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Abstract

We describe how can we obtain all assignable polynomials to aweakly reachable
linear system over a B́ezout domain in normal form by solving a system of linear
diophantine equations. We also point out some applications.
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1 Introduction

A single input linear system over a commutative domainR (commutative ring with no
zerodivisors) is just a pairΣ = (A, b) whereA ∈ Rn×n is a square matrix andb ∈ Rn×1 =
Rn is a column vector. For control theoretic affairs, this pair summarizes the sequential
dynamical equation

x(t + 1) = Ax(t) + bu(t)

wherex(t) is the internal state at discrete timet andu(t) is the scalar input we introduce in
the system.

The design ofu = f tx as aR-linear function of the states is the celebrated ”Feedback
Action” which allows to stabilize linear systems in some cases: Closed loopu = f tx yields
to the finite difference equation

x(t + 1) = (A + bf t)x(t)

and the behavior is defined by the characteristic polynomial

χ(A + bf t) = det(z1 − (A + bf t))

It is interesting to research what are the assignable polynomials to a given systemΣ =
(A, b); that is to say, to describe the family

Pols((A, b)) = {χ(A + bf t) : f t ∈ R1×n}
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Classical results show that every monic polynomial of degreen is in Pols((A, b)) if and
only the reachability matrix of systemΣ = (A, b)

(A ∗ b) = (b, Ab, A2b, ..., An−1b)

is invertible (see [1], Theorem 3.2). That is to say, ifdet(b, Ab, A2b, ..., An−1b) is an unit
of R.

A very few work is done if systemΣ = (A, b) is not reachable. In particular
we are interested in the case of weakly reachable systems; which which is thecase of
det(b, Ab, A2b, ..., An−1b) 6= 0. Weakly reachable linear systems are interesting because
they are reachable in the field of fractions of domainR. For instance, ifR = Z then weakly
reachable linear systems overZ are reachable if we consider them overQ.

Now we recall the property of that Pols(Σ) is a feedback invariant associated to system
Σ. Recall that feedback actions on systemΣ = (A, b) are finite composition of basis
changesx′ = Px, P ∈ GLn(R) and closed loopsu = u′ + f tx. Hence a general feedback
action brings linear systemΣ = (A, b) to systemΣ = (P (A + bf t)P−1, P b).

But it is clear that

Pols((P (A + bf t)P−1, b)) = {χ(P (A + bf t)P−1 + bφt) : φt ∈ R1×n} =

= {χ(A + bf t + bφtP ) : φt ∈ R1×n} = Pols((A, b))

Hence we have proven the following result:

Lemma 1.1. Pols(Σ) is a feedback invariant associated to systemΣ.

Note that for reachable single input systems we have that every reachable single input
linear system is feedback equivalent to the Canonical Controller Form (see [1] Theorem
3.2):

Σ♭ =



















0 1 0 · · · 0
... 0 1

. ..
...

...
.. . . .. 0

...
. .. 1

0 · · · · · · · · · 0



















,

















0
...
...
0
1

















and it is now clear that every monic polynomial can be assigned to a reachable single input
system, because every monic polynomial can be easily assigned to the canonical controller
form Σ♭.

The paper is organized as follows:

2 The canonical form

With the Canonical Controller Form in mind, a Canonical Form for the weakly reachable
case over a B́ezout domain is introduced in [2]. For reader’s convenience we recallthat a
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Bézout domain is a domain such that every finitely generated ideal is principal.Essentially
we may think in a Bezout domain as a principal ideal domain that fails to be Noetherian. Of
course every principal ideal domain (a field,Z, k[t],...) is a Bezout domain but the converse
is not true (see Note 4.1). The Canonical Form is the following.

Theorem 2.1. (cf. [2]Theorem 2.5) LetR be a Bezout domain. LetΣ = (A, b) be a single
inputn-dimensional linear system overR. If Σ is weakly reachable then there exist nonzero
elementsd1, ..., dn of R such thatΣ is feedback equivalent to the systemΣ∆ given by:

Σ∆ =
(

A∆, b∆
)

=





































a11 a12 a13 · · · a1,n−1 a1n

d2 a22 a23 · · · a2,n−1 a2n

0 d3 a33 · · · a3,n−1 a3n
...

.. . .. . . ..
...

...
0 0 · · · dn−1 an−1,n−1 an−1,n

0 0 · · · 0 dn ann



















,



















d1

0

...

0





































This canonical form is obtained by performing1 + 2 + · · ·+ (n− 1) = n(n−1)
2 Bezout

identities inR (see [2] for details).

Example 2.2. Running Algorithms in [2] on the linear system overZ given by

Σ =





−4 9 5
7 1 −16
−2 4 −9



 ,





20
0
8





one obtains the canonical form

Σ∆ =





2 3 0
3 1 1
0 2 1



 ,





4
0
0





3 Effective calculation of the determinants

In this section we give a recursive procedure in order to obtain the characteristic polynomial
of square matrixA and all polynomials reached by feedback from the linear systemΣ =
(A, b) in canonical form.

Let A be the squaren × n matrix

A =



















a11 a12 a13 · · · a1,n−1 a1n

d2 a22 a23 · · · a2,n−1 a2n

0 d3 a33 · · · a3,n−1 a3n
...

.. . . . . .. .
...

...
0 0 · · · dn−1 an−1,n−1 an−1,n

0 0 · · · 0 dn ann


















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In order to obtain the above family Pols(A, b) of assignable polynomials to system
(A, b), denote byAi:n the square(n − i + 1) × (n − i + 1) submatrix ofA containing the
last(n − i + 1) rows and(n − i + 1) columns. That is to say:

Ai:n =



















aii ai,i+1 ai,i+2 · · · ai,n−1 ain

di+1 ai+1,i+1 ai+1,i+2 · · · ai+1,n−1 ai+1,n

0 di+2 ai+2,i+2 · · · ai+2,n−1 ai+2,n
...

.. . . . . . . .
...

...
0 0 · · · dn−1 an−1,n−1 an−1,n

0 0 · · · 0 dn ann



















With this notations one has that

Theorem 3.1. With the above notations we have:

χ(A + bf t) = χ(A∆) − f1d1χ(A∆
2:n) + f2d1d2χ(A∆

3:n) − · · ·

· · · + (−1)n−1fn−1d1 · · · dn−1χ(A∆
n:n) + (−1)nfnd1 · · · dn

Proof.-

χ(A+bf t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z − (a11 + d1f1) −(a12 + d1f2) · · · −(a1,n−1 + d1fn−1) −(a1n + d1fn)
−d2 z − a22 · · · −a2,n−1 −a2n

...
. . . . . .

...
...

0 · · · −dn−1 z − an−1,n−1 −an−1,n

0 · · · 0 −dn z − ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

= χ(A) − d1 ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1 f2 f3 · · · fn−1 fn

−d2 z − a22 −a23 · · · −a2,n−1 −a2n

0 −d3 z − a33 · · · −a3,n−1 −a3n

...
. .. . . . . ..

...
...

0 0 · · · −dn−1 z − an−1,n−1 −an−1,n

0 0 · · · 0 −dn z − ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

= χ(A)−d1f1χ(A2:n)+d1d2·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f2 f3 f4 · · · fn−1 fn

−d3 z − a33 −a34 · · · −a3,n−1 −a3n

0 −d4 z − a44 · · · −a4,n−1 −a4n
...

. . . .. . . . .
...

...
0 0 · · · −dn−1 z − an−1,n−1 −an−1,n

0 0 · · · 0 −dn z − ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

and the result follows from induction
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Now the set of assignable polynomials for a single input is given in terms of some
indeterminates freely chosen by the controller (thefi’s) and of some fixed polynomials (the
χ(Ai:n)). All these polynomials can be obtained by a recursive method fromχ(An:n) to
χ(A2:n) andχ(A).

Theorem 3.2. With the above notations we have

χ(Ai:n) = (z − ai,i)χ(Ai+1:n) − di+1ai,i+1χ(Ai+2:n) + di+1di+2ai,i+2χ(Ai+3:n) − · · ·

· · · + (−1)n−i−1di+1 · · · dn−1ai,n−1χ(An:n) + (−1)n−idi+1 · · · dnai,n

Proof.-

χ(Ai:n) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z − aii −ai,i+1 −ai,i+2 · · · −ai,n−1 −ain

−di+1 z − ai+1,i+1 −ai+1,i+2 · · · −ai+1,n−1 −ai+1,n

0 −di+2 z − ai+2,i+2 · · · −ai+2,n−1 −ai+2,n

...
.. . .. . . . .

...
...

0 0 · · · −dn−1 z − an−1,n−1 −an−1,n

0 0 · · · 0 −dn z − ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z − aii 0 0 · · · 0 0
−di+1 z − ai+1,i+1 −ai+1,i+2 · · · −ai+1,n−1 −ai+1,n

0 −di+2 z − ai+2,i+2 · · · −ai+2,n−1 −ai+2,n

...
. . . . . . . . .

...
...

0 0 · · · −dn−1 z − an−1,n−1 −an−1,n

0 0 · · · 0 −dn z − ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 −ai,i+1 −ai,i+2 · · · −ai,n−1 −ain

−di+1 z − ai+1,i+1 −ai+1,i+2 · · · −ai+1,n−1 −ai+1,n

0 −di+2 z − ai+2,i+2 · · · −ai+2,n−1 −ai+2,n
...

. . . .. . . . .
...

...
0 0 · · · −dn−1 z − an−1,n−1 −an−1,n

0 0 · · · 0 −dn z − ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= · · ·

and the result follows from induction

Note that it would be possible to write down explicit formulae forχ(A) and forχ(A +
bf t) by recursive substitution ofχ(Ai:n) as a function ofχ(Ai+1:n), ..., χ(An:n). However
we think this method is not adequate and consequently it is recommended to perform the
recursive calculation. Next we solve the problem for system in Example 2.2:
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Example 3.3. Put the Canonical form overZ:

Σ =





2 3 0
3 1 1
0 2 1



 ,





4
0
0





Then, by Theorem 3.2:

χ(A3:3) = (z − 1)
χ(A2:3) = (z − 1)χ(A3:3) − 2 · 1 = z2 − 2z − 1
χ(A) = (z − 2)χ(A2:3) − 3 · 3 · χ(A3:3) = z3 − 4z2 − 6z + 11

and by Theorem 3.1:
Pols(A, b) =

= {(z3 − 4z2 − 6z + 11) − 4f1(z
2 − 2z − 1) + 12f2(z − 1) − 24f3 : fi ∈ R}

Thus a polynomialz3 + a1z
2 + a2z + a3 is assignable to system(A, b) by feedback if and

only if the following system of diophantine equations is solvable





a1 + 4
a2 + 6
a3 − 11



 =





(−4) 0 0
(−4)(−2) 12 0
(−4)(−1) 12(−1) (−24)









f1

f2

f3





Note that all columns in the system of equations of above Example are obtainedfrom
χ(Ai:3)) in a straightforward way. On the other hand, diagonal elements in coefficient
matrix ared1, d1d2, ..., d1 · · · dn; i.e. the sequence of diagonal invariants obtained in [2].

Note 3.4. Of course the main task here is to obtain a procedure to obtain the linear sys-
tem of diophantine equations directly from a linear system (perhaps withoutobtaining the
Canonical Form). This is our next research challenge in the field.

4 Concluding Remarks

Note 4.1. B́ezout domains. A Bézout Domain is a domain such that every finitely gen-
erated ideal is principal. The more usual examples of Bézout domains are Principal Ideal
Domains asZ or K[x]. These B́ezout domains are noetherian and hence principal ideal
domains, moreover they are also Euclid domains and hence the usual division algorithm
allows us to perform computations in order to obtain canonical forms.

The ringH(Ω) of holomorphic complex functions defined in a domainΩ ⊆ C is also
a Bézout domain (see [2, 15.3.3]) hence our method works in this case. ButH(Ω) is not
an Euclid domain (it is not even a principal ideal domain because is not noetherian), thus a
Division Theorem is needed in order to obtain efficiently the canonical form and to get the
assignable polynomials.
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Note 4.2. Change of scalars.Let R be any commutative ring andΣ = (A, b) a single
input linear system. A ring homomorphismf : R → S defines a new systemf∗Σ =
(f(A), f(b)) as extension of scalars fromR to S via f , wheref(A) = f(aij) if A = (aij).

If R = Z andf : Z → Z/mZ is the canonical quotient map then the extension of
scalars is just the residual study of linear systems modulom. Some results are easily given;
for instance ifm is coprime with all invariantsdi in the Canonical Form ofΣ then every
monic polynomial can be assigned modulom. Otherwise, chances of assign polynomials
decrease. In the critical case ofd1 is a divisor ofm then no polynomial can be assigned.

If R = C[x] is the ring of complex polynomials in a single indeterminate then residual
study at a pointω ∈ C is performed by using the extension of scalars given by the homo-
morphismevω : C[x] → C sendingp(x) 7→ p(ω). Local study around a pointω ∈ C

may be performed by using the canonical inclusionf : C[x] → C[x](x−ω) whereC[x](x−ω)

is the localization ofC[x] at maximal ideal< (x − ω) >. Here if di(ω) 6= 0 then every
polynomial can be assigned toΣ in asmallneighborhood ofω ∈ C.

In the caseR = H(Ω) this covers the study at a neighborhood of a pointω ∈ Ω. From
this point of view it is clear that if

n
∏

i=1

di(ω) 6= 0

then every polynomial can be assigned toΣ.
On the other hand, ifz is a zero of somedi then not every polynomial can be assigned.

But even in this case we will be able to estimate the set of assignable polynomials.
The extremal case is of course whend1(z) = 0: In this case no polynomial (different

from χ(A)) can be assigned.

Example 4.3. Consider the Canonical Form

Σ =

(

0 0
(x − 1) 0

)

,

(

x
0

)

overC[x] (or overH(C)):

• Residual study:

– The evaluation homomorphismevω : C[x] → C at any pointωneq0, 1 yields
that we can (residually) assign any monic polynomial.

– At point ω = 0 no polynomial different fromz2 can be assigned.

– At point ω = 1 only polynomials on the formz2 + αz may be assigned.

• Local study:

– The localization homomorphismfω : C[x] → C[x](x−ω) at any pointωneq0, 1
yields that we can (locally) assign any monic polynomial. In fact the change of

basisP =

( 1
x 0
0 1

x(x−1)

)

brings system to the Canonical Controller Form
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– Localization atω = 0 yields thatx is not invertible inC[x](x). However any
polynomial on the formz2 + x(f1z + f2) can be assigned.

– Localization atω = 1 yields thatx − 1 is not invertible inC[x](x), butx is and
hence any polynomial on the formz2 + f1z + f2(x − 1) may be assigned.
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