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Abstract
We give a first generalization of the invariants and

canonical forms of single-input linear control systems
over principal ideal domains to the multi-input case by
means of quotient rings.
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1 Introduction
The feedback classification of linear dynamical sys-

tems over a commutative ring is an open problem
on Control Theory, see [Brewer, 1986], [McDonald,
1984], [Sontag, 1998] and [Hermida, 2003] for a gen-
eral lecture. In other words, we are about given a cer-
tain linear dynamical systemΣ = (A,B) over a partic-
ular commutative ringR, find its feedback invariants,
that is to say, finding the canonical dynamical system
Σ̂ = (Â, B̂) overR feedback equivalent toΣ. Even-
tually, some cases have been studied and solved, see
for example [Brewer and Klinger, 2001], [Brunovsky,
1970], [Carriegos and Garcı́a, 2004] and [Carriegos
and Sánchez, 2001].
In this paper, we focus our interest in applying for

digital systems or coding case. So, we deal with lin-
ear dynamical systems overR = Z or finite ring, see
[Carriegos and Hermida, 2003] for reading a canoni-
cal form for single-inputn-dimensional linear systems.
In this way, the main section of this study deal with
rising from single-input to multi-input over a principal
ideal domainR. Finally, under some conditions, we
find row-echelon form̂Σ = (Â, B̂) corresponding to a
given linear control systemΣ = (A,B) overR.

2 Feedback equivalence
Let R be a commutative ring with identity element.

An m-input n-dimensional linear control systemΣ

overR is a pair(A,B), i.e.A = (aij) ann× n matrix
andB = (bij) ann×m matrix with entries inR.
We say that twom-inputn-dimensional systemsΣ =
(A,B) andΣ′ = (A′, B′) are (static) feedback equiv-
alent, and writeΣ ∼R Σ′, if there exist invertible ma-
trices P andQ, and a feedback matrixF such that
B′ = PBQ andPA − A′P = BF . The objective of
the feedback relation is to obtain a matrixF such that
A′ = P (A−BF )P−1 has some desired property. Note
that, one of the principal difficulty of this problem is to
find change of basisP andQ in the respective sam-
pling spaces. In this way, in some cases, the difficulty
of the static feedback classification is tackled through
enlargement systems, i.e. for playing a technique called
dynamic feedback, see [Brewer and Klinger, 1988] for
reading general case and [Hermida and Trobajo, 2003]
for reading caseR a principal ideal domain, and for
playing a technique called weakly feedback, see [Her-
mida and López, 2006].
So, on the one hand, we say that twom-input n-

dimensional systemsΣ = (A,B) andΣ′ = (A′, B′)
are dynamically feedback equivalent,and writeΣ ≈R

Σ′, if Σ(r) is feedback equivalent toΣ′(r) for some
positive integerr, where

Σ(r) =

((

0r×r 0
0 A

)

,

(

Idr 0
0 B

))

.

On the other hand, we say that twom-input n-
dimensional systemsΣ = (A,B) andΣ′ = (A′, B′)
are weakly feedback equivalent ifΣ[s] is feedback
equivalent toΣ′[s] for some positive integers, where

Σ[s] =
(

A,
(

B 0n×s

))

.

3 Single-input case
LetR be a Bezout domain and letΣ = (A, b) be ann-

dimensional single-input linear dynamical system over



R. In the sense of feedback equivalence,Σ can be re-
duced to a row echelon form. That is

Σ ∼R

































a11 a12 · · · a1n−1 a1n
d2 a22 · · · a2n−1 a2n
...

. . .
. . .

...
...

0 0
. . . an−1n−1 an−1n

0 0 · · · dn ann

















,















d1
0
...
0
0































,

and we say that{d1, d2, . . . , dn} is the diagonal se-
quence of the systemΣ. Moreover, the diagonal se-
quence of a reduced form is a feedback invariant up to
units and it determines equivalence class of the control
systemΣ, see [Carriegos and Hermida, 2003].

4 Multi-input case
Through this section, letR be a principal ideal do-

main. LetΣ = (A,B) be ann-dimensionalm input
linear dynamical system overR. SinceR is a pid, with-
out loss of generality we can assume that multi-input
matrix B is rewrote, by some changes of basisP and
Q, as

B =

(

D 0t×(m−t)

0(n−t)×t 0(n−t)×(m−t)

)

∈ Mn×m(R),

where D =







D1

. . .
Dk






∈ Mt×t(R),

Di =







di
. . .

di






∈ Mti×ti(R), t =

k
∑

i=1

ti

andd1/d2/ . . . /dk.

Now, letΣ′ = (A′, B′) be anothern-dimensionalm
input linear dynamical system overR feedback equiv-
alent toΣ. By some changes of basisP ′ andQ′, multi-
input matrixB′ is assumed as matrixB. So, at this
moment we have two linear systemsΣ = (A,B) and
Σ′ = (A′, B) feedback equivalent overR with input
matrix B in the above form. Furthermore, if we con-
sider the systems

Σw =

(

A,

(

D
0(n−t)×t

))

and, analogouslyΣ′

w, then it is clear that

Σ ∼R Σ′ ⇔ Σw[m− t] ∼R Σ′

w[m− t].

Remark 4.1. it is known that feedback equivalence
and weakly feedback equivalence are equivalent con-
cepts over principal ideal domains, see [Hermida and
López, 2006].

Hence, following this idea

Σ ∼R Σ′ ⇔ Σw ∼R Σ′

w.

Lemma 4.2. Let R be a commutative ring with unit
element. LetΣ be the(ti + ti+1)-input (ti + ti+1)-
dimensional linear system given by

Σ =

((

A11 A12

B1 A1

)

,

(

Di 0
0 Di+1

))

withDi = diIdti ,Di+1 = αidiIdti+1
anddi a nonzero

element ofR. Suppose that theti-input (n − ti)-
dimensional system(A1, B1) is feedback equivalent to
(A′

1, B
′

1). Then there existC11 andC12 matrices such
thatΣ is feedback equivalent to the system

Σ′ =

((

C11 C12

B′

1 A′

1

)

,

(

Di 0
0 Di+1

))

.

Proof. Let (P1, Q1, F1) the feedback action between
(A1, B1) and(A′

1, B
′

1). That is

P1A1 −A′

1P1 = B′

1F1, P1B1 = B′

1Q1.

Consider the invertiblen × n block matrixP , the in-
vertible (ti + ti+1) × (ti + ti+1) matrix Q and the
(ti + ti+1)× (ti + ti+1) matrixF given by

P =

(

Q1 F1

0 P1

)

, Q =

(

Q1 α1F1

0 P1

)

, F =

(

0
0

)

.

An easy calculation shows that

P

(

A11 A12

B1 A1

)

−

(

C11 C12

B′

1 A′

1

)

P =

(

Di 0
0 Di+1

)

F,

whereC12 = (Q1A11 + F1B1 − C11F1)P
−1
1 and

C11 = (Q1A11 + F1B1)Q
−1
1 and

P

(

Di 0
0 Di+1

)

=

(

Di 0
0 Di+1

)

Q.
�

Corollary 4.3. LetR be a principal ideal domain. Let
Σ be theti-inputn-dimensional linear system given by

Σ =

((

A11 A12

B1 A1

)

,

(

Di

0

))

with Di = diIdti and di a nonzero element ofR.
Suppose that theti-input (n − ti)-dimensional sys-
tem(A1, B1) is feedback equivalent to(A′

1, B
′

1). Then
there existC11 andC12 matrices such thatΣ is feed-
back equivalent to the system

Σ′ =

((

C11 C12

B′

1 A′

1

)

,

(

Di

0

))



Proof. The result is obtained by remark 4.1and by pre-
vious lemma 4.2 withαi = 0. �

Note that in under result, we deal withπ : R −→
R(d) the canonical ring homomorphism ofR onto the
quotient ringR/(d), whered 6= 0 is a non-unit ofR.
The extension of a systemΣ = (A,B) to R/(d) is the
linear systemπ(Σ) = (π(A), π(B)) whereπ(A) =
(π(aij)) andπ(B) = (π(bij)).

Theorem 4.4. LetR be a principal ideal domain. Let
Σ = (A,B) andΣ′ = (A′, B) be the(ti + ti+1)-input
(ti + ti+1)-dimensional linear systems given by

Σ =

((

A11 A12

B1 A1

)

,

(

Di 0
0 Di+1

))

and

Σ′ =

((

A′

11 A′

12

B′

1 A′

1

)

,

(

Di 0
0 Di+1

))

with Di = diIdti , Di+1 = αidiIdti+1
, di a nonzero

element anddi+1 = αidi a non-unit ofR. Assume that
extended systemsπ(Σ) andπ(Σ′) are feedback equiv-
alent overR/(αidi). Then the linear systemsΣ andΣ′

are dynamically feedback equivalent overR.

Proof. From Theorem 2.6 of [Hermida and López,
2006], we have that system

Σdi+1
=

(

A,

(

Di 0 di+1Idti 0
0 Di+1 0 Di+1

))

and the analogous systemΣ′

di+1
are dynamically feed-

back equivalent overR. We follow the proof by con-
sidering the invertible matrix

Q =









Id 0 −αiId 0
0 Id 0 −Id
0 0 Id 0
0 0 0 Id









as a feedback action over each of the systemsΣ andΣ′.
So, we obtain thatΣ[(ti + ti+1)] andΣ′[(ti + ti+1)]
are dynamically equivalent. Finally, we concludeΣ is
dynamically feedback equivalent toΣ′[(ti + ti+1)] by
remark 4.1. �

Example 4.5. Let Σ = (A,B) andΣ′ = (A′, B) be
the 4-input 4-dimensional reduced forms overR = Z

given by

A =









1 1 0 0
3 0 0 1
0 5 2 4
0 0 2 1









, A′ =









3 −4 1 5
3 2 7 6
0 5 6 9
0 0 2 7









,

B =









2 0 0 0
0 6 0 0
0 0 6 0
0 0 0 6









.

We prove thatΣ and Σ′ are dynamically feedback
equivalent an we give a procedure for finding(P, F )
feedback equivalence action betweenΣ andΣ′.

- Firstly, we considerπ(Σ) = (π(A), π(B)) and
π(Σ′) = (π(A′), π(B)) extended systems overR/(d)
with d = 6. Hence, we can write

π(B) =









2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









.

- Secondly, in [Carriegos and Hermida, 2003] is
presented a numerical procedure in order to obtain
(P1, F1) matrices pair of feedback action for proving
thatΣ1 = (A, b) andΣ′

1 = (A′, b) single-input sys-
tems are feedback equivalent, withb = (2 0 0 0)t.

P1 =









1 4 9 17
0 1 2 4
0 0 1 3
0 0 0 1









, F1 =









−7
6
−2
−3









.

- Thirdly, π(Σ) = (π(A), π(B)) and π(Σ′) =
(π(A′), π(B)) systems are feedback equivalent by

P2 = P1, Q2 =

(

1 0
0 Id3

)

, F2 =

(

F1

0

)

.

- Fourthly, by Theorem 2.1 of [Hermida and López,
2006], we have that ifπ(Σ) = (π(A), π(B)) and
π(Σ′) = (π(A′), π(B)) systems are feedback equiv-
alent overR/(d), thenΣ2 = (A, (B | dId4 | 04×1))
andΣ′

2 = (A, (B | dId4 | 04×1)) are dynamically
feedback equivalent overR, by

P3 =

(

P ′

2 −H
dId4 P2

)

, Q3 =









P ′

2 −Hb −dH 0
0 Q2 0 −dS
Id4 N P2 bS
0 Id1 0 Q′

2









,

F3 =









0 −HA
0 F2

−A′ M
0 0









,

whereP ′

2P2 + dH = Id4 andQ2Q
′

2 + dS = Id1. Ob-
serve that there existP ′

2, H , Q′

2 andS matrices overR



becauseP2 andQ2 are invertible matrices overR/(d).
Moreover, these matricesP ′

2, H , Q′

2 andS can be cal-
culated by means of Cayley-Hamilton theorem.
- Fifthly, as 2 = d1/d2 = 6 we have thatΣ2 =
(A, (B | dId4 | 04×1)) is feedback equivalent toΣ[2]
andΣ′

2 = (A′, (B | dId4 | 04×1)) is feedback equiva-
lent toΣ′[2] by

P4 = Id4, Q4 =

















1 0 0 0 −3 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

















, F = 06×4.

Note that, on the one hand the input matrix of new sys-
temsΣ[2] andΣ′[2] is

B[2] =









2 0 0 0 0 0
0 6 0 0 0 0
0 0 6 0 0 0
0 0 0 6 0 0









and that, on the other hand, we have the chain of equiv-
alences

Σ[2] ∼R Σ2 ≈R Σ′

2 ∼R Σ′[2].

Hence,Σ[2] andΣ′[2] systems are dynamically equiv-
alent by

P5 = P4P3P
−1
4 , Q5 = Q4Q3Q

−1
4 ,

F5 = F4P4P3P
−1
4 +Q4(F3P

−1
4 +Q3(−Q−1

4 F4P
−1
4 )).

- Sixthly and finally, by remark 4.1, we have thatΣ =
(A,B) andΣ′ = (A′, B) linear systems are dynami-
cally feedback equivalent. Furthermore, if we write

Q5 =

(

Q11 Q12

Q21 Q22

)

, F5 =

(

F11

F21

)

with Q11 a4×4 matrix andF11 a4×4 matrix, then the
(P,Q, F ) feedback action of the dynamic equivalence
over R betweenΣ = (A,B) andΣ′ = (A′, B), is
given by

P = P5, Q = Q11, F = F11.

Note that, in Proposition 2.4 of [Hermida and López,
2006], it is proved that in above conditionsQ11 matrix
is invertible overR. �

5 Conclusion
Since row echelon form of single-input case and

throughout lifting from quotient rings, it is in our aim
to determinate feedback invariants and canonical form
of a multi-input linear dynamical system over principal
ideal domains.
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