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1. INTRODUCTION

The synchronization phenomenon of two pendulum
clocks was first discovered by Cristian Huygens
in 1662. He observed what is now called the
anti-phase synchronization of two pendula of the
clocks attached to a common support beam.
Regardless of the initial conditions those two
pendula converged after some transient to an
oscillatory regime characterized by identical frequen-
cy of the oscillations, while the two pendula
angles moved in anti phase. Huygens [Huygens
1669,1986] found an explanation of this phenomenon
noticing that imperfect synchronization resulted
in small beam oscillation that in turn drove
the pendula towards the agreement. Though
his explanation is physically correct, rigorous
analytical results become available later on with
invention of differential calculus. 300 years of
Huygens’ discovery it turned out that this pheno-
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menon finds a lot of potential applications in
different fields of science and engineering. For
some related analytical results, see e.g.[Bennet et.
al., 2005, Pogromsky et. al., 2005].

Together with anti-phase oscillations, a similar
setup with two metronomes on a common support
demonstrates also in-phase synchronization, where
metronomes’ pendula agree not only in frequency
but also in angles [Oud et. al., 2006].

In the book [Blekhman 1988], Blekhman also
discusses Huygens’ observations, and recounts
the results of a laboratory reproduction of the
coupled clocks as well as presenting a theoretical
analysis of oscillators coupled through a common
supporting frame. He predicted that both in-phase
and anti-phase motions are stable under the same
circumstances.

The problem of analytical study of in-phase
synchronization turns out to be more difficult.
The present paper addresses this problem for the
model of two metronomes on the common support
proposed in [Pantaleone, 2002].



2. PROBLEM STATEMENT

We consider a system consisting of two metronomes
resting on a light wooden board that sits on two
empty soda cans. The motion of such system can
be described [Pantaleone, 2002] by the following
equation

m(lφ̈i + ẍ cos φi) + mg sinφi =

= κesc
(
1− φ̂i

2

Φ2

)
φ̇i = fesc(φi)φ̇i

Mẍ + m
2∑

i=1

(
lφ̈i cos φi − lφ̇i

2
sinφi + ẍ

)
= 0

(1)
Here m is a mass of each weight of metronomes, M
is a mass of platform, φi is an angle of deviation of
the i-th pendulum of metronome from a vertical, l
is a length of the pendulum of metronome, fesc(·)
is an internal force of metronome, (κesc is a small
parameter, φ̂i = φi mod 2π), g is a gravitational
acceleration, and x is a horizontal displacement of
platform beginning from equilibrium.

We find out conditions under which the inphase
regime occures.

For the sequel we need in new variables

θ+ =
φ1 + φ2

2
, θ− =

φ1 − φ2

2
.

In this case by trigonometric formulas we obtain
sinφ1 + sinφ2

2
= sin θ+ cos θ−,

sinφ1 − sinφ2

2
= sin θ− cos θ+,

cos φ1 + cos φ2

2
= cos θ+ cos θ−,

cos φ1 − cos φ2

2
= sin θ− sin θ+.

The second equation of (1) gives the following
expression for the acceleration ẍ of the platform

ẍ = −
ml

(
(sinφ1)′′ + (sinφ2)′′

)
(M + 2m)

.

This implies that, written a half-sum and half-
difference of equations for the motion of weights of
metronomes (1) in new variables θ+, θ−, we obtain

m(lθ̈+ −
2ml(sin θ+ cos θ−)′′

M + 2m
cos θ+ cos θ−+

+g sin θ+ cos θ−) = (fesc(φ1) + fesc(φ2))/2,

m(lθ̈− −
2ml(sin θ+ cos θ−)′′

M + 2m
sin θ− sin θ+

+g sin θ− cos θ+) = (fesc(φ1)− fesc(φ2))/2,
(2)

fesc(φ1)φ̇1 + fesc(φ2)φ̇2 = κesc
(
1− φ2

1

Φ2

)
φ̇1+

+κesc
(
1− φ2

2

Φ2

)
φ̇2 =

= κesc
(
2 ˙θ+ −

1
Φ2

(
(θ+ + θ−)2( ˙θ+ + ˙θ−)+

+(θ+ − θ−)2( ˙θ+ − ˙θ−)
))

=

= κesc
(
2 ˙θ+ −

1
Φ2

(
2θ2

+
˙θ+ + 4θ+θ− ˙θ− + 2θ2

−
˙θ+

))
,

fesc(φ1)φ̇1 − fesc(φ2)φ̇2 = κesc
(
1− φ2

1

Φ2

)
φ̇1−

−κesc
(
1− φ2

2

Φ2

)
φ̇2 =

= κesc
(
2 ˙θ− −

1
Φ2

(
(θ+ + θ−)2( ˙θ+ + ˙θ−)−

−(θ+ − θ−)2( ˙θ+ − ˙θ−)
))

=

= κesc
(
2 ˙θ− −

1
Φ2

(
2θ2

+
˙θ− + 4θ+θ− ˙θ+ + 2θ2

−
˙θ−

))
.

(3)
It follows that in the mechanical system there can
occurs an inphase regime (2θ− = φ1 − φ2 = 0 ⇒
φ1 ≡ φ2), in which for the half-sum of angles
of deviation of metronomes pendulum θ = θ+

satisfies the equation

m(lθ̈ − 2ml(sin θ)′′

M + 2m
cos θ + g sin θ) =

= κesc
(
1− θ2

Φ2

)
θ̇.

(4)

Having performed the transformations

m(lθ̈ − 2ml(θ̈ cos θ − θ̇2 sin θ)
M + 2m

cos θ + g sin θ) =

= κesc
(
1− θ2

Φ2

)
θ̇,

(5)

θ̈(1− 2m cos2 θ

M + 2m
) + θ̇2 2m sin θ cos θ

M + 2m
+

g

l
sin θ =

=
κesc

ml

(
1− θ2

Φ2

)
θ̇,

(6)

θ̈
M + 2m sin2 θ

M + 2m
+ θ̇2 m sin 2θ

M + 2m
+

g

l
sin θ =

=
κesc

ml

(
1− θ2

Φ2

)
θ̇,

(7)

for

εm,M (θ) =
2m cos2 θ

M + 2m sin2 θ
,

κesc
ml =

κesc

ml
, ε 2m

M
=

2m

M
,

we obtain

θ̈ − θ̇F (θ, κesc) + θ̇2H(θ) + G(θ) = 0, (8)

F (θ, κesc) = κesc M + 2m

ml(M + 2m sin2 θ)

(
1− θ2

Φ2

)
=

= κesc
ml

(
1− θ2

Φ2

)
(1 + εm,M (θ)),

H(θ) =
m sin 2θ

M + 2m sin2 θ
= tan θεm,M (θ),

G(θ) =
g(M + 2m) sin θ

l(M + 2m sin2 θ)
=

g sin θ

l
(1 + εm,M (θ))

Then for linearization at the equilibrium θ =
0, θ̇ = 0 we have

θ̇ = η
η̇ = −G′

θ(θ)|θ=0,η=0θ + F (θ, κesc)|θ=0,η=0η =

= −g(M + 2m)
Ml

θ +
κesc(M + 2m)

Mml
η

Since
κesc(M + 2m)

Mml
> 0, this implies the

instability of the zero solution and the unwinding
of the phase trajectory for small θ.



Following the strategy in [Pogromsky et. al., 2005;
Bennet et. al., 2005], we consider the question of
the existence and setting of the inphase regime.

3. PROOF OF THE EXISTENCE OF A
PERIODIC REGIME

Having performed some transformation in system
(4) and taking into account the relations

κ =
√

g/l, εM =
m

M + 2m
,

δM (θ) = εM (θ̈2 cos2 θ − θ̇2 sin 2θ),

fesc
ml (θ) = κesc

ml

(
1− θ2

Φ2

)
,

we obtain

θ̈ + κ2 sin θ = fesc
ml (θ)θ̇ + δM (θ) (9)

In the approximation when sin θ ≈ θ, 0 ≤ θ < π/3
equation (9) takes the form

¨̃
θ + κ2θ̃ = fesc

ml (θ̃) ˙̃θ + δM (θ̃). (10)

The solution of this equation with the initial states
θ̃(0) = θ(0) = θ0,

˙̃
θ(0) = θ̇(0) = 0 can be

represented as

θ̃(t) = θ0 cos(κt) + g1(t, κesc,M),

˙̃
θ(t) = −θ0κ sin(κt) + g2(t, κesc,M).

For small κesc and 1/M for the time T of second

crossing of the trajectory (θ̃, ˙̃
θ) of the straight line

θ̇ = 0, we approximately obtain

T ≈ T̃ =
2π

κ
: ˙̃

θ(T ) = ˙̃
θ(0) = 0

Let us consider now the Lyapunov function
V ( ˙̃θ, θ̃) and its derivative in virtue of system (10),
i.e.

V ( ˙̃θ, θ̃) = ˙̃
θ
2

/2 +
κ

2
θ̃2 > 0

and

V̇ ( ˙̃θ, θ̃) = ˙̃
θ(¨̃θ + κθ̃) = ˙̃

θ
2

fesc
ml (θ̃) + ˙̃

θδM (θ̃),

respectively. Following [Leonov, 2006], we then

estimate the following relation V ( ˙̃θ(T ), θ̃(T )) -

V ( ˙̃θ(0), θ̃(0)) =

T∫
0

V̇ ( ˙̃θ(t), θ̃(t))dt ≈

≈
T̃∫

0

V̇ ( ˙̃θ(t), θ̃(t))dt.

For this purpose we integrate ˙̃
θ
2

fesc
ml

(
θ̃(τ)

)
from 0

to T̃ :

T̃∫
0

˙̃
θ
2

κesc
ml

(
1− θ̃2(τ)

Φ2

)
dτ = κesc

ml θ
2
0κ

2

T̃∫
0

sin2(κτ)
(
1−

−θ2
0 cos2(κτ)

Φ2

)
dτ + g̃1(κesc,M) =

= κesc
ml θ

2
0κ

2 π(4Φ2 − θ2
0)

4κΦ2
+ g̃1(κesc,M)

where
lim

κesc,1/M→0
g̃1(κesc,M) = 0.

For the approximate values cos θ̃(t) ≈ cos
(
θ0 cos(κt)

)
,

sin
(
2θ̃(t)

)
≈ sin

(
θ02 cos(κt)

)
, the following relations

hold

T̃∫
0

˙̃
θ(t)¨̃θ(t) cos2(θ̃(t))dt = g̃2(κesc,M)

T̃∫
0

˙̃
θ
3

(t) sin(2θ̃(t))dt = g̃3(κesc,M),

lim
κesc,1/M→0

g̃i(κesc,M) = 0.

Taking into account these relations, we integrate
˙̃
θδM

(
θ̃(τ)

)
from 0 to T̃

T̃∫
0

˙̃
θ(t)δM

(
θ̃(t)

)
dt =

T̃∫
0

˙̃
θ(t)εM

[¨̃
θ(t)2 cos2 θ̃(t)−

− ˙̃
θ
2

(t) sin 2θ̃(t)
]
dt =

T̃∫
0

−θ0κ sin(κt)εM[
− θ0κ

2 cos(κt)2 cos
(
θ0 cos(κt)

)
−

−θ2
0κ

2 sin2(κt) sin
(
θ02 cos(κt)

)]
dt + g̃4(κesc,M) =

= 0 + g4(κesc,M),

where
lim

κesc,1/M→0
g(κesc,M) = 0.

Then we receive

V ( ˙̃θ(T ), θ̃(T ))− V ( ˙̃θ(0), θ̃(0)) ≈

≈
T̃∫

0

V̇ (θ̇(τ), θ(τ))dτ =

=

T̃∫
0

[ ˙̃
θ
2

fesc
ml

(
θ̃(τ)

)
+ ˙̃

θδM

(
θ̃(τ)

)]
dτ

=

T̃∫
0

˙̃
θ
2

fesc
ml

(
θ̃(τ)

)
dτ +

T̃∫
0

˙̃
θδM

(
θ̃(τ)

)
dτ =

= κesc
ml θ

2
0κ

2 π(4Φ2 − θ2
0)

4κΦ2
+ g(κesc,M),

where
lim

κesc,1/M→0
g(κesc,M) = 0.

In this case for −2Φ < θ0 < 2Φ we obtain an
unwinding() and for 2Φ < |θ0| twisting () of the
phase trajectory for sufficiently small κesc, 1/M .



Thus proved the existence of an inphase regime,
i.e., we proved that for φ1−φ2 = 0, for the sum of
the angles φ1 +φ2 there occurs a periodic regime.
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