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Abstract

We describe how can we obtain all assignable polynomialsiteakly reachable
linear system over a &out domain in normal form by solving a system of linear
diophantine equations. We also point out some applications
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1 Introduction

A single input linear system over a commutative dom&ir{commutative ring with no
zerodivisors) is just a palt = (A, b) whereA € R™"*" is a square matrix ande R"*! =
R"™ is a column vector. For control theoretic affairs, this pair summarizes theeség|
dynamical equation
z(t+1) = Ax(t) + bu(t)

wherez(t) is the internal state at discrete timandu(¢) is the scalar input we introduce in
the system.

The design of. = f'z as aR-linear function of the states is the celebrated "Feedback
Action” which allows to stabilize linear systems in some cases: Closeddeep’z yields
to the finite difference equation B

z(t+1) = (A+0f")x(t)
and the behavior is defined by the characteristic polynomial
X(A+0bf") = det(21 - (A+b["))

It is interesting to research what are the assignable polynomials to a gisems: =
(A, b); that is to say, to describe the family

Pols((A,b)) = {x(A+bf"): f € RV}
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Classical results show that every monic polynomial of degré® in Polg(A4,b)) if and
only the reachability matrix of systedd = (A, b)

(Axb) = (b, Ab, A%, ..., A""'b)

is invertible (see [1], Theorem 3.2). That is to sayléf (b, Ab, A%b, ..., A"~1b) is an unit
of R.

A very few work is done if systent = (A,b) is not reachable. In particular
we are interested in the case of weakly reachable systems; which which ¢agbeof
det (b, Ab, A%, ..., A"~ 1b) # 0. Weakly reachable linear systems are interesting because
they are reachable in the field of fractions of domaAinFor instance, iR = Z then weakly
reachable linear systems ovgare reachable if we consider them o@r

Now we recall the property of that P¢IS) is a feedback invariant associated to system
Y. Recall that feedback actions on systém= (A,b) are finite composition of basis
changes’ = Pz, P € GL,(R) and closed loops = v/ + f'z. Hence a general feedback
action brings linear systei = (A, b) to system® = (P(A + bf")P~!, Pb).

But it is clear that B

PolS((P(A+bf ) P71, b)) = {x(P(A+bf" )P~ +b¢') : ¢' € ™"} =
= {X(A+bf" +bg'P) : ¢' € R™"} = Polg((A, b))
Hence we have proven the following result:
Lemma 1.1. PolgX) is a feedback invariant associated to systém

Note that for reachable single input systems we have that every réachiadie input
linear system is feedback equivalent to the Canonical Controller Faa[(§ Theorem
3.2):

0 1 0 0 0
0 1

Y = o |,

1 0

0 0 1

and it is now clear that every monic polynomial can be assigned to a rdadiagle input
system, because every monic polynomial can be easily assigned to théceaoontroller
form X7,

The paper is organized as follows:

2 The canonical form

With the Canonical Controller Form in mind, a Canonical Form for the weaddghable
case over a Bzout domain is introduced in [2]. For reader’s convenience we retilla
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Bézout domain is a domain such that every finitely generated ideal is prinEigsentially
we may think in a Bezout domain as a principal ideal domain that fails to be Naath©f
course every principal ideal domain (a field,k[¢],...) is a Bezout domain but the converse
is not true (see Note 4.1). The Canonical Form is the following.

Theorem 2.1. (cf. [2]Theorem 2.5) LeRR be a Bezout domain. L&t = (A, b) be a single
inputn-dimensional linear system ové. If X is weakly reachable then there exist nonzero
elementsl; , ..., d,, of R such that® is feedback equivalent to the syst& given by:

ail a2 a3z v - a1,n—1 ain dq
dy az a3 --- a2.n—1 aonp 0
0 d3 azz --- asn—1 asn
A=t = T . S
0 0 e dp— Un—1,n—1 0an—1n
0 o --- 0 dn Qnn 0

This canonical form is obtained by performihg-2+---+ (n—1) = @ Bezout
identities inR (see [2] for details).

Example 2.2. Running Algorithms in [2] on the linear system ov&igiven by

-4 9 5 20
y=| 7 1 =16 |,| 0O
-2 4 -9 8
one obtains the canonical form
2 30 4
=311 ]|,[o0
0 2 1 0

3 Effective calculation of the determinants

In this section we give a recursive procedure in order to obtain thecteaistic polynomial
of square matrix4 and all polynomials reached by feedback from the linear sysiem
(A, b) in canonical form.

Let A be the square x n matrix

ajy a2 aiz - ayp—1 ain
dy aze a3 --- a2n—1 a2y
0 d3 azz --- asp—1 asn
A= .
0 0 S dp— an—-1,n—1 Qn—1n

0 o -- 0 dn, Gnn
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In order to obtain the above family P¢l$,b) of assignable polynomials to system
(A, b), denote byA;.,, the squarén — i + 1) x (n — i + 1) submatrix ofA containing the
last(n — i + 1) rows and(n — i + 1) columns. That is to say:

Qg Q4341 Q4 5+2 te A n—1 Qin

dit1  Gitlit1 Gitlit2 0 Gifln—1  Gitln
0 div2  Qit2i42 0 Qig2n—1  Git2n
0 0 ce dp—1 an—-1,n—1 GQn—1n
0 0 . 0 dy, Ann

With this notations one has that

Theorem 3.1. With the above notations we have:

X(A+bf") = x(A®) = frdix(AS,) + fadidax(AS,) — -+

b (1) fady - dnoa X (AR + (1) fudy - dy,

Proof.-
z—(a11 +dif1) —(a2+dife) - —(a1n-1+difu1)
—da Z — a2 —a2n-1
X(A+bf') = :
0 T _dn—l Z = Qpn—-1n-1
0 o 0 —d,
J1 fo /3 e Jn—1 In
—dy z—ay —a93 s —a2n—1 —Q2n
0 —d3 z—agy - —a3n—1 —as
= v(A)—d; . o
0 0 Tt —dp—1 z— an—-1,n—1 —0n—-1n
0 0 e 0 —dy, Z — Qpp
Jo /3 Ja fn—1
—d3 z—asz3 —az —a3n-1

= x(A)—d1 fix(A2:n)+dida-

0 —dy  z—ag - —Q4,n—1

0 0 T —dp-1 z— an—1,n—1
0 0 e 0 —dn

and the result follows from induction

—Onp—1n

—(ain +difn)

—Q2n

—An—1,n

Z — Qpn

In
—asn
—Q4n

Z — Qpn
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Now the set of assignable polynomials for a single input is given in termsmgso
indeterminates freely chosen by the controller (fHig) and of some fixed polynomials (the
x(A;.)). All these polynomials can be obtained by a recursive method ff0ay,.,,) to

Y(A2,) andy(A).

Theorem 3.2. With the above notations we have
X(Ain) = (2 = aii)x(Ait1:n) — dig10i 01X (Aigroin) + dig1dipoaiivox(Aitam) — -

o+ (_1)n7i71di+1 te dn—lai,n—1X(An:n) + (_1)n7idi+1 T dnai,n

Proof.-
Z— ag —Qiit1 — Q42 e —Qin—1 —Qip
—dit1 Z— Q141 iyl E —Qifln-1  —Gitln
0 —diq2 2= Qiy2i42 v —Qit2n-1  —Qit2n
X(Ai:n) . . =
0 0 ce —dp—1 z— p—1n—1 —An—1mn
0 0 e 0 —d, Z— Qnn
Z — Qg; 0 0 tee 0 0
—dit1 2= i1l Q142 e —Qit1pn—1  —Qifln
0 —diq2 Z = Qiy2442 e —Qit2pn—1  —Qit2n
= . . +
0 0 te —dp—1 22— n—1mn—1 —On—1n
0 0 e 0 —d, Z — Qpn
0 —Qj 41 —Qj,i42 e —Qjn—1 —Qin
—diy1 2= Qipli41 —Qig1i42 e —Qit1p—1  —Qitin
0 —diy2 2= Qit2i+2 —Qit2n-1  —Git2n
+ . . . =
0 0 T —dp—1 22— Un—1n—1 —O0n—1n
0 0 PN 0 —dn Z — ann
and the result follows from induction ]

Note that it would be possible to write down explicit formulae f¢r4) and fory (A +
bf") by recursive substitution of(A;.,,) as a function of¢(A;1.1), ..., X(An.n ). However
we think this method is not adequate and consequently it is recommendeddmpéré
recursive calculation. Next we solve the problem for system in Exampie 2.2
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Example 3.3. Put the Canonical form ovét:

Then, by Theorem 3.2:

X(Asz3) = (z—1)
X(A23) = (z = 1)x(A33) —2-1 = 229221
x(A4) = (z—2)x(A23) —3-3-x(A33) = 23— 422 — 62+ 11

and by Theorem 3.1:
PolgA,b) =

={(2® =422 =62+ 11) —4f1 (2 =22 — 1) + 12fa(2 — 1) — 24f3 : f; € R}

Thus a polynomiat® + a1 22 + asz + a3 is assignable to syste(ul, b) by feedback if and
only if the following system of diophantine equations is solvable

ap +4 (—4) 0 0 f
( )(<4><2> b )(f)
as — 11 (=4)(=1) 12(-1) (-24) f3

Note that all columns in the system of equations of above Example are obfesned
x(A;:3)) in a straightforward way. On the other hand, diagonal elements in coafficie
matrix aredy, dids, ..., d1 - - - dy,; i.€. the sequence of diagonal invariants obtained in [2].

Note 3.4. Of course the main task here is to obtain a procedure to obtain the linear sys-
tem of diophantine equations directly from a linear system (perhaps wittiaining the
Canonical Form). This is our next research challenge in the field.

4 Concluding Remarks

Note 4.1. Bezout domains. A Bézout Domain is a domain such that every finitely gen-
erated ideal is principal. The more usual examples & dit domains are Principal Ideal
Domains asZ or K[z]. These EBzout domains are noetherian and hence principal ideal
domains, moreover they are also Euclid domains and hence the usualrd&igarithm
allows us to perform computations in order to obtain canonical forms.

The ringH(2) of holomorphic complex functions defined in a dom&irc C is also
a Bézout domain (see [2, 15.3.3]) hence our method works in this caseH B is not
an Euclid domain (it is not even a principal ideal domain because is noteraaih thus a
Division Theorem is needed in order to obtain efficiently the canonicai fond to get the
assignable polynomials.
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Note 4.2. Change of scalarsLet R be any commutative ring and = (A, b) a single
input linear system. A ring homomorphisfh: R — S defines a new systeri*> =
(f(A), f(b)) as extension of scalars froRito S via f, wheref(A) = f(a;;) if A = (as).

If R =Zandf : Z — Z/mZ is the canonical quotient map then the extension of
scalars is just the residual study of linear systems modul&ome results are easily given;
for instance ifm is coprime with all invariantgl; in the Canonical Form of then every
monic polynomial can be assigned moduto Otherwise, chances of assign polynomials
decrease. In the critical casedfis a divisor ofm then no polynomial can be assigned.

If R = C|x] is the ring of complex polynomials in a single indeterminate then residual
study at a pointv € C is performed by using the extension of scalars given by the homo-
morphismev,, : C[z] — C sendingp(z) — p(w). Local study around a point € C
may be performed by using the canonical inclusfonC[z] — C[z],_,,) whereC|z](,_,
is the localization ofC[z] at maximal ideak (x —w) >. Here ifd;(w) # 0 then every
polynomial can be assigned bin a smallneighborhood ofv € C.

In the casekR = H(2) this covers the study at a neighborhood of a paird 2. From
this point of view it is clear that if

then every polynomial can be assignedto

On the other hand, i is a zero of soméd; then not every polynomial can be assigned.
But even in this case we will be able to estimate the set of assignable polynomials.

The extremal case is of course wher{z) = 0: In this case no polynomial (different
from x(A)) can be assigned.

Example 4.3. Consider the Canonical Form

=2y 0)(5)
overC|z] (or overH(C)):
e Residual study:
— The evaluation homomorphisav,, : C[z] — C at any pointwneq0, 1 yields
that we can (residually) assign any monic polynomial.

— At pointw = 0 no polynomial different from:? can be assigned.
— At pointw = 1 only polynomials on the form? + a2 may be assigned.

e Local study:

— The localization homomorphistfy, : C[z] — Clx](,_,, atany pointuneq0, 1
yields that we can (locally) assign any monic polynomial. In fact the chahge o
1

: - 0 . :
basisP = ( 8 1 > brings system to the Canonical Controller Form
z(z—1)
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— Localization atw = 0 yields thatz is not invertible inC[z],). However any
polynomial on the form:? + x(f1z + f2) can be assigned.

— Localization atv = 1 yields thatr — 1 is not invertible inC[z] ), butz is and
hence any polynomial on the fora? + f1z + f2(z — 1) may be assigned.
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