
ENOC 2008, Saint Petersburg, Russia, June, 30–July, 4 2008

NORMAL FORM REDUCTION FOR MULTIPLE-ZERO
EIGENVALUE USING FRACTIONAL SCALES

Alexei A. Mailybaev
Institute of Mechanics

Moscow State Lomonosov University
Russia

mailybaev@imec.msu.ru

Angelo Luongo
DISAT
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Abstract
In this paper, we present a new method for finding

normal form equation and invariant manifold in the
case of multiple zero eigenvalue with a single Jordan
block. The method utilizes the concept of fractional
scale. This allows using a single scale parameter in the
normal form reduction for systems with multiple vari-
ables and parameters. The use of fractional scales sub-
stantially simplifies the procedure of system reduction.
As an example, we perform the normal form reduction
near the point of triple zero bifurcation for a double
pendulum under a follower force.
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1 Fraction scales in dynamical system reduction
We consider a nonlinear system of ordinary differen-

tial equations of the form

ẋ = F(x,p), (1)

where x ∈ Rn is a vector of dynamical variables, p ∈
Rm is a constant parameter vector, and F(x,p) is a
smooth function. We assume that

F(0,p) = 0 (2)

for all p, i.e., x = 0 is always an equilibrium. We
will study equation (1) near the critical point p = 0,
at which the Jacobian matrix Fx = dF/dx evaluated
at (x,p) = (0, 0) possesses a multiple zero eigenvalue
with a single Jordan block of order k. This point rep-
resents a degeneracy of codimension k for general sys-
tems, i.e., it can be found by tuning k parameters of the
system [Arnold, 1983].
Let all the eigenvalues of the matrix Fx, except for

zero eigenvalue, have nonzero real part. In practical

applications, we are usually interested in the case when
all of them have negative real parts, so the point p = 0
lies on the stability boundary of the trivial equilibrium.
Then, in the neighborhood of (x,p) = (0, 0) system
(1) can be reduced to a k-dimensional invariant central
manifold. The behavior on this manifold is governed
by a k-dimensional reduced system. The reduced sys-
tem plays the key role in the analysis of the system dy-
namics, since it describes important properties of the
full original system like bifurcations of equilibria, limit
cycles, stability etc.
Let x = x(a, ȧ, ä, . . . , a(k−1),p) be the equation for

the stable manifold, where a new variable a and its
derivatives ȧ, ä, . . . , a(k−1) are considered as dynam-
ical variables of the reduced system. We will look for
the reduced system in the form

a(k) = f(a, ȧ, ä, . . . , a(k−1),p), (3)

where f(a, ȧ, . . . , a(k−1),p) is a scalar smooth func-
tion. The unknown functions x(a, ȧ, . . . , a(k−1),p)
and f(a, ȧ, . . . , a(k−1),p) can be found in the form of
Taylor series by substituting into equation (1) and com-
paring similar terms. This gives an infinite number of
coupled equations.
The purpose of this paper is to give a constructive

method for solving these equations by using the con-
cept of fractional powers. In this way, we establish the
relationship between the reduction problem considered
here and the methods of perturbation theory in linear
algebra [Mailybaev, 2001; Seyranian and Mailybaev,
2004] and multiple-scale methods in nonlinear equa-
tions [Luongo et al., 1999; Luongo et al., 2003]. In our
case, the main idea is to introduce a small scale ε > 0
such that

a ∼ ε, p ∼ ε,
d

dt
∼ ε1/k. (4)

These conditions determine the scale of each term in
the Taylor expansion with respect to a, ȧ, . . . , a(k−1)



and p, e.g.

ȧ ∼ ε1+1/k, ap ∼ ε2, aäp ∼ ε3+2/k. (5)

Then we can group terms in Taylor expansions accord-
ing to their fractional orders in ε:

x(a, ȧ, . . . , a(k−1),p) = εx1 + ε1+1/kx1+1/k

+ ε1+2/kx1+2/k + · · ·
f(a, ȧ, . . . , a(k−1),p) = ε2f2 + ε2+1/kf2+1/k

+ ε2+2/kf2+2/k + · · ·

(6)

Here the factors εα show the order of the corresponding
terms xα and fα (after the computations ε is set to 1).
As we will see below, the use of fractional scales

substantially simplifies the procedure of system reduc-
tion. Another advantage of the method is that fractional
scales explicitly determine the “importance” (scale) of
each term when writing an approximate reduced equa-
tion.

2 Double zero eigenvalue
In this section, we consider the case of a double zero

eigenvalue, which is essentially similar to the case of
arbitrary multiplicity. In this case (6) becomes

x(a, ȧ,p) = εx1 + ε3/2x3/2 + ε2x2 + · · · ,
f(a, ȧ,p) = ε2f2 + ε5/2f5/2 + ε3f3 + · · ·

(7)

Substituting (7) into the right-hand side of (1), we ob-
tain

F(x,p) = Fxx + 1
2Fxxx2 + Fxpxp + · · ·

= εFxx1 + ε3/2Fxx3/2

+ ε2
(
Fxx2 + 1

2Fxxx2
1 + Fxpx1p

)

+ ε5/2
(
Fxx5/2 + Fxxx1x3/2 + Fxpx3/2p

)
+ · · ·

(8)
Here we used condition (2) and the short notation for
derivatives

Fxxxx′ =
∑n

i,j=1
∂F

∂xi∂xj
xix

′
j ,

Fxpxp =
∑n

i=1

∑m
j=1

∂F
∂xi∂pj

xipj , . . .
(9)

taken at (x,p) = (0, 0); similar notation can be used
for higher order derivatives. Similarly, substituting (7)

into the left-hand side of (1) and using (3), we obtain

ẋ = ∂x
∂a ȧ + ∂x

∂ȧ f(a, ȧ,p)

= ε3/2 ∂x1
∂a ȧ + ε2

(
∂x3/2

∂a ȧ + ∂x3/2

∂ȧ f2

)

+ ε5/2
(

∂x2
∂a ȧ + ∂x2

∂ȧ f2 + ∂x3/2

∂ȧ f5/2

)

+ ε3
(

∂x5/2

∂a ȧ + ∂x5/2

∂ȧ f2 + ∂x2
∂ȧ f5/2 + ∂x3/2

∂ȧ f3

)
+ · · ·
(10)

Let u1, u2 be the real generalized eigenvectors (eigen-
vector and associated vector) corresponding to zero
eigenvalue and satisfying the equations

Fxu1 = 0, Fxu2 = u1. (11)

The left generalized eigenvectors v1, v2 (which are
row-vectors) are given by

v1Fx = 0, v2Fx = v1. (12)

The vectors can be normalized such that

v1u1 = v2u2 = 0, v1u2 = v2u1 = 1. (13)

Let us introduce the nonsingular matrix G = (Fx +
u2v2)−1−u1v1, which gives a particular solution Gy
to the equation Fxy = 0, assuming that the solution
exists. It is easy to see that

Gu1 = u2, Gu2 = 0, v1G = v2, v2G = 0. (14)

According to the central manifold theorem, we can take

∂x1

∂a
= u1,

∂x3/2

∂ȧ
= u2. (15)

This implies that the central manifold is tangent to the
central manifold for the linearized system.
Now we can substitute (8), (10) and (15) into (1) and

compare the terms of equal order in ε. For the order ε
we obtain:

ε : 0 = Fxx1. (16)

With the use of (11) and (15), we find

x1 = au1. (17)

For ε3/2, we have

ε3/2 : ȧu1 = Fxx3/2. (18)



Using (11) and (15), we find

x3/2 = ȧu2. (19)

Terms of order ε2 yield

ε2 : f2u2 = Fxx2 +
1
2
Fxxx2

1 + Fxpx1p. (20)

Multiplying this equation by v1 and using (12), (13)
and (17), we find

f2 =
1
2
v1Fxxu2

1a
2 + v1Fxpu1pa. (21)

Under this condition, (20) can be solved with respect to
x2 as

x2 = −1
2
GFxxu2

1a
2 −GFxpu1pa, (22)

where we used (14).
Similarly, solving equation for the terms of order ε5/3,

we find

f5/2 = (v1Fxxu1u2 + v2Fxxu1u1)aȧ

+(v1Fxpu2p + v2Fxpu1p)ȧ,

x5/2 = −(GFxxu1u2 + G2Fxxu1u1)aȧ

−(GFxpu2p + G2Fxpu1p)ȧ.

(23)

Equations for higher orders εj/2 are solved similarly.
At each step, we obtain the expression for fj/2 and
xj/2. In order to obtain approximate reduced equation,
one must retain all the terms up to a certain order in ε.
Note that the final formulae of this section are essen-
tially the same as the reduction formulae found by the
multiple time scale method [Luongo et al., 1999].
Note that xj/2 are particular solutions of equations

(18), (20) etc. The general solution is obtained by
adding the eigenvector u1 with an arbitrary constant
factor. This means that we can add c3/2ȧu1 to x3/2,
(c′2a

2 + c′′ap)u1 to x2 with arbitrary constants c3/2,
c′2, c′′2 (and similarly for terms of higher orders). These
constants can be chosen in such a way that some of
the terms in the reduced equation (3) vanish. One can
show that this method gives the minimal number of
nonzero terms prescribed by the general normal form
theory [Guckenheimer and Holmes, 1983]. However,
in the case of multiple zero eigenvalue, this procedure
does not provide a significant simplification of reduced
equation.

3 Multiple zero eigenvalue
There are k generalized eigenvectors corresponding to

zero eigenvalue and satisfying

Fxu1 = 0, Fxu2 = u1, . . . , Fxuk = uk−1. (24)

The left generalized eigenvectors are given by

v1Fx = 0, v2Fx = v1, . . . , vkFx = vk−1. (25)

The vectors can be normalized such that

viuj =
{

1, i = k − j + 1,
0, i 6= k − j + 1 . (26)

The nonsingular matrix G = (Fx + ukvk)−1 − u1v1

gives a particular solution Gy to the equation Fxy =
0, assuming that the solution exists. One can show that

Gu1 = u2, . . . , Guk−1 = uk, Guk = 0,

v1G = v2, . . . , vk−1G = vk, vkG = 0.
(27)

The procedure for finding the functions
f(a, ȧ, . . . , a(k−1)p) x(a, ȧ, . . . , a(k−1)p) describing
the reduced system (3) and the central manifold is
absolutely analogous to the case k = 2.
For the triple zero eigenvalue, we have

x(a, ȧ, ä,p) = εx1 + ε4/3x4/3 + ε5/3x5/3 + · · · ,
f(a, ȧ, ä,p) = ε2f2 + ε7/3f7/3 + ε8/3f8/3 + · · ·

(28)
and

x1 = au1, x4/3 = ȧu2, x5/3 = äu3,

f2 = 1
2v1Fxxu2

1a
2 + v1Fxpu1pa,

x2 = − 1
2GFxxu2

1a
2 −GFxpu1pa,

f7/3 = (v1Fxxu1u2 + v2Fxxu1u1)aȧ

+(v1Fxpu2p + v2Fxpu1p)ȧ,

x7/3 = −(GFxxu1u2 + G2Fxxu1u1)aȧ

−(GFxpu2p + G2Fxpu1p)ȧ.

f8/3 =
(v1Fxxu1u3 + v2Fxxu1u2 + v3Fxxu1u1)aä

+(v1Fxxu1u2 + v2Fxxu1u1)ȧ2

+(v1Fxpu3p + v2Fxpu2p + v3Fxpu1p)ä,

x8/3 =
−(GFxxu1u3 + G2Fxxu1u2 + G3Fxxu1u1)aä

−(GFxxu1u2 + G2Fxxu1u1)ȧ2

−(GFxpu3p + G2Fxpu2p + G3Fxpu1p)ä.
(29)

One can see that the structure of terms in (29) is very
similar to that in the perturbation formulae for a multi-
ple zero eigenvalue of a matrix dependent on parame-
ters [Seyranian and Mailybaev, 2004].
For zero eigenvalue of multiplicity k, the terms up to



order ε3 are

x1+j/k = a(j)uj+1,

f2+j/k =
j∑

a=1

a∑

b=1

vbFxxuaua−b+1a
(a)a(b)

+
j∑

a=1

vaFxpuj−a+1pa(a),

x2+j/k =
j∑

a=1

a∑

b=1

vbFxxuaua−b+1a
(a)a(b)

+
j∑

a=1

vaFxpuj−a+1pa(a),

j = 0, . . . , k − 1;

(30)

Higher order terms depend on third and higher order
derivatives of the function F.

4 Triple zero in vibrations of double pendulum
with follower force

Let us consider a double pendulum with two massless
rods of length l carrying point masses 2m and m, and
loaded by a follower force F at the end, Fig. 1. Visco-
elastic joints produce the linear force −Cφ̇ − Kφ,
where φ is the deflection angle at the joint (C > 0,
K ≥ 0). Let φ1 and φ2 be the angles between the rods
and vertical axis. Dimensionless equations of motion
of the double pendulum are

3φ̈1 + cos(φ2 − φ1)φ̈2

− sin(φ2 − φ1)φ̇2
2 + 2φ̇1 − φ̇2

+ k(2φ1 − φ2) + f sin(φ2 − φ1) = 0, (31)

φ̈2 + cos(φ2 − φ1)φ̈1

+ sin(φ2 − φ1)φ̇2
1 − φ̇1

+ φ̇2 + k(φ2 − φ1) = 0, (32)

where dimensionless parameters are

k =
Kτ2

ml2
, f =

Fτ2

ml
, (33)

and the derivative is taken with respect to the dimen-
sionless time t∗ = t/τ with the time scale τ = ml2/C.
The system (31), (32) can be transformed to the form
(1) with x = (x1, x2, x3, x4)T = (φ1, φ̇1, φ2, φ̇2)T

Figure 1. Double pendulum.

and p = (k, f), where F(q,p) = (F1, F2, F3, F4)T :

F1 = x2,

F2 = (f − 3k)x1/2− 3x2/2 + (2k − f)x3/2 + x4

+(k − f/3)x3
1 + (f − 11k/4)x2

1x3 − 3x2
1x4/4

+ x2
1x2 − x1x

2
2/2− 2x1x2x3 + (5k/2− f)x1x

2
3

+3x1x3x4/2− x1x
2
4/2 + x2

2x3/2 + x2x
2
3

+(f/3− 3k/4)x3
3 − 3x2

3x4/4 + x3x
2
4/2

+ O(‖x‖5),
F3 = x4,

F4 = (5k − f)x1/2 + 5x2/2 + (f − 4k)x3/2− 2x4

+(7f/12− 7k/4)x3
1 + (19k − 7f)x2

1x3/4
+5x2

1x4/4− 7x2
1x2/4 + 3x1x

2
2/2 + 7x1x2x3/2

+ (7f − 17k)x1x
2
3/4− 5x1x3x4/2 + x1x

2
4/2

− 3x2
2x3/2− 7x2x

2
3/4 + (5k/4− 7f/12)x3

3

+5x2
3x4/4− x3x

2
4/2 + O(‖x‖5).

(34)

First, consider the problem with the parameters p0 =
(k, f) = (0, 1/2) linearized near the trivial equilibrium
q = 0. The Jacobian matrix becomes

Fx =




0 1 0 0
1/4 −3/2 −1/4 1
0 0 0 1

−1/4 5/2 1/4 −2


 . (35)

This matrix possesses a triple zero eigenvalue with the
right generalized eigenvectors

[u1,u2,u3] =




1 0 0
0 1 0
1 −2 −12
0 1 −2


 , (36)



and left generalized eigenvectors




v3

v2

v1


 =

1
686




676 80 10 −60
35 406 −35 210
49 −49 −49 −49


 . (37)

Product of the matrices (37) and (36) gives the identity
matrix, which means that conditions (26) are satisfied.
The method described above gives the reduced equa-

tion

a(3) = β0a + β1ȧ + β2ä

− 1
7 ȧ3 − 57

49 ȧ2ä− 1732
343 ȧä2 − 1

7kaȧ2 + · · · ,
(38)

where g = f − 1/2 and

β0 = − 1
7k2 − 90

2401k3 + 4
343k2g,

β1 = − 2
7k − 82

2401k2 + 8
343kg + 14104

823543k3

+ 2032
117649k2g − 64

16807kg2,

β2 = − 45
49k + 2

7g − 3886
16807k2 + 344

2401kg − 8
343g2

− 95896
823543k3 + 88944

823543k2g − 4064
117649kg2 + 64

16807g3.
(39)

In (38), (39) all terms of order lower than ε5 are given.
The central manifold parameterized by a, ȧ, ä is given
up to ε3 terms by

x1 = (1 + 10
343k)a + ( 380

2401k − 20
343g)ȧ

+( 16040
16807k − 800

2401g)ä + · · · ,
x2 = (1 + 10

343k)ȧ + ( 380
2401k − 20

343g)ä + · · · ,
x3 = (1− 676

343k)a + (−2 + 1352
343 g − 5248

2401k)ȧ

+(−12 + 62592
2401 g − 214680

16807 k)ä + · · · ,
x4 = (1 + 500

343k)ȧ + (−2 + 21212
2401 k + 176

343g)ä + · · · .
(40)

Note that the linear part of equation (38) automati-
cally gives the miniversal deformation of the linearized
equations (31), (32) [Arnold, 1983; Mailybaev, 2001].
Using the Routh-Hurwitz stability criterion, we find the
following conditions for stability of the trivial equilib-
rium φ1 = φ2 = 0:

β0,1,2 < 0, β0 + β1β2 > 0. (41)

Fig. 2 shows stability domain in the parameter space
(k, f) given by formulae (41) with asymptotic relations
(39).
The normal form equation gives no nontrivial equilib-

ria a ≡ const 6= 0 near the bifurcation point, at least
up to the terms taken into account. This is supported
by the stability diagram, where the stability boundary
corresponds to two purely imaginary eigenvalues (Hopf
bifurcation). Small amplitude periodic solutions may
exist.

Figure 2. Stability domain of the trivial equilibrium.

5 Conclusion
In this paper, we presented a new method for find-

ing normal form equation and invariant manifold in the
case of multiple zero eigenvalue with a single Jordan
block. The method utilizes the concept of fractional
scale. This allows using a single scale parameter in
the normal form reduction for systems with multiple
variables and parameters. The use of fractional scales
substantially simplifies the procedure of system reduc-
tion. The presented approach establishes the relation
between the normal form theory and the multiple time-
scale methods in nonlinear equations, as well as the
methods of perturbation theory in linear algebra.
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