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Abstract. This paper is devoted to the dynamic
analysis of two-connected beam-columns with a
variation of the bending connection and minor
perturbations of the length of each span. The point
of reduced bending stiffness represented by a
rotational spring may result from a crack. This
rotational spring can also be associated to semi-
rigid connection in the field of steel or composite
structures for instance. Dynamics of this axially
loaded two-span weakened column appears to
exhibit strong localization for small values of
flexibility of the rotational spring. The vibration
mode shapes indicate a strong confinement of the
vibration level to a fraction of the column. A
quantitative criterion of localization is established
and is correlated to well known phenomena such as
curve veering effect or close eigenvalues. Such a
result is quite encouraging as localization is
strongly associated to the flexibility values of the
rotational spring. When considering the open crack
analogy, localization only appears for severely
damaged column. It can then be understood as an
indicator of the damage level of the global
structure.
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1. INTRODUCTION

Localization can be understood as the
concentration of a representative parameter
(generally the strain or the displacement) in a part
of the structure. Such a phenomenon has to be well
understood in order to avoid (or control) structural
collapse. Mode localization, whereby a particular

vibration mode (or buckling mode) may be
confined to a limited region of the structure has
been noticed in elastic structures (see the
bibliographical study of El Naschie, 2000, or the
one of Bendiksen, 2000). Indeed, localization
phenomenon has been found in many elastic
stability (and dynamics) problems of continuous
structures, such as local buckling and overall
buckling of thin-walled members or buckling (and
dynamics) of repetitive structures in presence of
irregularities (Pierre et al, 1987; Pierre and Plaut,
1989; Zingales and Elishakoff, 2000). Localization
in a multi-span elastic column may indeed appear
by slightly perturbing the length of each column in
presence  of  additional external  springs.
Localization means that one span vibrates with a
larger amplitude than the other spans.

In this paper, localization in a multi-span
axially loaded elastic column is considered again,
with the introduction of an internal bending
connection located at an intermediate support. The
fundamental analysis is restricted to a two-span
weakened column although similar results are
expected for the more general multi-span column.
The length of each span is slightly perturbed, in
order to break the symmetry of the initial structural
model. The buckling problem was already treated
by Challamel et al (2006). The point of reduced
bending stiffness represented by a rotational spring
can be associated to semi-rigid connection
(Gurfinkel and Robinson, 1965; Plaut and Yang,
1995 or Wang et al, 2004 for instance), with
particular applications in the field of steel or
composite structures for instance. Such a junction
may also describe a stiffened human limb joint or a
robotic arm joint (Wang et al, 2004). The rotational
spring may also result from a crack occurring at the
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intermediate support. For both analogies (semi-rigid
connection or crack model), it is hoped that
asymptotic results will reveal the nature of the
singular coupling between material property of the
connection, and geometrical property of the two-
connected weakened column (with the breaking of
symmetry of the structural model).

When considering the open crack analogy, it
will be shown that localization appears for severely
damaged columns. Buckling or dynamics of
cracked elastic structures has been the subject of
numerous investigations. Dimarogonas (1996) gave
a state of the art review of methods developed to
analyse cracked structures. The crack may be
modelled by a simplified elastic rotational spring,
whose flexibility can be easily identified for the
case of one-sided crack (see for instance,
Dimarogonas, 1996). The equivalent flexibility
depends on the depth of the crack and on the height
of the cross section of the beam. A lot of papers
have been devoted to the vibrations of cracked
structural components. Recently, Binici (2005)
investigates the effect of axial force on the vibration
of beams with multiple open cracks. Drewko and
Hien (2005) study the eigenvalue sensitivity
associated to a cracked beam. The link between
localization and vibration of weakened columns
was not studied in these previous works.

2. STRUCTURAL MODEL

A two-span column is considered in Figure 1
with length / and constant bending stiffness E7 . It
is assumed that the rotational spring, whose
flexibility is denoted by k&, is located at the
intermediate support. It is recalled that this
rotational spring may model a one-sided crack, or
more generally semi-rigid connection in civil
engineering. The column is subjected to axial
compressive load P . The uniform mass per unit of

length is denoted by m.

Figure 1 — The physical system

Equations of the free bending vibrations of this
Euler-Bernoulli beam are given by:
%y
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where y; (ie{1,2})is the transverse deflection of

each span, function of the time ¢ and the spatial co-
ordinate x. « is a dimensionless parameter which
characterises the position of the intermediate
support (a € [0;1]). The solution of Eq. (1) is sought
of the form:

vi(x,1) = w;(x)sin(er) )

Substituting Eq. (2) into Eq. (1) yields the
differential equation for modal displacements:

d* d*w, —
xe[O;al]:EI VZI +P V:I —ma?*w; =0
dx dx 3)
d* d’w, —
xe[al;l]:EI sz +pEi 2 —mo*w, =0
dx dx

The boundary conditions associated to each outer
support are:

wi(0)=0 wy(1)=0

d*w, and | 42y, “
—F(0)=0 [)=0

50 =)

The deflection is vanishing at the intermediate
support:

wi(ad)=0
wy(ad)=0 ©)

Finally, the last conditions express the continuity of
the bending moment at the intermediate support,
and the crack (or connection) constitutive behavior:

2 2

el i (ad) = E12 22 ()
dx dx 6)
d*w dw dw

EI Lad)= k| —2(ad)— —L(ed
5 al) ] ) )|

Let us denote the fundamental differences between
the present model, and the model studied by Pierre
(1988), or Pierre and Plaut (1989), who introduced
an external spring, whereas the model developed in
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the paper considers an internal spring. The
following dimensionless parameters are introduced:

x 5 s lm 5, PI? ki
== ;A" =0l —; =——and y=—
d EI r EI 4 EI
(7

’
() denotes the derivative with respect to the
dimensionless spatial coordinate ¢&. The new
governing equations are:
wl(4) +;(2w1”—/14w1

=0 for fe [O;a ]
(4) 2 4 ®)
Wy Ly Twy = A w, =0 for §e[a;l]

The general integrals of each fourth order linear
differential equation are:

w; (€)= 4; cosh(¢&)+ B, sinh(¢p&)+
C; cos(y&)+ D, sin(y&)

¢_\/—;(2 +zt+art

2

\/;52+11;(4+4/14
Va5

2

with )

Imposing the boundary conditions leads to the
characteristic equation:

7 sinh(¢)sin(u/a)sin[y/(a - 1)]7 V4% sin(u/)sinh( a)sinh[¢(a - 1)] =
(¢2 +y? )sin(y/a)sin[t//(a - 1) sinh(¢a)sinh[¢(a - 1)]

(10)

When y tends towards an infinite value, the

structural model is reduced to the classical two-
span continuous column. Eq. (10) can be simplified
for the case without axial force (y — oo, y = O) -

see also Karnovsky and Lebed (2001).

sinh(4)sin(Aa )sin[A(c —1)] = sin(4)sinh(Aa )sinh[ (e ~1)]
(11)

Introducing the smallest solution 4, of Eq. (10)
yields the fundamental vibration mode:

1(5)_ inlw.a) - Sinh(¢1f)+ Sin(‘/’@)
=siny, { sinh(¢, ) sin(t//la)}

s

wy (&) = sin(y a{— sinh(g (1 - £)) i sin(yy(1-£))

D, VL sinh(g(1-a))  sinfyy (1-))
if sin(y,a)= 0 and sin(y,(1-a))= 0
(12)

|

3. ASYMPTOTIC ANALYSIS

It would be more convenient to introduce the
dimensionless parameter ¢ as :

azé(l—a‘) with & <<1

(13)

¢ is a dimensionless misplacement with respect to
the symmetrical configuration. An asymptotic
analysis is now performed in order to check closed-
form approximation of the smallest parameter A4,

(see for instance Bush, 1992):

A= 20 422,04 22,2 1 0fe?) (14)

()

For symmetrical reasons, the first order term A;
is vanishing (/11(1) =0). The unperturbed solution
ll(o) (g =0), is given by:

1
249 = (167 — 4222 ) (15)

Introducing Eq. (14) into the terms ¢, and y, of
Eq. (9) leads to the following result:

3
oo o)

3
4_y4 2 2),
b =477 - 7| 1422,? hor* ") £

(4”2 _szgﬂ_z _lz)
(16)

Introducing Eq. (16) into Eq. (10) leads to the
calculation of 21(2) for y 20 :

71'2(87z2 _12)2

11(2) - ;
2}/(167:4 —4n212)1
472 — 42
72 \4rn? —;(2 (87[2 —;gz)cosh %
3 2 2
3 4r? -
(l67* — 472 2+ sinh %
amn

()

origin. The curvature grows as the

The parameter A, quantifies the curvature at

stiffness
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parameter y decreases. This curvature is singular
when y tends towards zero, leading to the curve
veering effect highlighted by Pierre (1988) for
another mechanical system with an external spring
instead of the internal spring considered in this
paper. It is clear however that the second-order
perturbation (Eq. (14)) has to be questioned when
y tends towards zero, thereby indicating that the
vibration modes undergo a dramatic change (the
relevancy of asymptotic methods with respect to the
connection parameter is also analysed by
Andrianov et al, 2005).

As suggested by Pierre (1988) for a similar problem
with an external spring, a modified perturbation
approach (with fixed &) is probably more readable
when y tends towards zero.

A= 249 2,0 +O(}/2) (18)

The unperturbed case (7/20) leads to the
fundamental frequency:

o0 [ 16z*  4ax?y?
) = — 19
! ((1”)4 (s 2] (19

EN

Introducing Eq. (18) into Eq. (10) leads to the
identification of the following parameters:

2
4 = 14” - 1 ~ Q)
(i+e) I Al
(1+8)4 (1+8)2

4. LOCALIZATION ANALYSIS

The localization phenomenon can be quantified by
comparing the deflection values in each span. The
localization parameter ¢ can be introduced as in
Pierre et a/ (1987):
max{ m[ax]|w1 («f); m[ax]|w2 («fﬂ
5= £el0a Selasl (21)
min| max |w, (& ); max|w 5}
FrET

;“e[O;a

For symmetrical arguments, J is equal to 1
without misplacement (g=0). The maximum of

the vibration mode in each unsymmetrical span is
calculated from the derivative of Eq. (12):

— ¢ sin(y@)cosh(, )+y, sinh(gar)cosly &) =0
~¢ sinly, (o~ 1)]cosh[g, (&, ~1)]+y, sinhlg, (@~ 1)]cosly, (£, -1)]=0
(22)

Finally, for positive values of & (¢>0), the
localization parameter can be written as:

|W2(§21

°° |W1(§11

(23)

The localization parameter & can be also derived
by using an asymptotic method. In this case, one
needs to develop a two-parameter (g, )/) asymptotic
method (see also Matkowsky and Reiss, 1977,
Happawana et al, 1991). It is first assumed that the
two parameters (5,)/) are of the same order of
magnitude (& ~y). The first step consists in

calculating the fundamental frequency, from the
asymptotic expansion. It is assumed that:

1
4 = (167;4 —47r2;(2)Z +f1(a,7)+... with

filey) ~e ~7 (24)

Introducing Eq. (24) into the terms ¢, and y,; of
Eq. (9) leads to the following result:

3
442 2
‘//1=27Z'+%(16”8 24” f ) +
T =X
1
1674 —4x?y*Ja
¢1=1l47z2—;(2+47rf1( P f) +...

(25)

Introducing Eq. (25) into Eq. (10) leads to the
second-order polynomial expression of f;:

3
12 -sa*ll6nt —an? 42 ) f, - o6

3
282 :0

47[4(87r2 —;(2)2 (167[4 —47z2;(2)

Two solutions are obtained from the resolution of
Eq. (48) (the smallest solution is chosen for the
fundamental vibration mode):

1y =4nfor’ ‘4”212)_3[7—\/72 vfgr2 -2 f

@7

The calculation of & needs the computation of
&, (i € {1;2}), from the non-linear equation Eq. (22).
An asymptotic analysis may also be performed
from:
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éi = é:j(o’O) +g;t+.. with (:1(0’0) :% and

3
0 =2 28)

The characteristic coordinates &, (i € {1;2}) can now

be introduced into the modal deflection given by
Eq. (12), to obtain the asymptotic expansion of the
deflection in the first span. The maximum of the
normalized deflection in the first span is close to
unity:

Wl(f])zl_ fr° -

D, 2 2
4r” -
2 cosh[ﬁ}

For similar reasons, it can be shown that the
minimum of the normalized deflection in the
second span is equal to:

2r 2 2 2 52
ﬂg—z_xz(y—\/}/ +(87z - )27

Wy (52 ) _ 87

D, 472 — 42
2cosh[”4){J

2z 2 2 apeE
”5_2_}(2[7_\/7 +(87Z' - )ZT

(29)

87
- +...

2r 2 2 apE
ﬂ8+22{}/—\/7 +(87r - )27
X

87

(30)
This means that the localization factor evolves as

the minimum of the deflection in the second span,
which is controlled by the second term of Eq. (30):

e 2”[}/—\/72 +(87r2 —;(2)2842}

8l 4t
0= +..
2 2 g2
mﬂ—% 7—\/72 +(87r2 —;(2) £
871° -y 4

(€2Y)

Moreover, some simplifications may occur from the
fundamental assumption that & ~ y:

5 =8 —;{2)%... (32)

Two particular cases can be deduced (vibrations
without normal force, and buckling problem):

872¢ A7’

+osy=2r=>0=
e Ve

7=0=>6= +..(33)

The asymptotic expansion can also be obtained
when the two parameters (s, 7) are not of the same

order of magnitude:

y ~¢&f with p>2= 5:(8772—;(2)£+... (34)
e

It appears that Eq. (32) is also valid when y is
small before &. The localization phenomenon is
clearly highlighted in Figure 2 and Figure 3.

Figure 2 — Influence of the parameter y on the
localization phenomenon; y € {0.01;0.1;1} ;=0
and € =0.01

vibration analysl

%

Figure 3 — Comparison of the numerical analysis
with the asymptotic analysis; € = 0.01

On the opposite, it can be shown that the
localization factor 6 tends towards unity when &
is sufficiently small before y .
2 2
e ~yP with p>22 =>6=1+ v —x' )z,
2y
(35)
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5. CONCLUSIONS

e The dynamic analysis of a two-span
weakened column with minor perturbations of
the length of each span has been studied in
this paper. The point of reduced bending
stiffness represented by a rotational spring
may result from a crack located at the
intermediate support. This rotational spring
can also be associated to a semi-rigid
connection in structural engineering. The
buckling problem is treated as a particular
case of the axially loaded vibration problem.

A quantitative criterion of localization is
established. An asymptotic analysis is
performed in order to get closed-form solution
of this localization parameter. Moreover, from
the asymptotic point of view, there is a
correspondence  between the  buckling
problem and the free vibration problem
(without axial loading).

Such a result is quite encouraging as
localization is strongly associated to the
flexibility values of the rotational spring, that
is, when considering the open crack analogy,
to the size of the crack. Localization only
appears for severely damaged column. It can
then be understood as an indicator of the
damage level of the global structure. In this
paper, it is shown that the concept of mode
localization can be also used to passively
control the structural integrity (as anticipated
by Nayfeh and Hawwa, 1994 for systems with
external springs).
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