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Abstract

A new two-dimensional chaotic system, called the Cu-
bic Trigonometric Coupled Map (CTCM), is proposed
in this article. It is characterised by strong nonlinear
interactions and complex dynamic behaviour. A thor-
ough review of the Lyapunov exponents and bifurcation
structures shows that CTCM has a strange attractor with
fractal geometry and is highly sensitive to initial condi-
tions. In addition, a new pseudo-random number gen-
erator (PRNG) based on the chaotic characteristics of
the CTCM has been implemented. Experimental results
show that the generator achieves near-optimal entropy
levels up to 7.999 with high sensitivity to initial condi-
tions, making this PRNG a promising solution for ap-
plications in information security, numerical modeling,
stochastic simulations, data encryption, and secure com-
munication systems.
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1 Introduction

In Chaos [Broer and Takens, 2011], far from be-
ing a simple disorder, embodies a form of dynamic
complexity of fascinating richness, mixing mathemati-
cal rigor and seemingly unpredictable behavior. This
duality makes chaos a central field of research in ap-
plied mathematics, physics, biology, cybernetical neu-
roscience [Babich et al., 2025], cryptography, and arti-
ficial intelligence [Strogatz, 2024]. Chaotic maps, such

as the logistic map [May, 1976], the Ikeda map [Ikeda,
1979], or the Clifford map [Sprott, 1993], perfectly il-

lustrate this underlying beauty: from simple determin-
istic equations, they generate trajectories highly sensi-
tive to initial conditions, leading to behavior that is dif-
ficult to predict in the long term. This property of ex-
ponential sensitivity, combined with a dense distribu-
tion in the state space, gives chaotic systems a natural
pseudo-randomness exploitable to simulate randomness.
Recent advances even extend this connection to modern
machine learning approaches, where chaotic dynamics
are used to enhance prediction of extreme events in com-
plex time series [Gromov et al., 2024]. Thus, chaos be-
comes a conceptual bridge between determinism and un-
certainty, providing a valuable source for the generation
of complex sequences, while revealing the order hidden
behind the apparent unpredictability of the real world.

A pseudo-random number generator (PRNG) [Gut-
brod, 1999] is an essential element in many areas of sci-
entific, technical and industrial research. It allows to pro-
duce sequences of numbers that simulate chance, while
being generated in a deterministic way. Several PRNG
families [Bhattacharjee and Das, 2022] are distinguished
according to their generation principle: the PRNG based
on chaotic maps, which exploit the dynamic properties
of deterministic chaos; the PRNG based on polynomial
equations, which are based on non-linear algebraic re-
lations; material PRNGs, which use physical phenom-
ena as a source of entropy; nature-inspired PRNGs,
which imitate biological or evolutionary mechanisms;
and PRNG based on cryptographic algorithms, designed
to resist attacks and ensure unpredictability. Among
these approaches, chaotic PRNGs attract particular at-
tention because of their ability to produce complex se-
quences, sensitive to initial conditions, and difficult to
predict, what makes them interesting for security or non-
linear modeling applications.
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The integration of strange attractors and fractal struc-
tures [Ruelle, 2006] in the design of PRNGs represents a
significant step forward in the quest for highly complex
and unpredictable numerical sequences. The strange at-
tractors, typical products of chaotic systems, are distin-
guished by their non-linear dynamic behavior, unpre-
dictable but nevertheless deterministic. Their fractal ge-
ometry (infinitely complex at all scales ) allows to gen-
erate sequences that have a very high entropy and low
internal correlation, which is essential for applications
requiring a high level of pseudo-randomness.

We present in this article a new two-dimensional
chaotic system called the Cubic Trigonometric Coupled
Map (CTCM), inspired by the famous Clifford attrac-
tor. The proposed model is then used in the design of
a pseudo-random number generator that presents a com-
plex, difficult to predict and weakly correlated behavior.

The remainder of the article is organized as follows:
Section 2 presents the Cubic Trigonometric Coupled
Map (CTCM) model and discusses its chaotic properties.
Section 3 introduces the proposed Pseudorandom Num-
ber Generator (PRNG) based on the CTCM. Section 4
provides a comprehensive performance analysis of the
proposed PRNG. Finally, Section 5 concludes the paper
by summarizing the key findings and outlining potential
directions for future research.

2 Cubic Trigonometric Coupled Map (CTCM)
2.1 Definition of the CTCM Model
The two-dimensionnal Cubic Trigonometric Coupled
Map (CTCM) is defined by the following equations:
{an =a-cos®(r-yn) +b-cos®(r-z,), )
Ynt1 = b (sin(r - y,) + a-sin(r - x,)).

The use of cubic cosine terms in this model plays a cen-
tral role in shaping its nonlinear behavior. These terms
amplify the oscillatory dynamics and contribute to the
emergence of intricate trajectories, making the system
particularly rich in complex patterns. In equation (1), z,,
and y,, correspond to the system states controlled by the
three parameters a, b and r respectively. The first two
control the shape of the attractor, while r determines the
frequency of trajectory oscillations generated by the sys-
tem.

2.2 Sensitivity Analysis of CTCM model via Lya-
punov Exponents

In this section, we analyze the sensitivity of CTCM
model to initial conditions with respect to the parame-
ters 7, a, and b by studying the spectrum of Lyapunov
exponents [Wolf et al., 1985]. The Lyapunov exponent
quantifies the average exponential rate of divergence of
neighboring trajectories. A positive value indicates the

likely presence of chaos. The maximal Lyapunov expo-
nent is given by:

N
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where J,, is the Jacobian matrix of the map evaluated at
the point (z,, Yn),
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The vector 7, is a unit vector representing the direction
of an infinitesimal perturbation, and it evolves according
to
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Figure 1 shows the Lyapunov exponent as a function
of r for fixed parameters ¢ = 1.9 and b = 4. For values
of r less than 0.6, the Lyapunov exponent is negative,
indicating a stable and predictable behavior of the sys-
tem. Between r = 1 and approximately r = 1.3, the
Lyapunov exponent oscillates between positive and neg-
ative values, revealing an alternating behavior between
stability and chaos. Starting from r = 1.2, the Lya-
punov exponent becomes clearly positive, indicating a
pronounced chaotic regime in which small initial vari-
ations significantly influence the long-term evolution of
the system.

Lyapunov Exponent vs r

Lyapunov Exponent

Figure 1. Largest Lyapunov exponent of the CTCM as a function of

the control parameter 7 for fixed parameters @ = 1 and b = 2.

In a second experiment, we fix r = 4. Figure 2 dis-
plays the Lyapunov exponent as a function of parame-
ters a and b. It is observed that the parameter b strongly
influences the system’s dynamics. Furthermore, a large
chaotic region appears for values of a between 0 and
4 and b between 0.8 and 4. When b < 0.8, stability
zones are present near a == 2 and b close to zero. Tran-
sition zones between stability and chaos, characterized
by rapid variations in the Lyapunov exponent, are also
observed.
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Figure 2. The largest Lyapunov exponent of the CTCM as a function
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of the parameters @ and b with the control parameter fixed at 7 = 4.

2.3 Bifurcation Diagram of CTCM model

We explored in this section how the system’s dynamics
evolve as we vary the parameter 7, keeping @ = 1.9 and
b = 4 fixed (See figure 3 and 4).

Figure 3. Bifurcation diagram of the x—component of the CTCM as
a function of the control parameter 7'; the parameters @ and b are kept

fixed.
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Figure 4. Bifurcation diagram of the 3—component of the CTCM as
a function of the control parameter 7°; the parameters @ and b are kept
fixed.
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At low values of 7, the system behaves periodically,
showing a few stable points that indicate regular and
predictable motion. As r increases past about 0.6, the
system starts experiencing period-doubling bifurcations,
signaling a transition to more complex and less pre-
dictable behavior. Beyond about » = 1.2, the system
enters a chaotic regime. Here, the values of y,, spread
out widely, reflecting a strong sensitivity to initial con-
ditions and irregular oscillations. We also notice vertical
gaps in the diagram, which likely correspond to param-
eter ranges where the system’s trajectories do not settle
down, possibly due to transient effects or different types
of bifurcations.

2.4 Phase diagram

In this section, system dynamics and complexity will
be analyzed in terms of phase diagrams. For this pur-
pose, we have generated three invariant sets {(z,, yn)}
using CTCM model from the initial conditions x¢ = 0.1
and yo = 0.5 as is illustrated in the figures 5, 6, 7 and 8
respectively.

Phase Diagram

Figure 5. Phase diagram fora = b = r = 1.5.

Phase Diagram
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Figure 6. Phase diagram fora = 1.5,b = 2.5,r = 2.5.
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Phase Diagram

Figure 7. Phase diagram fora = 1.5,b = 3.5,r = 3.5.

Phase Diagram

-

Figure 8. Phase diagramfora = 4,b = 6,7 = 6.

We can clearly see that the point cloud forms a
strange fractal attractor, whose shape resembles a dou-
ble diamond-eye structure. All initial conditions tested
within a large rectangle are irreversibly attracted to this
set, suggesting that it constitutes the system’s global at-
tractor. Also, we notice that the orbits remain confined
in a bounded region of the phase space, which allows us
to say that the attractor acts as a basin of attraction where
all the trajectories converge asymptotically.

2.5 Complexity of CTCM

The geometric complexity of the attractor generated by
our dynamic system was better comprehended by us by
using the box-counting method to calculate its fractal di-
mension [Falconer, 2013]. A two-dimensional strange
attractor typically exhibits a non-integer fractal dimen-
sion between 1 and 2. Box-counting consists in overlap-
ping the normalized attractor with square grids of de-
creasing size, denoted ¢, and counting the number of
boxes N (e) that contain at least one point. By plotting
log N () against log(1/¢), we observe an almost linear
trend. consequently, the fractal dimension becomes the
slope of the regression line Figure 9 shows the relation-
ship between the number of boxes N () and the size of
boxes 1/¢ in a fractal analysis by counting boxes (box-
counting) from the slope of the linear regression on the
log-log graph. In this case, we got a slope ~ 1.7962
which means obviously that the attractor has a fractal
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structure with a Hausdorff dimension close to 1.8.

3  Pseudo-Random Number Generator (PRNG)
Based on the CTCM Chaotic Map

The complexity and unpredictability of the strange at-
tractor of CTCM model offers a great chance for the
conception of a robust pseudo random number genera-
tor. For this purpose, our proposed approach relies on a
simple yet effective comparison-based method, as illus-
trated in Algorithm 1. First, each state is multiplied by
103. Then, the resulting value is reduced modulo 2 in
order to extract its decimal component within the inter-
val [0, 2). This operation emphasizes the chaotic fluctu-
ations found in the least significant digits of the original
sequences. The resulting variables, templ and temp?2,
are then compared: if templ < temp2, the corre-
sponding output bit is set to 1; otherwise, it is set to 0.
The binary sequence binary_sequence thus gener-
ated inherits the unpredictability and sensitivity to initial
conditions that characterize CTCM chaotic system.

4 The performance analysis of the proposed PRNG
4.1 Irreversibility of the Proposed PRNG

The section discusses the concept of reversibility in
pseudorandom number generators (PRNGs) and empha-
sises the importance of being non-reversible to prevent
reconstructing previous states from current states. The
presence of non-linear trigonometric functions like sin
and cos® means that multiple values are possible for the
next states, which destroys the uniqueness needed for re-
versibility. Moreover, numerical implementations of fi-
nite precision arithmetic introduce errors that build up
over time. This makes it practically impossible to reli-
ably recover past states, even in systems that are theoret-
ically invertible.

4.2 Key space

The security strength of the chaotic CTCM-based
PRNG is closely linked to the size of its key space. In
our case, the secret key is composed of five parameters:

Box-counting : Fractal Dimension ~ 1.7962
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Figure 9. Box-counting method applied to the attractor showing frac-

tal structure.
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Algorithm 1: Generation of a Binary Sequence
from Chaotic Sequences x and y

Input: Two real-valued sequences

x={x1,z2,...,2N},
Yy = {ylay27"~7yN}
Output: A binary sequence binary_sequence
of length N

Initialize counter ¢ < 0;
fori <— 1to N do
Compute templ < mod(z; - 103, 2);
Compute temp2 + mod(y; - 103, 2);
if templ < temp2 then

| Setbinary.sequencelc+ 1]« 1;
else

L Set binary_sequencelc+ 1] «+ 0;

Increment ¢ < c+ 1;

the initial conditions x( and yg, and the control param-
eters r, a and b. The values g and y( are real numbers
in the interval [0, 1], while , @ and b are real values cho-
sen from [0, 8]. Assuming a floating-point precision of
1071, each parameter contributes around 50 bits of en-
tropy. The result is a total key space comprising over
2250 possible combinations, or more than 2100 " which
is generally considered sufficient to resist brute-force at-
tacks [Knudsen and Robshaw, 2011]. Its large key space,
combined with its high sensitivity to initial conditions,
makes it a promising candidate for cryptographic and se-
curity applications.

4.3 NIST statistical test analysis

The NIST Statistical Test Suite [Bassham et al., 2010]
offers a complete set of empirical tests that evaluate the
randomness of binary sequences produced by crypto-
graphic or pseudo-random number generators. This suite
consists of fifteen statistical tests [Zaman and Ghosh,
2012], such as the frequency test, runs test, approxi-
mate entropy, and linear complexity test, each target-
ing a specific characteristic expected from a truly ran-
dom sequence. When applied to a binary sequence, the
tests yield p-values that indicate whether the sequence
behaves similarly to an ideal random process. A gen-
erator is considered statistically sound if the p-values
meet the NIST-recommended significance level (com-
monly 0.01) across all tests. The NIST test suite is
widely regarded as a standard benchmark to assess the
quality, unpredictability, and security of random num-
ber generators, including those based on chaotic sys-
tems. To carry out the NIST assessment, we first gen-
erated two binary sequences of length 100 x 10° bits
with the CTCM-based PRNG. Each original stream was
subsequently divided into 100 subsequences of length
108 bits in order to match the input requirements of
the test suite. The generation parameters were set to
(a = 1.9),(b = 4) and (r = 4). For the first se-
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quence, the initial condition was (zg,y9) = (0.9,0.2).
For the second sequence, we used the slightly disturbed
initial condition (zg,yo) = (0.9 + 10715,0.2). Table 1
displays the results of the statistical tests conducted on
both sequences, highlighting noticeable similarities and
differences. Nevertheless, both sequences successfully
pass the tests. Moreover, the proposed PRNG exhibits
high sensitivity to even small key changes, which is an
important property to consider.

4.4 Entropy of PRNG analysis

In this section, we evaluated the randomness
and unpredictability of the PRNG sequence =z =
{z1,x9,...,z,} using the Shannon entropy, given by:

— Y P(a)log, P(a) )

acA
where P(a) denotes the empirical probability of the

symbol a € A in the sequence z, and is calculated as
follows:

-1 > e 6)

3

Here, §(z;, a) is the Kronecker delta function, which is
equal to 1 if z; = a, and 0 otherwise. Since our PRNG is
binary and generates only the symbols 0 and 1 then the
closer the entropy result is to 1, the more random and
unpredictable the result.

The table 2 shows the computed entropy values for
a pseudo-random number generator (PRNG) based on
the sequence length. =~ We notice that the entropy is
of order 0.9985 when length > 1000, however, when
the length increases, the entropy approaches 1. For ex-
ample, at 3501 bits, the entropy is almost maximum
(0,99999999994703), which strongly indicates that the
PRNG produces an almost perfectly balanced and un-
predictable binary sequence. In another experiment, we
converted the binary sequence into a sequence of bytes
by grouping each block of 8 consecutive bits into a byte.
This transformation allows for a more relevant analysis
of entropy. A pseudorandom number generator (PRNG)
is considered of good quality if the entropy of the re-
sulting sequence is close to 8, indicating a high degree
of unpredictability. The experiment was conducted on a
binary sequence of size 4 x 220 bits to evaluate the sta-
tistical quality of the proposed PRNG. As can be seen
in the table 3, the analysis of the entropy values of the
binary sequences discussed above shows very good re-
sults for long binary sequences of any length: for a se-
quence of 131,073 bytes, the applied entropy is 7.9986,
that is to say the unpredictability is minimal and appreci-
ated that it is relatively close to the maximum entropy of
8. In this way as the sequence becomes longer, the en-
tropy increases slightly: at 262,145 bytes, it is a 7.9992
and at 393,217 bytes, it measures 7.9995 So in increas-
ing with the long sequence to perform the two previous
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Table 1. NIST statistical test results for two binary sequences.
Test Name Sequence 1 Sequence 2
p-value Result p-value Result
Frequency 0.474986 Success 0.455937 Success
Block-Frequency 0.075719 Success 0.759756 Success
Cumulative Sums (1) 0.554420 Success 0.798139 Success
Cumulative Sums (2) 0.759756 Success 0.616305 Success
Runs 0.514124 Success 0.455937 Success
Longest Run 0.955835 Success 0.678686 Success
Rank 0.096578 Success 0.304126 Success
FFT 0.798139 Success 0.514124 Success
Non-Overlapping 0.494392 Success 0.883171 Success
Overlapping 0.102526 Success 0.955835 Success
Universal 0.051942 Success 0.494392 Success
Approximate Entropy 0.334538 Success 0.010237 Success
Random Excursions 0.202268 Success 0.574903 Success
Random Excursions Variant 0.719747 Success 0.455937 Success
Serial (1) 0.616305 Success 0.249284 Success
Serial (2) 0.304126 Success 0.401199 Success
Linear Complexity 0.102526 Success 0.924076 Success

Table 2. Entropy values as a function of the binary sequence length

Length of sequence (in bits) Entropy
501 0.998962279385191
1001 0.998541696925956
1501 0.999351554826180
2001 0.999142103991909
2501 0.999766457662374
3001 0.999996075276857
3501 0.999999470333038

Table 3. Binary entropy computed for different sequence lengths.

Length of Sequence (in bytes) Entropy
131,073 7.99862540382325
262,145 7.99920045931387
393,217 7.99946709076136

cases, a pseudo-generatorrandom, created leads to the
generation of more random behavioural sequences from
application-specific entropies. Therefore it is sensible
to increase the high-values of entropy with the sequence
length for better be-verie the statistical quality way of
the PRNG and know that it is reliable for generation in a
random information.

4.5 Time processing of the proposed PRNG

As part of evaluating the computational performance
of our PRNG, we used MATLAB 2020 on hardware con-
sisting of a RYZEN 7 5700X processor with 16 GB of
RAM. In this experiment, we generated 2 x 10° bits sev-
eral times to determine the average computational time.
This latter was found to be approximately 0.25 s, which
means that the average rate to generate 1 megabit is
about 0.25 s.

4.6 PRNG sensitivity Analysis using Correlation
and NBCR metrics

The purpose of this section is to test the sensitivity to
initial conditions between the two sequences x and y.
We have selected the correlation coefficient and the num-
ber of changed bits rate (NBCR) as our two metrics for
this purpose. The correlation coefficient quantifies the
linear relationship between the two sequences and is cal-
culated as follows:

Py = Y (@i = 7)(yi —9)
! Vo (@i — )2\ (yi — §)?

where Z and ¢ represent the mean values of sequences
x and y, respectively. A correlation coefficient p,,, close
to zero indicates that the two sequences are statistically
uncorrelated and largely independent in terms of linear
dependency.

The Normalized Bit Change Rate (NBCR) between
two binary sequences x = {x1,22,...,2,} and y =
{y1,Y2,.-.,Yn} is defined as:

(N
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n

1
NBCR(z,y) = ~ > |zi — uil ®)

=1

Where n represents the length of the sequences, and
x; and y; are the i-th bits of sequences x and y, respec-
tively. Since the bits are binary (z;,y; € {0,1}), the
absolute difference |x; — y;| equals 1 if the bits differ
and 0 if they are equal. The closer NBCR is to 50%, the
better we can qualify the PRNG. In order to make this ex-
periment successful, we produced two binary sequences
with an initial length of 5 x 10° bits that differ solely
in their initial conditions: (xq, yo) for the first sequence,
and (z, yo + 10~ 1?) for the second sequence. The table
4 shows the correlation coefficient p and the Normalized
Bit Change Rate (NBCR) between two binary sequences
generated with slightly different initial conditions. The

Table 4. Correlation and NBCR between two binary sequences with
slightly different initial conditions. First sequence: £g = 0.9, yg =
0.2; second sequence: g = 0.9 + 10712, 55 = 0.2.

Parameters (a; b; ) 0 NBCR
a=19;b=4; r=4 | —0.00067 | 50.03%
a=25b=1;r=3 | —0.00018 | 50.01%
a=15;b=1;r=2| —0.00017 | 50.00%
a=4;b=4;r=1.6 | —0.00051 | 50.03%

first sequence starts with o = 0.9 and yo = 0.2, while
the second sequence has a small variation in x, specifi-
cally zop = 0.9+ 10 — 15.

We observe that for the four sets of parameters, the
correlation coefficients remain very close to zero, rang-
ing from (-0.00017 ) to (-0.00067 ). This indicates a
strong decorrelation, meaning there is no significant re-
lationship between the two sequences. In addition, the
NBCR values are remarkably close to the ideal value of
50%, which is a strong indicator of the sensitivity of the
proposed PRNG to small variations in initial conditions.

4.7 Autocorrelation Analysis

In this section, we have evaluated the autocorrelation
of the proposed PRNG defined by the following formula:

R(k) = i\i_lk(x“ — Z) (@44 — T)

S (x — 7)?

it qualifies the linear dependence between the values of
a time series x; separated by a lag k, where T represents
the mean of the series. The figure 10 shows autocorrela-
tion results as a function of k lag values. We observe a
rapid decrease in the autocorrelation value as a function
of time lag. This behavior indicates that the successive

; 9
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values produced by this PRNG are very weakly corre-
lated with each other. This property of statistical inde-
pendence of the elements of the generated sequence is
a desirable feature for a random generator, as it allows a
good quality of randomness to be achieved. and security.

Autocorrelation”of Binary PRNG

0.8F
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02

R(k) (Autocorrelation)

-0.2 :
-50 0 50

Figure 10. Autocorrelation of the binary sequence of the proposed
PRNG.

4.8 Comparaison study

We compared our proposed approach with some ex-
isting PRNG algorithms from the literature that reported
common evaluation metrics such as entropy, Normalized
Bit Change Rate (NBCR), and correlation coefficient.
This allowed us to perform a fair and consistent compar-
ison based on standard statistical and security indicators.

The results presented in the table 5 show that our ap-
proach stands out advantageously on several key aspects.
With a high entropy of 7.9994 bits per byte and a very
low correlation coefficient of -0.00018, our PRNG algo-
rithm appears to offer a highly competitive level of statis-
tical quality. This objective comparative analysis allows
us to position our solution as an interesting alternative to
the existing algorithms, with promising performance in
terms of robustness

5 Conclusion

In this study, we demonstrated that the CTCM model
possesses rich chaotic dynamics, characterized by high
sensitivity to initial conditions and the presence of fractal
attractors. Taking advantage of these properties, we have
consequently designed a PRNG capable of generating
highly unpredictable and weakly correlated sequences,
with an NBCR value close to 50%. These promising
results confirm the relevance of our approach for cryp-
tographic applications, in particular for key generation
and the application of secure protocols. Furthermore, al-
though the potential of the proposed model for image
encryption and secure visualization is promising, further
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Table 5. Comparison of pseudo-random number generator (PRNG) algorithms based on key space, entropy, NBCR, and correlation coefficient.
PRNG Algorithm Key Space | Entropy | NBCR | Correlation Coefficient
Proposed 2250 7.9994 | 50.01 —0.00018
Ref. ([Agarwal, 2021]) 2320 7.9864 49.97 0.0016
Ref. ([Zhao et al., 2019]) 270 7.9896 49.74 None
Ref. ([Barani et al., 2020]) 2588 7.9937 50.13 0.0003
Ref. ([Wang and Cheng, 2019]) ~ 282 7.9692 | 51.92 None

dedicated experiments and evaluations are still needed.
These orientations will form the core of our future work
to fully validate these applications.
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