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Abstract overRis apair(A, B), i.e. A = (a;;) ann x n matrix

We give a first generalization of the invariants and andB = (b;;) ann x m matrix with entries inR.
canonical forms of single-input linear control systems We say that twon-inputn-dimensional systems =
over principal ideal domains to the multi-input case by (A, B) andX’ = (A’, B’) are (static) feedback equiv-
means of quotient rings. alent, and writex ~g Y, if there exist invertible ma-

trices P and @, and a feedback matri¥’ such that
B’ = PBQ andPA — A'P = BF. The objective of

Key words the feedback relation is to obtain a matfixsuch that
Multi-input, dynamical-systems, invariants, row- A’ = P(A—BF)P~!hassome desired property. Note
echelon, Bézout, pid. that, one of the principal difficulty of this problem is to

find change of basi® and @ in the respective sam-
pling spaces. In this way, in some cases, the difficulty
1 Introduction of the static feedback classification is tackled through
The feedback classification of linear dynamical sys- enlargementsystems, i.e. for playing a technique called
tems over a commutative ring is an open problem dynamic feedback, see [Brewer and Klinger, 1988] for
on Control Theory, see [Brewer, 1986], [McDonald, reading general case and [Hermida and Trobajo, 2003]
1984], [Sontag, 1998] and [Hermida, 2003] for a gen- for reading casek a principal ideal domain, and for
eral lecture. In other words, we are about given a cer- playing a technique called weakly feedback, see [Her-
tain linear dynamical systed = (A, B) over a partic- mida and Lépez, 2006].
ular commutative ringR, find its feedback invariants, So, on the one hand, we say that tweinput n-
tpat is to say, finding the canonical dynamical system dimensional systems = (A, B) andY = (A', B')
¥ = (A, B) over it feedback equivalent th. Even-  are dynamically feedback equivalent,and wiitex~

tually, some cases have been studied and solved, segy if ¥ (r) is feedback equivalent t&’(r) for some
for example [Brewer and Klinger, 2001], [Brunovsky, positive integer-, where

1970], [Carriegos and Garcia, 2004] and [Carriegos
and Sanchez, 2001].
In this paper, we focus our interest in applying for S(r) = ((Orxr| 0) 7 (Idr| 0 )) )
digital systems or coding case. So, we deal with lin- 0 |A 0 |B
ear dynamical systems ové& = Z or finite ring, see
[Carriegos and Hermida, 2003] for reading a canoni- qn the other hand, we say that twe-input n-
cal form for single-input.-dimensional linear systems. 4 ansional systems = (4, B) andY’ = (A, B')
In this way, the main section of this study deal with 5. weakly feedback equivalent ¥s] is feedback

rising from single-input to multi-input over a principal equivalent tc'[s] for some positive integes, where
ideal domainR. Finally, under some conditions, we

find row-echelon fornt. = (A4, B) corresponding to a
given linear control systeri = (A, B) overR. S[s] = (A, (B|Onxs)) -

2 Feedback equivalence 3 Single-input case
Let R be a commutative ring with identity element.  Let R be a Bezout domain and [Bt= (A, b) be ann-
An m-input n-dimensional linear control systern dimensional single-input linear dynamical system over



R. In the sense of feedback equivalentEecan be re- Hence, following this idea
duced to a row echelon form. That is

ZNRzlﬁszRZI

w*

aip a2 -+ Qin-1 A1n dy

dy ag --+ Ggn-1  G2n 0 Lemma 4.2. Let R be a commutative ring with unit
S ~p Do : : N 7 element. Lef be the(t; + t;41)-input (¢; + ti41)-

' dimensional linear system given by
0 0 Gn—1n—1 An—1n 0
0 0 - dy  amm 0 E_((A11|A12> (Di| 0 ))
N Bi| A1 )7\ 0 |Dipa

and we say tha{d;,d.,...,d,} is the diagonal se-

quence of the systeri. Moreover, the diagonal se-  with D; = d;Id,,, Di11 = a;d;1d, ., andd; anonzero

quence of a reduced form is a feedback invariant up to element ofR. Suppose that the;-input (n — ¢;)-

units and it determines equivalence class of the controldimensional systerfi,, B, ) is feedback equivalent to

systemX, see [Carriegos and Hermida, 2003]. (A}, B7). Then there exist’;; and C12 matrices such
thatX. is feedback equivalent to the system

4 Multi-input case

Through this section, leR be a principal ideal do- Y = <<C1/1|C1/2> 7 (D1| 0 )) .

main. LetYX = (A, B) be ann-dimensionaln input Bi [ A 0 [Dits

linear dynamical system ovét. SinceR is a pid, with-

out loss of generality we can assume that multi-input Proof. Let (P1, @1, F1) the feedback action between
matrix B is rewrote, by some changes of basisand (41, B1) and(Aj, By). Thatis

Q, as

PiA; — A\P, = B\F\, P.B,=DB,Q.

D Ot m—t
B= (0(n_t)xt|0(n_i)(x(m)_t)) € Muxm(R), Consider the invertible: x n block matrix P, the in-
vertible (t; + t;+1) x (t; + ti+1) matrix Q and the
(t; + tiv1) X (t; + tiy1) matrix F' given by

D,
where D = € Mpu(R), e o Orlan Fy (0
Dy, ~\op) T No| P )0 T \0)
d; i
D, = - € My, (R), t:Zti An easy calculation shows that
d; i=1
Anl]A Cu|C D;| 0
andd, /dy/ ... /dy. 112 ) 22 = ¢
ol P(ita) - (5) 7= (Gt 7

Now, letX’ = (A’, B’) be anothen-dimensionaln
input linear dynamical system ovét feedback equiv-  whereC1y = (@141 + FiBy — Ci1Fy)P[ " and

alent toX. By some changes of basi® andQ’, multi- Cii = (Q1An + F1B1)Qy " and

input matrix B’ is assumed as matri®. So, at this

moment we have two linear systefis= (A, B) and Di| 0 Di| 0

¥ = (A, B) feedback equivalent ovek with input P( 0 |Di+1) = ( 0 |Di+1) O

matrix B in the above form. Furthermore, if we con-

sider the systems Corollary 4.3. Let R be a principal ideal domain. Let

3} be thet;-inputn-dimensional linear system given by

o= (4 (52)) = ((3) (5))

and, analogously;,, then it is clear that with D; = d,;1d,, and d; a nonzero element oR.
Suppose that the;-input (n — ¢;)-dimensional sys-
Y ar Y & Yy[m—t] ~g X m — 1. tem(A, By) is feedback equivalent {04, B}). Then

there existCy; and C1, matrices such thak is feed-

Remark 4.1. it is known that feedback equivalence back equivalent to the system

and weakly feedback equivalence are equivalent con-

cepts over principal ideal domains, see [Hermida and Y — ((041/1’071/2) ’ (Di ))
Lopez, 2006]. By | Al 0




Proof. The result is obtained by remark 4.1and by pre-

vious lemma 4.2 withy; = 0. O

Note that in under result, we deal with: R —
R(d) the canonical ring homomorphism &f onto the
quotient ringR/(d), whered # 0 is a non-unit ofR.
The extension of a systel = (A, B) to R/(d) is the
linear systemn(X) = (w(A),n(B)) wheren(A) =
(m(ai;)) andm(B) = (w(bi;))-

Theorem 4.4. Let R be a principal ideal domain. Let
¥ = (A, B) andY’ = (A’, B) be the(t; + t;41)-input
(t; + ti+1)-dimensional linear systems given by

() (34
Bi| A1 )\ 0 [|Dipa

and

o~ () (34
B[4, ) \0Dirs

with D, = diIdti! Di+1 = aidiIdtH], d; a nonzero
element and; 1 = «;d; a non-unit ofR. Assume that
extended systemgX) and(X’) are feedback equiv-
alentoverR/(«;d;). Then the linear systemsand’
are dynamically feedback equivalent over

Proof. From Theorem 2.6 of [Hermida and Lopez,
2006], we have that system

B Di| 0 |dig1ldy| 0O
Py = <A’ ( 0 [Dit1] 0 [Diga

and the analogous systertj are dynamically feed-
back equivalent oveR. We follow the proof by con-
sidering the invertible matrix

Id 0 —a;Id 0O

0Id 0 -Id
@= 00 Id 0

00 O Id

as a feedback action over each of the systEraadX’.
So, we obtain thaB[(t; + t;1)] andX'[(t; + ti1)]
are dynamically equivalent. Finally, we concluBds

dynamically feedback equivalent ¥[(¢; + ¢;11)] by
remark 4.1. O
Example 4.5.LetY = (A, B) andX = (4’,B) be

the 4-input 4-dimensional reduced forms over= Z
given by

1100 3-415

3001 . [32 76

A=los24]° Y= 05069
0021 0027

21000
0600
0060
0006

We prove thatt and ¥’ are dynamically feedback
equivalent an we give a procedure for finditg, F)
feedback equivalence action betwéeand’.

- Firstly, we considerr(X) = (m(A),n(B)) and
w(X') = (w(A"), 7(B)) extended systems ov&/(d)
with d = 6. Hence, we can write

21000
0/000
0/000
0/000

w(B) =

- Secondly, in [Carriegos and Hermida, 2003] is
presented a numerical procedure in order to obtain
(P, F1) matrices pair of feedback action for proving
that; = (A,b) andX) = (A4’,b) single-input sys-
tems are feedback equivalent, with= (2 00 0)*.

14917 -7
012 4 6
Pi=loo1s |» 1= 2
000 1 -3

- Thirdly, 7(%) = (x(4),#(B)) and (%) =

(w(A"), m(B)) systems are feedback equivalent by

1l 0 F
P, = P, QQ:(E‘E)’ F2=(Tl)-

- Fourthly, by Theorem 2.1 of [Hermida and Loépez,
2006], we have that ifr(X) = (7(4),n(B)) and
m(X') = (7(A4"),n(B)) systems are feedback equiv-
alent overR/(d), thenXy = (A, (B | dldy | 04x1))
andX, = (A,(B | dlds | 04x1)) are dynamically
feedback equivalent ovét, by

P, —Hb —dH 0

P P} —H Qs — 0 Q 0 —dS
ST \dldy P, )0 ¥ |1dy N P, bS |
0 Idy 0 @
0 —HA
0 FE
F3_ _A/ ]\42 )
0 0

whereP, P, + dH = Id4 andQ2Q% + dS = Id;. Ob-
serve that there exist;, H, ()%, and.S matrices oveR



because?, andQ, are invertible matrices oveR/(d).
Moreover, these matrice3), H, 3, andS can be cal-
culated by means of Cayley-Hamilton theorem.

- Fifthly, as2 = d;/d2 = 6 we have thatt, =
(A, (B | dldy | 04x1)) is feedback equivalent tB[2]
andX), = (A, (B | dId4 | 04x1)) is feedback equiva-
lent toX'[2] by

1000-30
0000
0100
0010
0001
0000

Py=1dy, Q4= F = Ogx4.

OO OO
O O o O

Note that, on the one hand the input matrix of new sys-
temsX[2] andX'[2] is

21000(00
0|6 00|00
006 0|00
0{006{00

B[2]

and that, on the other hand, we have the chain of equiv-
alences

Y[2] ~r X2~ X5 ~p Y[2].

Hence X[2] andX’[2] systems are dynamically equiv-
alent by

Ps = PyPsPyY, Qs = Q4Q3Q5 ",

s = F4P4P3P471+Q4(F3P471+Q3(_Q21F4P471))'

- Sixthly and finally, by remark 4.1, we have that=
(A, B) andY = (A’, B) linear systems are dynami-
cally feedback equivalent. Furthermore, if we write

(@) == ()

with Q11 a4 x 4 matrix andfy; a4 x 4 matrix, then the
(P, Q, F) feedback action of the dynamic equivalence
over R betweeny = (A4,B) andX’ = (4',B), is
given by

Fyy
Iy

Q11 Q12
Q21 Q22

Qs Fs

P:P57

Q=Qu, F=IFn.

Note that, in Proposition 2.4 of [Hermida and Lopez,
2006], it is proved that in above conditiofg; matrix
is invertible overR. 0

5 Conclusion

Since row echelon form of single-input case and
throughout lifting from quotient rings, it is in our aim
to determinate feedback invariants and canonical form
of a multi-input linear dynamical system over principal
ideal domains.
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