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Abstract:
Estimation, learning, pattern recognition, diagnostics, fault detection and adaptive
control are prominent examples of dynamic decision making under uncertainty.
Under rather general conditions, they can be cast into a common theoretical
framework labelled as Bayesian decision making. Richness of the practically
developed variants stems from: (i) domain-specific models used; (ii) adopted
approximations fighting with limited perceiving and evaluation abilities of the
involved decision-making units, called here participants. While modelling is a well-
developed art, the item (ii) still lacks a systematic theoretical framework. This
paper provides a promising direction that could become a basis of such framework.
It can be characterized as multiple-participant decision making exploiting Bayesian
participants equipped with tools for sharing their knowledge and harmonizing their
aims and restrictions with their neighbors. Intentional avoiding of the negotiation
facilitator makes the solution fully scalable.

Keywords: Bayesian decision making, multiple participants, learning,
cooperation, distributed decision making

1. INTRODUCTION

Decision making (DM), or problem solving, takes
place almost in every activity concerning the
World (biology, technics/industry, human, social).
A particular decision maker (participant) forms
and applies his DM strategy in order to meet his
goals with respect to the behavior of his environ-
ment, which may include other participants, too.
The participant uses available observations and
model of his environment as well as quantitative
description of his goals and restrictions. Such DM
template inherently implies a number of contro-
versies, when participant’s DM elements (goals,
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observations, models) are even partially incom-
patible with others. If the participants’ environ-
ments are overlapping, controversies are inevitable
and only a cooperation can overcome them.

Here a normative multi-participant version of DM
with participants acting as Bayesian participants
is considered. Bayesian paradigm, Berger (1985);
Bertsekas (2001); Kárný et al. (2005), is proven to
serve as a well-grounded DM framework. Under
rather general conditions, it consists of Bayesian
filtering of unobserved, but considered quanti-
ties (called internals), and dynamic programming
serving to design of an optimal DM strategy.
Description of the formal solution is relatively
straightforward, but its practical application is
difficult due to: (i) non-trivial transformation of



knowledge, decision goals and restrictions into an
appropriate probabilistic language, and (ii) always
limited ability of participants to perceive and eval-
uate. While the first item can be often solved by
a well-developed, domain-specific modelling, the
second one is the application bottleneck, which
can be overcome by a cooperative DM. The de-
sired efficient approach, however, must not rely
on a non-realistic facilitator with unlimited ca-
pabilities. The paper contributes to the problem
solution and tries to provide the missed part of
Bayesian DM theory. The proposed cooperative
DM respects the following circumstances:

• Real participant with limited perceiving and
evaluation abilities is equipped with, more or
less standard, Bayesian methodology of con-
structing and applying feasible DM strategies.

• A participant has a relatively small set of neigh-
bors he can cooperate with, i.e., the overall
cooperation load remains within the ability of
a real participant.

• The cooperation rests on two basic activities:
sharing and harmonization of the DM elements.
A tool set supporting these activities is provided
to a participant.

The paper summarizes the state of the art in the
outlined direction. Predominantly, it focuses on
the steps, where either existing solutions are felt
insufficient or insufficiently justified and points
out directions of further systematic research.
Specifically, Section 2 recalls a fully probabilis-
tic version of the Bayesian DM, Kárný and Guy
(2006), for a single participant. Section 3 outlines
considered cooperation ways. Section 4 summa-
rizes the available tools for knowledge sharing and
the tools for harmonizing DM goals and restric-
tions. Critical aspects of the proposed scheme are
discussed in Section 5. Section 6 closes the paper.

2. FULLY PROBABILISTIC DECISION
MAKING

The data d available to a participant consists of
observation ∆ he made on his environment and his
action a; at discrete time t, dt ≡ (∆t, at) (≡means
defining equality). To reach his DM goal with
respect to his environment, the participant selects
sequence of informationally causal rules Rt, which
forms his DM strategy R ≡ RT ≡ (R1, . . . , RT ).
Each rule Rt ∈ R∗t (x∗ marks set of x) maps the
available data dt−1 ≡ (d1, . . . , dt−1) on the action
at, i.e., Rt : d∗t−1 → a∗t .

The sequence of actions the participant selects is
aT ≡ (a1, . . . , aT ) with individual actions at ∈
a∗t ≡ the set of admissible values applied at
discrete time t ∈ t∗ ≡ {1, . . . , T}, T < ∞.

Quality of the selected DM strategy is judged by
a loss function Z : Q∗ → [−∞,∞] that orders
a posteriori closed-loop behaviors Q ≡ (

dT , xT
)

consisting of data dT and internals xT .

DM always faces uncertainty as his environment
is not isolated part of the world and internals are
unknown to the participant. Thus, his strategies
are a priori ordered via the loss function only
when considering a functional dependance of the
behavior on DM strategy and uncertainty. This
does not allow him to select the best DM strategy:
influence of uncertainty on the ordering has to be
removed.

Anybody wants to avoid selecting the DM strat-
egy, which can be a posteriori outperformed
irrespectively of uncertainties. To achieve this,
the mathematical expectation E[·] ≡ ∫ · f (Q) dQ
should be used for prior elimination of uncer-
tainty. The weighting function f (Q) of the ex-
pectation functional is probability density function
(pdf) describing the closed decision loop for the
inspected DM strategy. Often, the expected loss
E [Z] is taken as the prior measure of quality.
Generally, however, the attitude of the participant
to losses is modified by the probability assigned to
realized behavior, i.e., the optimal DM strategy
OR is defined
OR ∈ Arg inf

R∈R∗

∫
U (Z(Q), f (Q)) f (Q) dQ (1)

with a function U increasing in the first argument.
Hereafter,

∫ · dQ denotes definite multivariate in-
tegral over the domain of integrand.

The uncertain behavior Q enters the function
U via the loss function Z. The postulate that
otherwise the behavior enters it at most via f (Q)
reflects the assumption that the risk attitude
depends only on probability that Q will occur.

Neither U nor Z are usually fully determined by
the partial ordering of behaviors they express. It
is reasonable to decrease this ambiguity and use
an alternative expression of this ordering. In that
sense, the combined effect of functions U , Z can
be expressed by introducing the notion of the ideal
pdf If (Q) as the pdf f (Q) achieved for the DM
strategy OR optimal with respect to them.

In the rest of the paper, we assume that the ideal
pdf is unique. This assumption is restrictive. It
has been partially removed under specific circum-
stances, Kárný et al. (2005), but a general solution
without it is to be elaborated.

Assuming that U has continuous derivative with
respect to the second argument and requiring

U (
Z(Q), If (Q)

)
= 0 (2)

we get, cf. Bernardo (1979), the Kullback-Leibler
divergence (KLD), Kullback and Leibler (1951),
as the optimized functional



U (Z(Q), f (Q)) = ln
(

f (Q)
If (Q)

)
⇔ (3)

E [U(Z, f)] = D
(
f
∣∣∣∣ If

)≡
∫

ln
(

f (Q)
If (Q)

)
f (Q) dQ.

Specification of the DM goals and restrictions
(support of f (Q) giving the finite KLD is included
in the support of If (Q)) via the ideal pdf If (Q)
and minimization of the KLD is called fully prob-
abilistic design (FPD), Kárný and Guy (2006).

Respecting the structure of the behavior Q =(
dT , xT

)
, the pdf f (Q) describing closed loop,

formed by the environment and by the DM strat-
egy, can be factorized and interpreted as follows

f (Q)
=

∏
t∈t∗ f

(
∆t

∣∣at, d
t−1, xt

)
︸ ︷︷ ︸
observation model

× f
(
xt

∣∣at, d
t−1, xt−1

)
︸ ︷︷ ︸

evolution model of internals





environment
model

× f
(
at

∣∣dt−1
)

︸ ︷︷ ︸
informationally causal optimized DM strategy

(4)

Having the ideal pdf factorized in the way mimic
to (4), the solution of FPD is described by the
following pair of propositions proven in Kárný and
Guy (2006). For presentation simplicity, dt−1 is
omitted in condition and internals are assumed to
have character of the state, i.e., xt replaces xt.

Proposition 2.1. (Stochastic filtering). Let a prior
pdf f(x0) be given. Then, the pdf f (xt|dt), de-
scribing state estimate, and the pdf f

(
xt

∣∣at, d
t−1

)
,

providing state prediction, evolve
f

(
xt

∣∣at, d
t−1

)

=
∫

f (xt|at, xt−1) f
(
xt−1

∣∣dt−1
)
dxt−1

f
(
xt

∣∣dt
)
=

f (∆t|at, xt) f
(
xt

∣∣at, d
t−1

)
∫

f (∆t|at, xt) f
(
xt

∣∣at, d
t−1

)
dxt

︸ ︷︷ ︸
f(∆t|at,dt−1)

.

The filtering does not depend on the used infor-
mationally causal DM strategy {f (

at

∣∣dt−1
)}t∈t∗

but on the generated actions only.

Proposition 2.2. (Solution of the FPD). The op-
timal DM strategy minimizing D

(
f
∣∣∣∣ If

)
is ran-

domized one given by the pdfs

Of
(
at

∣∣dt−1
)

= If
(
at

∣∣dt−1
) exp

[−ω
(
at, d

t−1
)]

γ (dt−1)

γ
(
dt−1

) ≡
∫

If
(
at

∣∣dt−1
)
exp

[−ω
(
at, d

t−1
)]

dat.

Starting with γ
(
dT

) ≡ 1, functions ω
(
at, d

t−1
)

are generated recursively for t = T, T −1, . . . , 1 in
the backward manner, as follows

ω
(
ut, d

t−1
)

≡
∫

Ω
(
ut, d

t−1, xt−1

)
f

(
xt−1

∣∣dt−1
)

dxt−1

with f (xt|dt) given by Proposition 2.1 and

Ω
(
at, d

t−1, xt−1

)

≡
∫

f (∆t|at, xt) f (xt|at, xt−1)×

ln
(

f (∆t|at, xt) f (xt|at, xt−1)
γ (dt) If (∆t|at, xt) If (xt|at, xt−1)

)
d∆tdxt.

The presented FPD has the following features:

• The minimizing DM strategy is found explic-
itly. This simplifies approximate solution of
this version of dynamic programming.

• An equivalent FPD can be constructed to any
Bayesian DM given by the pair U and Z .

• All DM elements (the environment model,
randomized strategies and their ideal coun-
terparts) are described probabilistically.

3. COOPERATION

A participant acts, i.e., transforms the chosen DM
elements into his optimal DM strategy and applies
it. He acts irrespectively whether the set of his
neighbors is empty or not. However, the explicit
awareness of neighbors opens a way to a better
performance via cooperation, i.e., via exchange
and modification of the DM elements of neighbors.

The discussed methodology takes participants,
labelled by p, as neighbors iff behaviors Qp of
closed loops they consider overlap. Due to the
limited abilities of a participant p = π, the set
of his neighbors p∗π has a few members. The
methodology cares about the neighbors who are
willing to exchange DM elements and possibly
modify personal ones. The modification, which is
discussed below, induces re-design of the optimal
DM strategy and, hopefully, leads to an improved
DM performance of neighboring participants.

“Pure” types of participants are:

Selfish participant accepts the DM elements
offered by his neighbor, however, uses them
irrespectively of DM goals of the neighbor.

Cooperative participant negotiates with his
neighbor the degree of mutual influence, i.e.,
cooperating participants come to a common de-
gree of acceptance of the offered DM elements.

Dominating participant enforces his DM ele-
ments to other(s). It creates a kind of, possi-
bly softly, centralized DM. Applicability of this
most efficient cooperation reaches soon robust-
ness, communication and computation barriers.



A more extensive discussion of this classification
can be found, in Kárný and Guy (2004).

4. COOPERATION TOOLS

Knowledge about behavior Qp of the closed loop
formed by a participant p and its environment is
expressed by the pdf f (Qp|p). According to (4), it
is product of the environment model with factors
f (∆t;p|at;p, xt;p, p) f (xt;p|at;p, xt−1;p, p) and the
DM strategy with a generic factor f

(
at;p

∣∣dt−1
p , p

)
.

The ways of enriching this knowledge as well as
modification of its ideal counterpart by using DM
elements offered by neighbors are inspected here.

4.1 Knowledge offered by neighbors

Let us consider a fixed participant π with neigh-
bors labelled by p ∈ p∗π. The participant π delimits
the group of his neighbors as those participants
about whose behaviors he is aware of and who
have a common part Cp with his behavior Qπ.
For a p ∈ p∗π, let us decompose Qπ =

(
C̄p, Cp

)
,

where C̄p is available for the participant π but
it is unavailable for the participant p. Similarly,
Qp =

(
C̄π, Cp

)
, where C̄π is the part of the

behavior Qp unavailable to the participant π.

The neighboring participant p offers his knowledge
by providing the pdf f(Qp|p) = f

(
C̄π, Cp|p

)
. The

accepting participant π is obviously able to exploit
at most the marginal pdf fp ≡ f (Cp|p) charac-
terizing the common part Cp of behaviors Qπ and
Qp. To establish a cooperation, the participant π
needs a tool that allows him to use all offered pdfs
fp ≡ f (Cp|p) and modify f (Qπ|π) by the set of
marginal pdfs

f∗π ≡
{
fp≡f (Cp|p) , Qπ = (C̄p, Cp), p ∈ s∗π

}
. (5)

It is useful to include fπ ≡ f (Qπ|π) into the set
f∗π . This is possible with Qπ ≡ Cπ and void C̄π.

Knowledge exploitation in decentralized DM is
always poorer than in the centralized DM. Thus,
for fixed strategies of neighbors, there is a global
closed-loop pdf Gf ≡ Gf (Qπ) describing com-
pletely knowledge of the considered group of
neighbors. The respective pdfs in f∗π (5) can be
interpreted as noisy (not fully compatible) pro-
jections of the global pdf Gf (Qπ). The knowl-
edge sharing can be interpreted as a correction
of f (Qπ|π), a noisy projection of the global pdf
Gf (Qπ) to the knowledge domain of the πth par-
ticipant, by the pdfs in the set f∗π . Basic ways are
outlined below.

The inspected corrections need to extend the
processed marginal pdfs f (Cp|p) onQπ. It is done
via a chain rule f̃(C̄p|Cp)f (Cp|p) with a suitably
chosen conditional pdf f̃(C̄p|Cp).

4.2 Approximation-based sharing

The global, group describing, pdf Gf = Gf (Qπ)
is unknown and we approximate it by the pdf
denoted f (Qπ|f∗π) and defined

f (Qπ|f∗π) ∈ Arg min
{f̂≡f(Qπ)}

E
[
D

(
Gf

∣∣∣
∣∣∣f̂

)]

= Argmin
{f̂}

E
[
D

(
Gf

∣∣∣
∣∣∣f̂

) ∣∣∣ f̂ , f∗π
]
, (6)

where the expectation E and its conditional ver-
sion E

[
·
∣∣∣ f̂ , f∗π

]
are taken over the uncertain global

pdfs Gf ∈ Gf∗ ≡ the set of possible objective
global pdfs. The equality (6) follows from the basic
lemma of DM, Astrom (1970), Kárný et al. (2005).
It can be exploited if we manage to relate the
optimized pdf f̂ and (meta)data f∗π (5) to the
unknown global pdf Gf . It is done heuristically.

First, we extend the respective marginal pdfs
f (Cp|p) on Qπ using the appropriate conditional
pdfs derived from the pdfs f̂(Qπ) over which the
optimization runs, i.e., the extensions have the
form f̂

(
C̄p |Cp) f (Cp|p) .

Let us split the set Gf∗ of possible global pdfs Gf
to non-overlapping subsets Gf∗p , p ∈ p∗π. Then,

E
[
D

(
Gf

∣∣∣
∣∣∣f̂

) ∣∣∣ f̂ , f∗π
]

(7)

= E


 ∑

p∈p∗π

χp

(
Gf

)
D

(
Gf

∣∣∣
∣∣∣f̂

)
∣∣∣∣∣∣
f̂ , f∗π


 ,

where χp(·) is indicator of the set Gf∗p . Sets Gf∗p
are selected so that on them the approximation

E
[
D

(
Gf

∣∣∣
∣∣∣f̂

) ∣∣∣ f̂ , Gf∗p
]

≈D
(
f̂

(
C̄p |Cp) f (Cp|p)

∣∣∣
∣∣∣f̂

)

=
∫

f (Cp|p) ln

(
f (Cp|p)

f̂(Cp)

)
dCp (8)

causes the smallest error when we minimize the
functional resulting from this approximation in-
stead of the functional (6). With the approxima-
tion (8), the minimization task (6) gets the form

f (Qπ|f∗π) ∈ Arg min
{f̂}

(9)

∑
p∈p∗π

αp

(
f̂
) ∫

f (Cp|p) ln

(
f (Cp|p)

f̂(Cp)

)
dCp

where αp = αp

(
f̂
)

is the probability of the set
Gf∗p . Let us neglect dependence of these probabil-
ities on the optimized pdf f̂ = f̂(Qπ). Then, it
is easy to find that the pdf f (Qπ|f∗π) optimally



approximating the unknown global pdf Gf (Qπ) in
the sense (9) has to meet the necessary condition

∑
p∈p∗π

αp
f (Cp|p)
f (Cp|f∗π)

= constant. (10)

Explicit solution of (10) is rarely available. For
instance, if π = 2, p∗2 ≡ {1, 2}, then it reads

f (C2|f1, f2) ≡ f (Q2|f1, f2) = f
(
C̄1

∣∣C1, π = 2
)

× [α1f (C1|p = 1) + (1− α1) f (C1|p = 2)] .

Generally, (10) has to be solved numerically. An
efficient iterative procedure with a guaranteed
convergence was proposed in Kraćık (2005).

The approximation (8) is motivated by the fact
that the particular models f (Cp|p) are usually
obtained by Bayesian learning and thus they have
“tendency” to minimize the KLD to the global pdf
Gf (Cp), Kárný et al. (2005). This also motivates
the choice of the factors f̂(C̄p|Cp) for extending
respective marginal pdfs f(Cp|p) to the pdf de-
scribing the behavior Qπ.

Note that the participant’s type, Section 3, deter-
mines the selection of probabilistic weights αp.

4.3 Alternative solution

The assumption that αp, p ∈ p∗π, do not depend
on the optimized f̂ can be rather rough. Thus, it
is worthwhile to consider alternative approxima-
tions. For instance, the processed marginal pdfs
can be extended to describe whole Q∗π by the con-
ditional pdf of f (Qπ|π), i.e., f

(
C̄p

∣∣Cp, π
)
f (Cp|p).

This leads to the re-definition of sets Gf∗p so that

E
[
D

(
Gf

∣∣∣
∣∣∣f̂

) ∣∣∣ f̂ , Gf∗p
]

(11)

≈D
(
f

(
C̄p

∣∣Cp, π
)
f (Cp|p)

∣∣∣
∣∣∣f̂(Qp)

)

causes the smallest error when we minimize the
functional resulting from this approximation in-
stead of the functional (6). In this case, it seems
that the assumption that αp, p ∈ p∗π, do not
depend on the optimized argument is more realis-
tic. Moreover, the optimal approximation can be
found explicitly as the mixture of pdfs

f (Qπ|f∗π) =
∑
p∈p∗π

αpf
(
C̄p

∣∣Cp, π
)
f (Cp|p) .

This is an, often recommended, arithmetic polling
of pdfs. Note that solution of the same approxi-
mation task, under the same conditions but with
the alternative version of the KLD, gives the geo-
metric polling. It declines, however, from the well-
justified version of the KLD, Bernardo (1979).

The participant’s type, Section 3, determines the
way of selecting the probabilistic weights αp.

4.4 Learning option

To simplify discussion in this paragraph, let us
assume that the behavior Qπ of the participant π
is fully included in behaviors of his neighbors, i.e.,
Cp = Qπ, p ∈ p∗π. The pdfs fp ∈ f∗π represent
(meta)data, which should be processed by the
Bayes rule in order to learn the unknown global
pdf Gf ≡ Θ ≡ unknown parameter of the prob-
lem; model of the behavior Qπ is parameterized
by Θ. Thus, the participant π has at disposal
f (Qπ|Θ, π) and as Bayesian DM assigns prior
pdf f(Θ|π) to it. For a finite dimensional Θ, the
papers Kraćık and Kárný (2005); Kárný et al.
(2006) proposed the following extension of the
Bayes rule that modifies the prior pdf f(Θ|π) by
probabilistic information f∗π about Qπ

f (Θ|fp, π) ∝ f (Θ|π)︸ ︷︷ ︸
prior pdf chosen by π

× (12)

exp




∑
p∈p∗π

νp

∫
f (Qπ|p)︸ ︷︷ ︸
exploited fp

× ln(f (Qπ|Θ, π))︸ ︷︷ ︸
relatesQπ to Gf=Θ

dQπ


 ,

where νp ≥ 0, p ∈ p∗π, control the impact of
the processed knowledge. The type of participant,
Section 3, determines the way of their selection.

4.5 Harmonizing ideal pdfs

Harmonization concerns combination of the neigh-
bors’ ideal pdfs. Formally, the same combination
rules as in knowledge sharing could be used. How-
ever, the global pdf has to be interpreted as a
group ideal and the learning option makes less
sense in this case. Thus, the approximation-based
options remain to be only candidates.

5. DISCUSSION

Sharing and harmonizing tools outlined in Section
4, seem to exhaust practically the range of mean-
ingful alternatives. Naturally, the problem of com-
bination of pdfs has been addressed repeatedly
in various contexts. The fact that the combined
marginal pdfs are incompatible is the major speci-
ficity of the addressed problem. This rules out
sophisticated techniques based on copulas, Nelsen
(1999), and their extensions. Techniques related
to Bayesian networks, Jensen (2001); Jiroušek
(2003), seem to be unsuitable for the same reason.

Concerning to sharing of knowledge, the com-
position based on learning is conceptually the



most satisfactory as it fits the basic Bayesian
paradigm. Still, there are technical problems re-
lated to it. Specifically, the application of the
Bayes rule assumes implicitly existence of the
model f (fp|Θ). Its correct definition requires em-
ployment of heavy machinery of stochastic pro-
cesses. Definite results are unavailable.

Concerning to approximation-based solutions. The
appropriate choice of weights is critical. While for
knowledge sharing they can be taken as unknown
parameters and estimated in Bayesian way, their
choice for harmonization is unsolved: a formalized
way of their negotiation is missing.

The outlined techniques face common problems.
Specifically,

• The compound pdf is often out of an easy-to-
handle class of its constituents. Thus, either
subsequent projection to this class is needed or
the optimization has to performed within it.

• The operations are performed on marginal pdfs
derived from the conditional pdfs creating en-
vironment model and description of the DM
strategy. This can be quite demanding.

• Any change of a DM element induces changes
of others. For instance, modification of models
or ideal pdfs implies the need to re-design the
DM strategy. This change should be reported to
neighbors. Consequently, the sharing of knowl-
edge and harmonizing the aims becomes an iter-
ative process. Its organization and termination
are generally non-trivial.

• Locality is the main good feature of the con-
sidered compositions. Global model or ideal for
neighbors are formed either implicitly or at
most temporarily: the result is projected back
to respective participants. The cooperation can
run independently and in parallel within non-
overlapping groups of neighbors. Cooperation of
overlapping groups influence each other, hope-
fully without bad consequences. No formal anal-
ysis is now available and various types of global
behaviors may emerge.

6. EPILOGUE

Adaptive systems have been recognized as systems
fighting with the complexity of DM problems by
using local (in time and data spaces) approxima-
tions around behavior realizations, The method-
ology outlined in this paper is a natural and quite
powerful tool extending capabilities of adaptive
systems. Among others, it opens the promising
way of combining highly sophisticated adaptive
algorithms that otherwise can solve only small-
scale problems.
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