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Abstract
The time reversal of a completely-positive, nonequi-

librium discrete-time quantum Markov evolution is de-
rived via a suitable adjointness relation. Space-time
harmonic processes are introduced for the forward and
reverse-time transition mechanisms, and their role for
relative entropy dynamics is discussed.
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1 Introduction
In this paper, we develop a mathematical framework

for discrete-time Markovian processes originating from
Nelson’s kinematics of diffusion processes [Nelson,
1958; Nelson, 1967]. Time-reversal for Markovian
evolutions entails the Lagrange adjoint with respect to
the (semi-definite) inner product induced by the flow of
probability distributions. We show that this also holds
for finite-dimensional, discrete time quantum Markov
evolutions. Hence, the time-reversal of a discrete-time
quantum Markov process emerges from a structure of
kinematical nature that is common to all Markovian
equilibrium and non-equilibrium evolutions. We dis-
cuss the structure Nelson’s kinematics [Nelson, 1967]
for discrete-time processes, and we apply these ideas
to derive the reverse-time transition mechanism of a
Markov chain via a certain adjointness relation on
space-time. This is needed as a starting point for deriv-
ing the time reversal in the quantum case. Time reversal
of Markov transitions is deeply involved in the solution
of certain maximum entropy problems on path space
[Pavon and Ticozzi, 2008], and in deriving a strong
form of the H-theorem for Markov channels we illus-
trate in this paper. In proving this, we also show that a
key role is played by a suitable class of quantum space-
time harmonic processes, that are related to martingale
processes. This paper is a shortened version of [Ticozzi

and Pavon, 2008], to which we refer for the proofs and
additional discussions.

2 Elements of Nelson’s kinematics for discrete-
time stochastic processes

Let I = [t0, t1] be a discrete-time interval with−∞ <
t0 < t1 < ∞. Let (Ω,F ,P) be a probability space
and let {F−t }, t ∈ I , be a nondecreasing family of σ-
algebras of events (filtration) representing a flow of in-
formation. LetX : I → L2(Ω,F ,P) be a second order
stochastic process such thatX(t) is {F−t }-measurable,
for all t ∈ I . Then the conditional forward difference
of X is defined by

∆+X(t) = E(X(t+ 1)−X(t)|F−t ).

Consider now a nonincreasing family of σ-algebras of
events {F+

t }, t ∈ I , and suppose that X(t) is {F+
t }-

measurable, ∀t ∈ I . Then the conditional backward
diference of X is defined by

∆−X(t) = E(X(t− 1)−X(t)|F+
t ).

Observe that both ∆+X(t),∆−X(t) ∈ L2(Ω,F ,P),
∀t. A process satisfying ∆+X(t) = 0,∀t ∈ I is called
a {F−t }-martingale if ∆+X(t) = 0,∀t ∈ I , namely if

E(X(t+ 1)|F−t ) = X(t), a.s. (1)

It is called a reverse-time, {F+
t }-martingale if

∆−X(t) = 0,∀t ∈ I , namely if

E(X(t− 1)|F+
t ) = X(t), a.s. (2)

If ∆+X(t) ≥ 0 or ∆−X(t) ≥ 0, ∀t ∈ I then X(t)
is called a {F+

t } submartingale and a {F−t } reverse-
time submartingale, respectively. We can say that a



martingale is conditionally constant and a submartin-
gale is conditionally increasing. Notice that, by iter-
ated conditioning, if X(t), t ∈ I is a {F−t }-martingale
and Y (t), t ∈ I is a {F−t }-submartingale, then

EX(s) = EX(t), ∀ s, t ∈ I,
EY (s) ≤ EX(t), ∀ s < t ∈ I. (3)

Similarly, for reverse time (sub)martingales.
Consider now the family H(t0, t1) of second order

stochastic processes X such that X(t) is simultane-
ously {F−t }-measurable and {F+

t }-measurable, ∀t ∈
I . We then have the discrete-time analogue of Nelson’s
integration by parts formula [Nelson, 1967, p.80].

Theorem 2.1. Let X,Y ∈ H(t0, t1). Then

E (X(t1)Y (t1)−X(t0)Y (t0))

=
t1−1∑
t0

E
(
∆+X(t)Y (t)−X(t+ 1)∆−Y (t+ 1)

)
.

(4)

3 Kinematics of Markov chains and space-time
harmonic processes

Consider a Markov chain {X(t), t ∈ Z} taking val-
ues in the finite set X = {x1, x2, . . . , xn} which
we identify from here on with the set of the indexes
{1, 2, . . . , n}. We denote by πt the probability dis-
tribution of X(t) over X . In the following, πt is al-
ways intended as a column vector, with i-th compo-
nent πt(i) = P(X(t) = i). Let P (t) denote the tran-
sition matrix with elements pij(t) = P(X(t + 1) =
j|X(t) = i), i, j = 1, . . . , n. The matrix P (t) is
stochastic, namely

pij(t) ≥ 0,∀i,∀j,
∑
j

pij(t) = 1,∀i.

Let us agree that troughout the paper † indicates ad-
joint with respect to the natural inner product. Hence,
in the case of matrices, it denotes transposition and,
in the complex case below, transposition plus conjuga-
tion. The evolution is then given by the forward equa-
tion

πt+1 = P †(t)πt. (5)

When P does not depend on time, the chain is called
time-homogeneous. A distribution π̄ is called station-
ary for the time-homogeneous Markov chain X with
transition matrix P if it satisfies

π̄ = P †π̄. (6)

For x and y n-dimensional column vectors, we define
the semi-definite form:

〈x, y〉πt
= x†Dπt

y, (7)

which is an inner product if Dπ =
diag (πt(1), πt(2), . . . , πt(n)) is positive definite.
It represents the expectation of the random variable Z
defined on (X , πt) by Z(i) = xiyi. In what follows,
whenever a matrix M is not invertible, M−1 is to be
understood as the generalized (Moore-Penrose) inverse
M#, cf. [Horn and Johnson, 1990].

3.1 Space-time inner product and time-reversal
Let F−t , t ∈ Z be the σ-algebra generated by
{X(s), s ≤ t} and F+

t to be the σ-algebra generated
by {X(s), s ≥ t}. Let f : Z × X → R. Let us com-
pute the forward difference ∆+f(t,X(t)) with respect
to the family {F−t }, t ≥ 0, following Appendix 2. We
have that

∆+f(t,X(t))|X(t)=i

= E(f(t+ 1, X(t+ 1))− f(t,X(t))|X(t) = i)

=
∑
j

f(t+ 1, j)pij(t)− f(t, i). (8)

Henceforth, we shall denote by ft and ∆+ft the
column vectors with i-th component f(t, i) and
∆+f(t,X(t))|X(t)=i

, respectively. We can then rewrite
(8) in the compact form

∆+ft = P (t)ft+1 − ft. (9)

Consider now the vector space K = {f : Z × X →
R | ∃ t0, t1, t0 ≤ t1 s. t. f(t, i) = 0,∀i, t /∈ [t0, t1]},
namely the set of functions with finite support. For
f, g ∈ K, we define the semi-definite space-time inner
product as

〈f, g〉π =
∞∑

t=−∞
〈ft, gt〉πt =

∞∑
t=−∞

f†tDπtgt,

=
∞∑

t=−∞
E(f(t,X(t)) g(t,X(t))), (10)

where π ∼ {πt, t ∈ Z} denotes the family of the
Markov chain distributions. We then have the follow-
ing Corollary to the “integration by parts” formula of
Theorem 2.1.

Corollary 3.1. Let f, g ∈ K. Then

〈∆+f, g〉π = 〈f,∆−g〉π (11)



In view of relation (11), we call ∆− a 〈·, ·〉π-adjoint of
∆+. Hence, the two conditional differences are adjoint
with respect to the semi-definite space-time inner prod-
uct. On the other hand, by using (9) and some straight-
forward calculations, we get

∞∑
t=−∞

E(∆+f(t,X(t)) g(t,X(t))) =

=
∞∑

t=−∞
〈ft+1, D

−1
πt+1

P †(t)Dπtgt − gt+1〉πt+1

Let πt(i) > 0 for all t, i. In this case, (10) is an in-
ner product and the corresponding adjoint is unique.
We conclude that ∆−gt+1 = D−1

πt+1
P †(t)Dπtgt −

gt+1. More explicitly, defining the matrices Q(t) =
D−1
πt+1

P †(t)Dπt
, we have that (component-wise):

∆−g(t+ 1, X(t+ 1))|X(t+1)=j

= E(g(t,X(t)− g(t+ 1, X(t+ 1))|X(t+ 1) = j)

=
∑
i

g(t, i)qji(t)− g(t+ 1, j). (12)

Hence, Q(t) is simply the matrix of the reverse-time
transition probabilities.*.
Two remarks are in order: (i) The backward transi-

tions are time-dependent even when the forward are
not. (ii) When πt+1(j) = 0, qji(t) may be defined ar-
bitrarily to be any number between zero and one with-
out actually affecting relation (13), provided it satis-
fies the normalization condition

∑
i qji(t) = 1. Notice

then that (12) leads to the correct form of the time-
reversal even if the distributions {πt} are only non-
negative. The derivation of Q using the ∆− operator
permits to see that the reverse time transition mecha-
nism may be viewed as a space-time adjoint to the for-
ward one with respect to the flow of probability distri-
butions {πt, t ∈ Z}. The space-time adjointness rela-
tion (11) for Markov chains admits an equivalent, com-
pact formulation.

Proposition 3.1. The space-time adjointness relation
(11) holds if and only if the two-time relation

〈P (t)x, y〉πt
= 〈x,Q(t)y〉πt+1 , x, y ∈ Rn, (14)

is satisfied at any t.

Relation (14) will serve as a useful guideline to de-
rive the reverse-time transition mechanism for quantum
channels in Section 4, since in that setting we cannot
generally relay on conditional probabilities as in (13).

∗Of course, Q can be obtained immediately by requiring that
the two-time probabilities generated by the forward and backward
Markov chains are the same:

P(X(t) = i,X(t+ 1) = j) = pij(t)πt(i) = qjiπt+1(j). (13)

This yields immediately qji(t) = pij(t)
πt(i)
πt+1(j)

.

4 Time-reversal for quantum Markov channels
Consider an n-level quantum system with associated

Hilbert space H isomorphic to Cn. In its standard sta-
tistical description, the role of probability densities is
played by density operators, namely by positive, unit-
trace matrices ρ ∈ D(H). The role of real random vari-
ables is taken by Hermitian operators X ∈ O(H) rep-
resenting obervables. Expectations are computed via
the trace functional, Eρ(X) = trace(ρX), and the clas-
sical setting may be recovered considering all diagonal
matrices. Any linear, Trace Preserving and Completely
Positive (TPCP) dynamical map E† acting on density
operators can be represented by a Kraus operator-sum
[Kraus, 1983], i.e.:

ρt+1 = E†(ρt) =
∑
j

MjρtM
†
j ,

∑
j

M†jMj = I.

Following a quite standard quantum information termi-
nology, we refer to linear, completely-positive trace-
non-increasing Kraus maps as quantum operations. For
observables, the dual dynamics is given by the identity-
preserving quantum operation

E(X) =
∑
j

M†jXMj . (15)

In the remaining of the paper, we consider the discrete-
time quantum Markov evolutions associated to an ini-
tial density matrix ρ0 and a sequence of TPCP maps
{E†t }t≥0.
In order to find the time-reversal of a given Marko-

vian evolution, rewrite the probability-weighted in-
ner product of the classical case (7) as 〈x, y〉π =
trace(DxDπDy). Notice that, if we simply drop com-
mutativity, for two observables X,Y and a density
matrix ρ, we would obtain 〈X,Y 〉ρ = trace(XρY ).
This functional is not satisfactory to our scopes,
since in general it is neither real nor symmetric,
i.e. trace(Y ρX) 6= trace(XρY ). It is then conve-
nient to rewrite (7), by using the fact that all matri-
ces commute, in the symmetrized form: 〈x, y〉π =

trace(D
1
2
xD

1
2
πDyD

1
2
πD

1
2
x ). We shall show that this form

of the inner product leads to the correct reverse-time
quantum Markov operation. Allowing for a general
density operator ρ and observables X,Y , we thus de-
fine:

〈X,Y 〉ρ = trace(X
1
2 ρ

1
2Y ρ

1
2X

1
2 ).

This is a symmetric, real, semi-definite sesquilinear
form on Hermitian operators.
By analogy with the classical case, we then define

the quantum operation RE,ρt
as the space-time {ρt}-

adjoint of a quantum operation E using the quantum
version of (14):

〈E(X), Y 〉ρt = 〈X,RE,ρt(Y )〉ρt+1 .



Let us assume for now that ρt+1 is full-rank. An ex-
plicit Kraus representation is then obtained as follows:

〈E(X), Y 〉ρt =
∑
j

trace(M†jXMjρ
1
2
t Y ρ

1
2
t )

=
∑
j

trace(Xρ
1
2
t+1ρ

− 1
2

t+1Mjρ
1
2
t Y ρ

1
2
t M

†
j ρ
− 1

2
t+1ρ

1
2
t+1)

=
∑
j

trace(Xρ
1
2
t+1R

†
j(E , ρt)Y Rj(E , ρt)ρ

1
2
t+1)

= 〈X,RE,ρt
(Y )〉ρt+1 ,

where RE,ρt admits an operator-sum representation
with Kraus operators

Rj(E , ρt) = ρ
− 1

2
t+1Mjρ

1
2
t . (16)

Notice that the second equality is non-trivial in the
case when ρt+1 is not full-rank and inverses are re-
placed by the Moore-Penrose pseudoinverse (the latter
replacement will be tacitly assumed in the rest of the
paper). For any matrix M , the support of M , denoted
supp(M), is the orthogonal complement of ker(M).
The following Lemma ensures that the same derivation
applies to the general case.

Lemma 4.1. Let ρt+1 =
∑
jMjρtM

†
j . Let Πρt+1

denote the orthogonal projection onto the support of
ρt+1. Then, for any normal matrix Y :

Πρt+1

∑
j

Mjρ
1
2
t Y ρ

1
2
t M

†
j

Πρt+1 =
∑
j

Mjρ
1
2
t Y ρ

1
2
t M

†
j .

The proof can be found in [Ticozzi and Pavon, 2008].
It is now natural to define a transformation between
Kraus operators. Let E† be a quantum operation rep-
resented by Kraus operators {Fk}. For any ρ, define
the map Tρ from quantum operations to quantum oper-
ations

Tρ : E† 7→ Tρ(E†), (17)

where Tρ(E†) has Kraus operators {ρ 1
2F †k (E(ρ))−

1
2 }.

The results of [Barnum and Knill, 2002] show that the
action of Tρ is independent of the particular Kraus rep-
resentation of E†. With this definition, we have that
Tρt(E†) = R†E,ρt

.
We are now in a position to prove the main result

of this section, which establishes the role of RE,ρt
(·)

as the quantum time-reversal of the TPCP map E†.
Augmenting a Kraus map E with Kraus operators
{Mk}k=1,...,m to a TPCP map means adding a finite
number p of Kraus operators {Mk}k=m+1,...,m+p so
that

∑
kM

†
kMk = I.

Theorem 4.2 (Time Reversal of TPCP maps). Let
E† be a TPCP map. If ρt+1 = E†(ρt), then for any
ρt ∈ D(H), R†E,ρt

= Tρt(E†) defined as in (16) is the
time-reversal of E† for ρt, that is, it satisfies both:

ρt = R†E,ρt
(ρt+1) (18)

Tρt+1(R†E,ρt
)(σt) = E†(σt), (19)

for all σt ∈ D(H) such that supp(σt) ⊆ supp(ρt).
Morover, it can be augmented to be TPCP without af-
fecting property (18)-(19).

Remark: Property (19) ensure us that among all quan-
tum operations mapping ρt+1 back to ρt, R†E,ρt

is the
natural time-reversal of E† with respect to ρt. In fact,
notice that if ρt is full rank, (19) implies that Tρt+1 ◦Tρt

is the the identity map on quantum operations. That
is, as one would expect, the time reversal of the time-
reversal is the original forward map. While this may
seem obvious, notice that property (18) alone is sat-
isfied by any quantum operation of the form R̃† =
Tρt

(F†), with F† any TPCP map. While studying
quantum error correction problems, the same R†E,ρ(·)
has been suggested by Barnum and Knill as a near-
optimal correction operator [Barnum and Knill, 2002]
in the full rank case: A more complete discussion on
this and other approaches to the time-reversal is given
in [Ticozzi and Pavon, 2008].

5 Quantum space-time harmonic processes
While in the framework of quantum probability rigor-

ous extensions of conditional expectations and martin-
gale processes are available for quite some time [Take-
saki, 1972; Accardi, Frigerio and Lewis 1982], we
show here that some interesting results on entropy dy-
namics can be derived avoiding most of the related
technical machinery. This can be accomplished by in-
troducing a quantum version of space-time harmonic
functions. Consider a reference quantum Markov evo-
lution on a finite time interval, generated by an ini-
tial density matrix ρ0 and a sequence of TPCP maps
{E†t }t∈[0,T−1].

Definition 5.1 (Quantum space-time harmonic process).
A sequence of Hermitian operators {Yt}t∈[0,T−1] is
said to be space-time harmonic with respect to the
family of identity-preserving maps {Et}t∈[0,T−1] if:

Yt = Et(Yt+1). (20)

In analogy with the classical case, {Yt}t∈[0,T−1] is said
to be space-time harmonic in reverse-time with respect
to the family {RET ,ρt} if:

Yt+1 = REt,ρt
(Yt). (21)



The sequence is called space time subharmonic if
Yt ≤ Et(Yt+1), where we are referring to the natu-
ral partial order between Hermitian matrices. In the
classical case, space time harmonic functions gener-
ate changes of measure through multiplicative func-
tional transformations of the transition mechanism. A
similar fact holds in the quantum case. Let Yt be
space time harmonic for Et ∼ {Ek(t)†} and let Nt
be any choice of operator such that Yt = NtN

†
t . As-

sume for simplicity Yt to be full-rank at any t. Then
Ft ∼ {N−1

t Ek(t)†Nt+1} is an identity-preserving
quantum operation. In fact, by using (20), we have
Ft(I) =

∑
kN
−1
t Ek(t)†Nt+1N

†
t+1Ek(t)N−†t = I.

Thus its adjoint is a TPCP map. An analogous result
holds for reverse time evolution.
The following result is the quantum counter-

part of (3) concerning properties of expectation of
(sub)martingales.

Proposition 5.1. Let {Yt}t∈[0,T−1] be space-time har-
monic and let {Zt}t∈[0,T−1] be space-time subhar-
monic with respect to the reference evolution. Then,
for all t ∈ [0, T − 1]:

Eρ0(Y0) = Eρt
(Yt), Eρt

(Zt) ≤ Eρt+1(Zt+1).
(22)

A function f is called operator convex if f(λA+ (1−
λ)B) ≤ λf(A) + (1 − λ)f(B), for any λ ∈ [0, 1],
and matrices A,B with spectrum in I. Consider now
a set of operators {Mk}, such that

∑
kM

†
kMk = I.

Then, for every tuple {Xk} of self-adjoint matrices, the
operator sum

∑
kM

†
kXkMk can be thought as an “op-

erator convex combination” of the {Xk}. Remarkably,
an operator analogue of Jensen’s inequality holds (see
[Hansen and Pedersen, 2003] and reference therein for
a review of the literature on the subject). We give here a
reduced statement of Theorem 2.1 in [Hansen and Ped-
ersen, 2003] which is sufficient to our scope.

Theorem 5.2 (Operator Jensen’s Inequality). A
function f : I → R is operator convex if and only if
for any Hermitian X and set of operators {Mk} such
that

∑
kM

†
kMk = I it satisfies

f(
∑
k

M†kXkMk) ≤
∑
k

M†kf(Xk)Mk. (23)

The following Proposition, which is a straightforward
application of the result above, gives us a way to derive
subharmonic processes from harmonic processes.

Proposition 5.2. Let Yt be a space-time harmonic pro-
cess with respect to {Et}t≥0, with eigenvalues λt,i ∈
I ⊂ R at all times, and f : I → R be operator convex.
Then Zt := f(Yt) is space-time subharmonic.

6 Application to information dynamics
The usual definition of quantum relative entropy is

due to Umegaki [Umegaki, 1962]. Given two density
matrices ρ, σ, the quantum relative entropy is defined
as: DU (ρ‖σ) = trace(ρ(log ρ − log σ)), if supp(ρ) ⊆
supp(σ), and +∞ otherwise.
As in the classical case, quantum relative entropy has

the property of a pseudo-distance (see e.g. [Nielsen and
Chuang, 2002]). Moreover, it has been proven by Petz
that it is the only functional in a class of quasi-entropies
having a certain conditional expectation property [Petz,
1982].
Nonetheless, here we show how a different quantum

extension of classical relative entropy is natural from
the viewpoint of space-time harmonic processes and
the dynamical structure of Markovian evolutions. In
order to do this, we now introduce a special class of
space-time harmonic quantum processes. Consider two
quantum Markov evolutions, corresponding to differ-
ent initial conditions ρ0 6= σ0, but with same family of
trace-preserving quantum operations {E†t }. Define the
observable

Yt = σ
− 1

2
t ρtσ

− 1
2

t . (24)

We thus have that: RE,σt(Yt) =∑
k σ
− 1

2
t+1Mkσ

1
2
t σ
− 1

2
t ρtσ

− 1
2

t σ
1
2
t M

†
kσ
− 1

2
t+1 = Yt+1.

This shows that Yt evolves in the forward direction
with the backward transition mechanism of σt, which
makes it quantum space-time harmonic in reverse time
with respect to the transition of σt. In view of (24),
the natural definition of relative entropy in our setting
is thus the Belavkin-Staszewski’s relative entropy
[Belavkin and Staszewski, 1982]:

DBS(ρ||σ) = trace
(
σ
(
σ−

1
2 ρσ−

1
2

)
log
(
σ−

1
2 ρσ−

1
2

))
,

(25)
where, as usual, 0 log 0 = 0. As for the Umegaki’s ver-
sion, it enjoys the properties of a pseudo-distance: It is
non negative and equal to zero if and only if ρ = σ.
In addition to this, it is clearly consistent with the clas-
sical relative entropy, which is recovered by consider-
ing commuting matrices, and with the von Neumann
entropy, since: DBS(ρ||I) = trace(ρ log(ρ)). Another
useful property has been proven by Hiai and Petz [Hiai,
1991]: DBS(ρ||σ) ≥ DU (ρ||σ). Hence, convergence
in DBS(ρ||σ) ensures convergence in DU (ρ||σ). The
Belavkin-Staszewski’s relative entropy has also been
shown to be the trace of Fuji-Kamei’s operator entropy
[Fuji and Kamei, 1989]. As a consequence of the re-
sults of Section 5, we have the following Corollary.

Corollary 6.1. Consider two quantum Markov evolu-
tions associated to the initial conditions ρ0 6= σ0 and
to the same family of TPCP maps {E†t }. Suppose that

ρt, σt are invertible, for all t’s. Let Yt = σ
− 1

2
t ρtσ

− 1
2

t

and let Zt := g(Yt), with g(x) = x log(x). Then Zt



is a reverse time, space-time subharmonic process with
respect to the quantum operations {RE,σt

(·)}, i.e.

Zt+1 = g (Yt+1) ≤ RE,σt
(g (Yt)) = RE,σt

(Zt) .
(26)

This can be seen as an H-Theorem in operator form:
In fact, as in the classical case, the reverse time subhar-
monic property of {Zt} of Theorem 6.1 implies under
expectation a more usual, Lindblad-Araki-Uhlmann-
like [Lindblad, 1975; Araki, 1976; Uhlmann, 1977]
form of theH-theorem. Namely, we obtain monotonic-
ity for the Belavkin-Staszewski’s relative entropy under
completely positive, trace-preserving maps. The same
result has been derived for conditional expectations in
[Hiai, 1991].

Corollary 6.2. Consider two quantum Markov evolu-
tions associated to the initial conditions ρ0 6= σ0, and
to the same family of TPCP maps {E†t }. Assume that
ρt, σt are invertible for all t’s. Then:

DBS(ρt+1||σt+1) ≤ DBS(ρt||σt). (27)

If σ̄ is the unique stationary state of {E†t }, we get a
quantum version of the second law.
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