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Abstract— A multidimensional discrete phase control system .

with periodic vector nonlinearity is investigated. By means
of Lyapunov direct method and Yakubovich—Kalman theorem

certain estimates for the phase error are obtained. The results
are formulated as frequency-domain criteria.

I. INTRODUCTION

In this paper we consider a multidimensional discret
phase system with vector nonlinearity:

Alexander I. Shepeljavyi

Natalia V. Utina

ERROR OF DISCRETE SYSTEM

Let us suppose that

A

/goj(a) do <0 (j=1,..,1).

0

Tet aq;, az; be such numbers that

FREQUENCY¥DOMAIN ESTIMATES FOR THE PHASE

d .
z(n+1) = Az(n)+ B&(n), arj < %(0) <ay; forall o eR, 2
o(n+1) = o(n)+C*z(n) + RE(n), @
€n) = ¢lon), n=012,... whereas; <0 < as;.

Here A,B,C,R are real matrices of orde(m x m),
(mx1), (mx1), (Ix1) respectively and the symbol

is used for Hermitian conjugation. We suppose that the
pair (A, B) is controllable, the paiA,C) is observable
and all eigenvalues ofd lie inside the open unit cir-
cle. We suppose also that: R! = R! is a vector-valued
function with the propertyp(o) = (v1(01), ..., 01(0r)) for
o= (01,...,01) € R. We assume that every component
vi(o;) is A;-periodic, belongs taC!, has a finite number
of simple zeros orj0, A;). Let A = (Aq, ..., Ay).

Let us introduce several notatiofig=1,2,...,1):

Q;l) ={0; €[0,4;) : pj(o;) > 0},

Q;.Q) ={o0; €[0,4;) : ¢;(0;) <0},

Ly= [ |ej(o)ldo,
a®

217,
v = /soj(a)da, Rjzir_j_,;_a
J J

In this paper the subject of cycle—slipping for discrete g
phase systems is developed. This subject has already been

investigated in published works [1],[2],[3] for the case of y; =T — w

scalar nonlinear periodic functign(o) (I = 1). These works ug-l)(ae, k,w) = T i ;
contain a number of assertions which guarantee that (in a i J
case ofl = 1) r w+d" ey R;
3 (g0 bt 1) = vt Py
lo(n) — (0)] < kA, forall n=1,2,.., fy & W) = v + T ’

wherek is a positive integer. In this paper the results of [1]Where & = diag{e,,...,s,} is a real diagonal(l x [)-
[3] are extended to the case bf> 1. All the theorem of Matrix, w € R and k is a natural number. We shall also
this paper are obtained by means of Lyapunov direct methéed the following quadratic forms efe R™ and¢ € R
and Yakubovich—Kalman theorem [4]. All the results ar s # X . .
formulated as frequency-domain criteria, i.e. in terms of theg(z’g) = SOz ROFEEH (724 REe(C2 4 ).
transfer function of the linear part of system (1) O(2,8) = (Az + BE*H(Az + BE) — 2*Hz + F(z,€),

K(p)=C*(A-pE,) 'B—R (pecC), HereH = H* is a(m x m)-matrix ande = diag{e1, ..., },
n = diag{ni,...,m} , & = diag{ee, ..., %e;} are real diago-
nal (I x [)-matrices.
Theorem 1:Let there exist such diagonal matrices- 0,
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where E,, is an(m x m)-unit matrix.



(where the designatiofite A =
positive definite.
2) The inequalities

any [ & = 214 15 o,y 2 (0)H(0))])] >

(1/2)(A* 4+ A) is used) is

> [ ae]ug )(3e7mj,z*(0)Hz(0))r (4)

G=1,2,..1i=1,2)

with Qpj = Qj if x; > 0, and Qpj = Q1 if x; < 0 are
true. Here H = H* is just such a(m x m)-matrix that
®(2,£) <0,Vz € R™, € € RL

Then for any solutior(z(n), o(n)) of (1) with initial data
(2(0),0(0)) the estimates

|0j(n) =0 (0)] <m;A;(j =1,2,....0)

are true for all naturah.

®)

Remark 1Notice that of the hypothesis 1) of the theorem
is fulfilled for certain matricese, € > 0, n > 0 then accord-
ing to Yakubovich—-Kalman frequency—domain theorem [4]
there exists a matrixd = H*, which guarantees that the

inequality ®(z,¢) < 0 is valid for all z € R™, ¢ € RL

> <ae,uj (e, k;j, W(0 )+50))2 (G=1,.,i=1,2) (7)

are true.
Let us define functions
F(0) = pi(0) — (o)), (j=1,....15i=1,2). (8)

It follows from [2] that the following estimates are valid:

u

B (@) (u—a)+ L (1 + 1) (=) /F()( Jdo <

a

< FO@—a)+ L0+ -0 ©)

In formula (8) and (9) we used the designation
il = (e, ky, W(0) +20), (j=1,.,l0=1,2).
Let us introduce Lyapunov sequences
l aj(n)
F/(o)do, n=0,1,2,..,
o;(0)

wherei; is equal either td or 2 and

The proof of theorem 1 is base on a special Lyapunov-type

lemma with Lyapunov functions of the form "a quadratic gl
form plus integral of a nonlinearity”. The nonlinearity in Lya- :
punov function is conctructed by Bakaev-Guzh technique [5]
intended specially for phase control systems. :

Let sequences(n),...,o;(n) andW(n) > 0 be defined. K

Letp; (o) (7=1,...,0) beAj-periodic functions with all the Their increments are as follows:
properties described in this paper.

Lemma 1:Suppose there exist such
€e>0, n>0, #0 and naturalm; (j=1,...,1) and
functions ¢;(¢), o;(n) (j=1,...,1), W(n) >0 that the
following hypotheses are fulfilled:

1) for all integern > 0 the inequality

)+ Z{aejgo

telo(n+1) —o(n)]* +n¢*(a(n))} <0

W(n + on+1)—oln)+

is valid;
2) functlonsu( )(ae, k,w) satisfy inequalities

X0 7
ang e = Z52 (14 |l (o, g, WO)))] >

; 2
> [Hejuz(_l)(ge’mj,W(O))} ,oi=1,..1i=1,2

whereay; are defined in theorem 1.

Then for all naturaln the estimates
loj(n) —o;(0)] <myA; (G =1,....0) (6)
are valid.
Proof: It follows from the requirement 2) that for a
certaingy > 0 and all integerk; > m; inequalities
X0, i
any (25 = Z52 (1 + [0 (e, kg, W (0) + 20)])

numbers

Vin41)—

+Zaej

Let us consider every summand in the right part of (10)
separately. According to hypothesis 1) of the lemma we have

Vin) =
oj(n+1)
=Wh+1) - F"(0)do. (10)

aj(n)

l
W(n+1)-=W(n) < —Z{aejwj(aj(n))[aj(nﬂ)
+ejloj(n+1) — o;(n)] + 093 (05(n))}

To estimate the other summand we use the formula (9). As
a result we have

—0;j(n)]

l
Vi +1) - vim) < - P,



Note that

(5) X004
P = —{(g; — 5~

(L + 657 )) (o5 (n+ 1) — 0(n)) >+

2

(o (n+ 1) — o (n) [ (0 (n) — FL (o (n)]+

+ L [pi(05(n) — F (o (n)2 )+

A(ey — Zagor (1 4 |u{)))

2
&5

i AN —ngj)ajn 2_
Vi, — g oy P T BT
—n;p3(0;(n)).
So
, 2
P < : o3 (03 (m))—

Aej — =52 (11 11" ))

—F (o5 (n))]? — 03 (0(n)) =
_ 38?(”?”)2 . _ e
Aley — =51+ 1)

and

Futher as it follows from [1]
0;(0)+B1;

l
(05 + Lo )(W(0) + 0 + D254 leej| Ry
(v +T5))
+238j(rj70j —Tov5)
v+ 1

)

where
0 (0)+B1;

@j(o)do = vp; — Toj,

In virtue of hypothesis 2) of the lemma one can affirm that

VD(n4+1)—vDn) <o. (11)
Hence
v (n) < V(I)(O) (n € N)
or
VD (n) < W(0). (12)

Suppose now that for certaimyg € N several esti-

mates (6) are false. Suppose there exits such [1,!]
(i=1,2,...k;k <) that

|UQi (no) —Og, (O)| > inAQi'
Let for (: =1,2,...,k; with k; < k)

Ogq; (no) =0¢; (O) + ZQiAQi +/61Q1:’/61Qi € [0’ Afli)? l%‘ 2 Mg,
(14)

(13)

and fori=k+1+1,....k

Oq; (no) =0y, (0) - ZQiAQi - ﬁquﬂ /62% € [0, A%‘)? lqi > Mg,
(15)

Note that if j does not coincide witlyy, ..., g, we either

O'j(no) = O'j(O) —lej +ﬂ1jaﬁlj S [O,A),O S lj < m;

(16)
or
O'j(?’L()) = (Tj(O) — lej *623‘,52]‘ S [O,A),O < lj < my;
(7)

Let us now consideV () (ng) and choose; = 1 for those;

for which formulae (14) or (16) are true ang= 2 for those
j for which formulae (15) or (17) take place. Further we

choosek; = [; if formulae (14) or (15) are true arig = m;
if formulae (16) or (17) take place.

Suppose formula (14) or (16) is true. Then
F (o) = F{V(0) = ()~ 1" (e, 1y, W(0) +0) p(0)],

J

0;(0)
0;(0)+B1;
lgj(o)|do =05 +Toj (705 T0; = 0).
0;(0)
If I; > m; (formula (14)) we have
A, .
- / F (o) do = W(0) + 20+ 3 Jeey R,
0 j=1
and if 0 > I; < m; (formula (16)) we have
m; =

A
J 1
L.
ity [ F{(o)do = (W<o>+eo+2|aejmj
0

(18)

) |

Analogous by if formula (15) or formula (17) is true then

Gy — (2
F;7 (o) = F;7 (o)

and
oj(no)
e Fj(2)(c7) do =
o;(0)
Aj 05 (0)—B2;
= —a;l; / FJ(2)(0) do + e, FJ(2)(O') do
0 a;(0)
Note that
05 (0)—B2;
% FJ-(Q) (0)do
o;(0)

_ (O + 1) (W(0) + 20 + Sy [ R,
(v + 1))




225 (Umy — Tay) (19) s valid for all z € R™, ¢ € Rl iff for all p € C,[p| = 1 the

v+ 1 ’ inequality
where " F(—(A—pE,)"'Bg€) <0 (21)
’ is true. We have
QDj(O')dO':’}/ljfrlj, N L
0,(0)~B2) F(=(A=pEn)"BE§) =
o,(0) = Re{¢" (" (pEm — A) ' BE + RE) + £ né+
lpj(o)ldo =15 +T1; (715,15 > 0). (" (pEm—A) "' BE+RE) e (c* (pEy — A) ' BE+ RE)} =
73(0) =2 = Re{—aK(p) +n + K(p)"eK (p)}E[*.
It 1j = m; (formula (15)) then By virtue of hypothesis 1) of the theorem the inequality (21)
Aj is correct. Thus we have proved the existance of matrix

l
. / FO (o) do = W(0) + 20+ 3 lees| R; H = H* with which (20) is correct. _ o
Moreover as all eigenvalues of matrikare situated inside
the unit circle matrixH is positive define. Indeed

O(2,0) = (A2)*H(Az) — 2"Hz + 2" CeC” .

A
J l
l .
—ae;l /Fj(z)(a) do = mi (W(O) o+ Z |aej|Rj> ~ Since®(z,0) < 0 we have
0 ! Z(A*HA— H)z < —2°CeC*z < —&|C*2*,  (22)

0 j=1
and if0 > I; < m; (formula (17)) then

Jj=1

As a result whereé = min{ey, ea, ..., e . Hence and from the fact that
o ! (A, C) is observable it follows that > 0 [4].
Vi (no) 2 W(no) + (W(0) + o + Z || )+ We choose nowiW(n) = z*(n)Hz(n). It satisfies all
=1 hypotheses of lemma 1. Really on the one h&¥i¢h) > 0
k1 } for all n > 0. On the other hand by virtue of system (1) we
+> 245 (Tj70; — Lojvs)+ have
=~ v +Fj J 105 7 1J l
E o W(n+1)=W(n)+Y {2jp;(0;(n))(0;(n+1) —0;(n))+
> - +JF4(F1ﬂj —Tjm)- i=1
— J J
Sincel Jdkfﬁl +ej(oj(n+1) = 0;(n))* + ;3 (05(n)} =
incek > 1 and forr =0,1 *
- = (Az(n) + By(o(n)))"H(Az(n) + Be(a(n)))—
2a;(—1)"
il + = T = D) 2 —2* (W) H(n) + 9" (0(m)ae(C2(n) + Rip(o () +
J J
22, | +(C2(n) + Re(a(n)))"e(C*2(n) + Rp(o(n)))+
2 (L = Tymg = Leys) 210, i
v+ ¢ (0(n))ne(a(n)) = ®(z(n), p(a(n))).
we obtain than Since ®(z(n), p(o(n))) < 0 the hypothesis 1) of lemma 1
V(I)(no) > W (no) + W(0) + &0 is valid. Hypgthgsis 2) of Iemmg 1 and hypothesis 2) .of
o theorem 1 coincide. Thus the estimate (6) is true. It coincide
and in virtue of (12) with the conclusion of theorem 1. Theorem 1 is proves.
W(0) > W(no) + W(0) + <o [1l. EXTENSION OF FREQUENCYDOMAIN CRITEION FOR
Hence THE PHASE ERROR
W(ng) < —e¢ (g0 > 0) Let us extend the state space of system (1) [5], [6]. For
which contradict the fact thdf’(n) > 0. Lemma is proved. the purpose we introduce the notations
= NI p_ ‘ A B I H 0
Proof: (theorem 1)Let us consider the quadratic e(o) ||’ 0 E | E ||’

form ®(z,&) (= € R™, ¢ € RY). First of all we shell prove Ci =||C* R, &(n) =glo(n+1)) —p(o(n)). Here P
that there exists a matril = H* such that the inequality s g ((;m +1) x (m +1)) - matrix, L is a ((m +1) x 1) -
®(z,€) <0 is valid for all 2 € R™, £ € R Let F(2,6)  matrix, C; is a (I x (m + 1)) - matrix, y is a (m -+ [)-vector

and®(z, €) be the Hermitian extensions of the forisand  ande, is al-vector. Then system (L) can be written as follows
® to complex arguments. According to Yakubovich—Kalman
frequency-domain theorem [4] the inequality y(n+1) Py(n) + L& (n),
- on+1) = o(n)+ Ciy(n), n=0,1,2,...
P(2,£) <0 (20) (23)



Consider the forms of ¢ R™* and¢; € R/
®1(y,61) = (Py+ L&) H(Py + L&) —y " Hy + Fi(y, &),
Fi(y,&) =y LeCly + y" CieCly + y"LnL y+
+H(A1CTy — &)1 (& — A207Y),

where A; = diag{ail,aig, -"7ail} (Z = 1,2), H=H*isa
((m+1) x (m+1)) - matrix, ande, n, &, 7 are real diagonal

matrices with varied elements.

Remark 2[5], [6] If (A,b) is controllable then(P, L) is

Remark 4.Suppose all the hypotheses of lemma 2 are
fulfilled. Then we can consider the sequence

W +1(n) = y*(n)Hiy(n),

wherey(n) is a solution of system (23). As all eigenvalues
of matrix A are situated inside the unit circle and func-
tions ¢;(o;) (j =1,...,1) are bounded we can affirm that
ly(n)| < const for all n > 0. So the quadratic forniV; (n)
is bounded for all > 0.

Theorem 2:Let all eigenvalues of matrix4d be situated
inside the unit circle. Let paifA, B) is controllable and

controllable. : . . :
pair (A, C) is observable. Suppose there exist such diagonal
Remark 3[5], [6] If p # 1 we have matricese > 0, 7 > 0, n > 0, & and such positive integers
_ 1 my,me, ...,my that the following hypotheses hold:
* _ 1 - - 1 29 9 1
Cr(P—pE)" L p— 1K(p)’ (24) 1) The frequency-domain inequality (26) is valid.
1 2) The inequalities
L*(P—pE)™'L = — E,. (25) 0 : .
p—1 g [ e = ZEOL (14 (e, g,y (0) Hag(0) = 7))] >
Lemma 2:Suppose all eigenvalues of matrik are sit- _ 9
uated inside the unit circle. Suppose there exist such di- N [aeju;”(ae,mj,y*(O)Hly(o) —r)} (29)

agonal matrices >0, n,>0, 7 >0 and & that for all
p € C, |p| =1 the frequency-domain inequality

Re{aeK (p)+(AL K (p)+(p—1) E)*r((p—1) B+ A2 K (p)) }—
—K(p)'eK(p) —n >0, (26)

is valid. Then there exist sudttm + 1) x (m + 1)) - matrix
H, = H; that

Dy(y,£) <0 ¥V ye R & e R 27)
Proof: Let Fi(y,& ) and ®(y,&;) be the Hermitian
extensions of the formg); and ®; to complex arguments.

G=1,2,..1i=1,2)

are valid, whereH; = Hy is such a((m+1) x (m +1))-
matrix that®, (y,&;) <0 (y € R™* ¢ € RY) and

< i *(n .
r< _inf  yi(n)Hiyn)

Then for solution(z(n),o(n)) of (1) with initial data
(2(0),0(0)) the estimates (5) are true for all natural

Proof. The proof is based on lemma 1. Let us consider

the sequence

According to Yakubovich-Kalman frequency-domain theo- W(n) =y"(n)Hiy(n) —r.

rem [4] the inequalityil(y,fl) < 0isvalid for ally € C™,
& € C! for certain matrixH, = H; iff

Fy(—(P—pE)"'L&, &) < 0. (28)

We have )
Fy(—(P—pE)"'L&, &) =

= Re{&I[L*((P — pE) )" LeeCY (P — pE) ™' L+
+L*((P — pE)~")*C1eC(P — pE) 'L+
+L*((P — pE) " )*LyL*(P — pE)'L—
~(A G (P—pE) ™) L+E) 1(BACY (P—pE) "' L)]&1 }.
Let us use (24) and (25). Then
Fi(=(P—pE) "L&y, &) =

=~ iRl ()~ K () eK ()t

+(A1K(p) + (p — 1) Ey)*r((p — 1) By + A2 K (p)) }a.

Note thatiW (n) > 0 for all n > 0. Let us prove this sequence

satisfies all the hypotheses of lemma 1. Consider
zn)=W(n+1)—W(n)+
l
+ Z{aej%(aj(n))[% (n+1) —o;(n)]+
+ejloj(n+1) — a;(n)]* + 0593 (0;(n))}
and transform it in virtue of system (1).
z(n) = (Py(n) + L& (n))" Hi(Py()n + L& (n))—
—y"(n)Hiy(n) + y* (n) LeeCry(n) + y*(n)C1eCry(n)+
+y" (n)LnL*y(n) = ®1(y(n), &1 (n))—
—(A1C1y(n) — &1(n))"7(&1(n) — A2C7y(n)).

Futher
A1CTy(n) — &1(n) =

= A1(C"x(n) + Rp(o(n))) — p(o(n + 1)) + ¢(a(n)) =

They in (26) is valid then (27) is valid too. So there exist such _ Ai(o(n+1) — o(n) — (p(o(n + 1)) — p(o(n))).

matrix H; = H; that inequality (27) is fulfilled. Lemma 2
is proved. ]

1(n) — A2CTy(n) =



= (plo(n+1)) = p(a(n))) = Az(a(n + 1) — a(n)). oj(n) — &jasn — +oo (j=1,2,...,1),  (33)

Let us take into account that p;j(oj(n)) — 0 asn — +oo, (34)
@j(ai(n+1)) —j(a;(n) = ¢i(o;)(oj(n+1)) = (o(n)), wherey;(s;) =0, and
whereo’, lies betweer(o;(n) ando;(n + 1). Then in virtue loj(0) — 65| < m;A,. (35)
of (2) we have Proof: Inequalities (31) imply the inequalities
* * * 2
(A1CTy(n) — &1 (n))*r(&1(n) — A2CTy(n)) = dny |y — 0000 (4 L=\ < e, Lj—
! 2 L+ Ui+ (36)
- (" (")) 2 (0 1)) — 2>0.
;T](% (7)) (o5 (n+ 1)) = (o(n))” 2 Then all the hypotheses of theorem 5.4.1 [5] are fulfilled.
According to this theorem the limit relations (32), (34), (33)
As a result take place.
z(n) < ®1(y(n), &(n)). It follows from hypothesis 2’) that for a certaigy > 0

In virtue of hypothesis 1) of theorem 2 we can establishe bjpequalities
lemma 2 that:(n) < 0. This fact is equivalent to hypothesis , [ = @& (3) .
1) of lemma 1. Hypothesis 2) of theorem 2 coincide with K [EJ 2 (L g (e, g |y (0) Hy(0) +EOD|)} -

hypothesis 2) of lemma 1. So estimates (6) are valid, and _ 2 37
theorem 2 is proved. " > [ el (e, my Ly (0) iy (0) + <o)

Let as now reject the requirement Bf (n) > 0. . )

Lemma 3:Let a1 (n), ...,01(n), W(n) > 0 be sequences (G=12.,,i=12)
and ¢;(0) (j=1,...,1) be Aj-periodic functions which gzre valid. Let
have all the properties of nonlinear functions of system (1).
Suppose there exist such numbers> 0, 7; > 0, a&; # 0 W(n) = y*(n)Hiy(n) + co.
j= 1,_2, ...,. and natural num_bermJ Jj=12,.,lthatthe gjnce (32) and (33) are true, the sequeficén) becomes
following hypotheses are fulfilled: positive forn > Ny, where N, is sufficientli great. Further
1) hypothesis 1) of lemma 1; we can repeat the proof of theorem 2 up to the moment when
2) inequalities the correctness of hypothesis 1) of lemma 1 is established.

. &% ©) ‘ The latter coincides with hypothesis 1) of lemma 3. The
41 { K 2 (L {5 (e, g, W O)DD] > hypotheses of lemma 3 and theorem 3 coincide. So according

lemma 3 estimate (6) is true. In virtue of (6) and (33)

. 2
(2) i - . . .
> [ @iy (2, |W(0)|)} (G=12..0li=12) estimates (35) is true. Thus theorem 3 is proved. ®

are true.
Then for those naturah for which W (n) > 0 the esti- , o _ _
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