , ξ̃nm, ṽ0] is an estimate of rn in the sense that
the difference r̃n−rn converges to zero asymptotically,
provided H is chosen such that Ã−HC is stable. The
observer gain H was also computed using dlqr.
Combining the controller (13) with the observer (15)

yields a single-input single-output (SISO) control pro-
cedure (known as a compensator) that could easily be
applied in an experimental setting. To illustrate its per-
formance we implemented control of the full nonlinear
equation (1).

4 Results and conclusions
In order to directly compare the performance of the

compensator with PIA control we used the same elec-
trode for pacing and feedback and followed the pro-
tocol outlined in Ref. [Echebarria and Karma, 2002].
Starting with T = 280 ms where the normal rhythm is
stable, T was decreased by 5 ms followed by 200 pac-
ing impulses (with the feedback turned on) after which
the cycle was repeated. We found that, PIA control
is able to suppress alternans only for the values of L
and T characterized by one unstable mode (see Fig.
1). This result supports the observation we made pre-
viously that the second unstable mode becomes uncon-
trollable whenever the control current is localized near
τ = T (or τ = 0), as is the case for PIA.
The failure of PIA control is illustrated in Fig. 5(a)

which shows the evolution of the two unstable modes
for L = 1 cm. Although initially quite small, the am-
plitude of the sub-leading mode grows exponentially
with the rate close to that predicted by the linear stabil-
ity analysis in the absence of control, as expected. The
leading mode, on the other hand, is controllable and
hence is initially suppressed by feedback. However, its
dynamics is slaved to that of the growing sub-leading
mode through the nonlinear terms in (1). Once the am-
plitude of the sub-leading mode becomes sufficiently
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Figure 5. Modal amplitudes ξn1 (thin line) and ξn2 (thick line)
during PIA (a) and model-based control (b) for L = 1 cm and
T = 205 ms. In both cases the initial condition is the normal
rhythm for T = 210 ms and control is turned on at n = 1.

large, the leading mode also starts to grow as feedback
is overpowered by mode coupling.
In contrast, the compensator succeeds even when ad-

ditional unstable modes appear, as Fig. 1 shows. For
instance, for L = 1 cm, controllability and observabil-
ity conditions can be satisfied by placing the record-
ing electrode in the optimal location xo = 0.9 cm and
choosing τ = 0.54T . In this case truncation to m = 2
modes is sufficient to suppress alternans for any T , in-
cluding the values where PIA control fails, as illus-
trated by Fig. 5(b). On the other hand, if the pacing
electrode is also used for observation, xo = xc = 0.25
cm, the compensator performance deteriorates signifi-
cantly when the same 2-mode truncation is used. Pre-
dictably, it is the observer part which starts to fail in
the latter case. As a quick comparison of Figs. 6(a)
and 6(b) shows, for xo = 0.25 cm the estimates of
the modal amplitudes differ significantly from the ac-
tual values, while for xo = 0.9 cm the estimates re-
main fairly accurate. The fundamental problem here is
the decreased observability of both unstable modes at
xo = 0.25 cm (see Fig. 2), which requires the use
of a large observer gain H . The latter, in turn, re-
duces the region of validity of the linear approxima-
tion (15). Since the initial condition zi (normal rhythm
at T = 210 ms) deviates quite significantly from the
target state z0 (normal rhythm at T = 205 ms), large
observer gain can significantly amplify nonlinear ef-
fects, artificially exciting nominally stable modes not
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Figure 6. Modal amplitudes ξn1 (thin black line), ξn2 (thick black line), ξn3 (thin gray line), ξn4 (thick gray line) and their estimates ξ̃n1 (filled
circles), ξ̃n2 (open circles), ξ̃n3 (filled triangles), ξ̃n4 (open triangles) during compensator control for L = 1 cm, T = 205 ms. (a)
xo = 0.9 cm and m = 2; (b) xo = 0.25 cm and m = 2; (c) xo = 0.25 cm and m = 4; (d) same as (b), but with smaller initial
disturbance.

included in the truncation.
The nonlinear origin of the observer failure can be

confirmed by reducing the initial deviation from the
target state. For instance, replacing zi → z0 + (zi −
z0)/10 considerably improves the accuracy of the es-
timates as Fig. 6(d) illustrates. A partial solution to
the problem is provided by increasing the truncation or-
der of the compensator to include a number of weakly
stable modes, in addition to the unstable ones. This
has an effect of expanding the region of validity of the
linear approximation (15). For instance, truncation to
m = 4 modes produces radically more accurate esti-
mates of the mode amplitudes (shown in Fig. 6(c)) for
the same initial disturbance as in Figs. 6(a-b), mostly
restoring the efficiency of the compensator. However,
for L & 1.5 cm the compensator fails for any truncation
order, if the same electrode is used for pacing, control,
and recording.
Although the range of parameters for which alternans

can be suppressed is extended by replacing PIA with
compensator control described here, even further im-
provement is possible with some modifications. While
the maxima of |fu

i (xc, τ)| are achieved for the same
value of τ regardless of the fiber length (this optimum
is determined by the local cell dynamics), the maxima
of |eui (xo, τ)| shift linearly with the fiber length (infor-
mation propagates away from the pacing/control site
with the speed given by the conduction velocity). For

fibers longer than about 1 cm, controllability and ob-
servability may not be both satisfied by the same value
of τ . For instance, for L = 2 cm, |eui (xo, τ)| are maxi-
mal for τ ≈ T when |fu

i (xp, τ)| are near their minima
(see Fig. 4), so that τ has to be chosen differently for
the controller and the observer. If the system state is
available and does not have to be reconstructed by an
observer, feedback computed using model-based con-
trol can suppress alternans for up to L ≈ 2 cm (see Fig.
1). For longer fibers the approach based on space- and
time-localized current injections fails and continuous-
time voltage measurement and current feedback are re-
quired to suppress alternans.

In summary, we have shown that following a system-
atic model-based approach it is possible to design a
control procedure that overcomes the limitations of the
PIA approach, yet is still simple to implement experi-
mentally. The model-based analysis also allows one to
determine how the electrodes should be arranged along
the fiber, regardless of the method used to determine
the feedback current. Specifically, the control elec-
trodes should be placed at the spatial locations where
the adjoint unstable eigenmodes are close to their max-
ima. This requirement can be satisfied, for instance,
by collocating the pacing and control electrodes. Sim-
ilarly, the recording electrodes should be placed where
the unstable eigenmodes are near their maxima. For
fibers shorter than 2 cm this can be achieved by plac-



ing one recording electrode near the opposite end of the
fiber. For fibers longer than 2 cm an additional record-
ing electrode is needed; it can be collocated with the
pacing electrode. Furthermore, we explained that PIA
control breaks down due to the loss of controllability
when the second unstable mode appears. Finally, it
should be mentioned that the analysis presented here is
applicable to other excitable systems and, in particular,
other types of cardiac tissue (e.g., atrial and ventricular
muscle), paving the way for clinical applications.

Acknowledgements
This material is based upon work supported in part

by the National Science Foundation under Grant No.
1028133. The authors are grateful to Flavio Fenton for
many invaluable discussions.

References
Allexandre, D. and Otani, N. F. (2004) Preventing al-

ternans induced spiral wave breakup in cardiac tissue:
an ion channel based approach. Phys. Rev. E, 70, pp.
061903.

Cherry, E. M. and Fenton, F. H. (2008). Visualization of
spiral and scroll waves in simulated and experimental
cardiac tissue. New J. Phys., 10, pp. 125016.

Christini, D. J. et al. (2006) Control of Alternans in
Canine Cardiac Purkinje Fibers. Phys. Rev. Lett., 96,
pp. 104101.

Echebarria, B. and Karma, A.(2002). Spatiotemporal
control of cardiac alternans. Chaos, 12, pp. 923.

Guevara, M. R. et al. (1984) Electrical alternans and
period-doubling bifurcations. In Comput. Cardiol.,
Park City, UT, USA, Sept. 18-20, pp. 167.

Hall, G. M. and Gauthier, D. J. (2002). Experimental
control of cardiac muscle alternans. Phys. Rev. Lett.,
88, pp. 198102.

Knoll, D. A. and Keyes, D. E. (2004) Jacobian-free
Newton-Krylov methods: a survey of approaches and
applications. J. Comp. Phys., 193, pp. 357.

Lehoucq, R. B. and Sorensen, D. C. (1996) Deflation
Techniques for an Implicitly Re-Started Arnoldi Iter-
ation. SIAM J. Matr. Anal. Appl., 17, pp. 789.

Mines, G. R. (1913). On dynamic equilibrium in the
heart. J. Physiol. (London), 46(4-5), pp. 349–383.
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