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Abstract
Most real-world networks evolve, that is, new nodes

and links are attached or removed from the network.
In this work we investigate the effects of growth pro-
cesses on the synchronized behavior of discrete-time
dynamical network. In particular, we consider a net-
work composed of identical Logistic Map, we assume
that new nodes are attached to the network according
to the model proposed by Barabasi and Albert (BA).
We propose that nodes are add sufficiently slowly to
the network, that is each growth event occurs after suf-
ficient time has passed from the previous, so that the
transitory effects have die out. We numerically in-
vestigate the synchronizability of the network as the
number of nodes increases from an initial size. The
synchronization criterion for dynamical networks with
fixed structure is used as an indication of the stability of
the resulting networks. Our results show that the syn-
chronized solution remains attractive only for a limited
number of additional nodes. Furthermore, the number
of additional such that synchronization is not lost di-
rectly depends on the structure and size of the initial
network.
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1 Introduction
Dynamical networks (DN) are composed by a set of

dynamical systems called nodes, that are coupled to-
gether by edges; the pattern of connections is called the
network structure. DN are significant for many fields
of science mainly due to their potential applications to
model systems in nature such as the Internet, the World
Wide Web, food webs, among many others [Newman
(2010)]. One of the most significant phenomena in DN
is synchronization. Recent works focus on establish-
ing synchronization criteria, mainly for fixed structure
DN [Boccaletti et al., (2006)]. However, in order to

model a more realistic situation, it is important to take
into account that real-world networks actually evolve
through different processes like the addition or deletion
of nodes and links.

Network evolution has been extensively addressed
from the framework of graph theory. In this context,
an evolutionary model consists of a set rules that de-
scribe the structural changes in the network, which are
repeated iteratively in order to emulate the network’s
evolution. One of the first and most significant evolu-
tionary model for networks was proposed by Barabási
and Albert, usually called the BA-model [Barabási
and Albert (1999)], which argues that real-world net-
works evolve thought two generic steps, which are:
1) Growth: at each iteration a new node is added to
the network, and 2) Preferential attachment: the new
node is more likely to connect to a node with high
degree that to a less connected one. After repeating
these rules a large number of iterations, we get a net-
work where the vast majority of nodes will have few
connections while some nodes will have a very large
number of connections. Furthermore, this degree dis-
tribution feature remains unalter even if the number of
nodes increases, this structural effect is called scale-
free effect, and consequently the networks are called
scale-free networks. The BA model only focuses on
the structural features of the network and does not con-
sider the dynamical aspects of its collective behavior.
In this sense, alternative growth algorithms have been
proposed, e.g. the authors of [Fanet al., (2004)] pro-
posed a synchronization-optimal growth model, where
the BA preferential attachment rule is replaced by a rule
where each new node is connected to the nodes that op-
timize the synchornizability of the network. The model
in [Fan et al., (2004)] succeeds in constructing a net-
work with the scale-free feature; nevertheless, the se-
lection of where to connect the node requires the inves-
tigation of all possible combinations in order to select
the new node’s connection.

In general, when we model the structural growth in



200 CYBERNETICS AND PHYSICS, VOL. 2, NO. 4, 2013

DN, the stability of its synchronized behavior we can
not be determine from the synchronization criteria for a
network with fixed structure. This represent a challeng-
ing problem that has attracted the attention of current
researches, some of which, have been tackle this com-
plication from the framework of switching systems.
Using this formalism we can interpret any change pro-
cess in the network structure as a discrete event that
causes a transition from one network structure to an-
other. This hybrid system description of the growth
process in DN can be described as a time-driven or
an event-driven system. In the first case, the structure
changes at specific instant of time. On the second case,
the structure changes if the states of the system go to a
region of state space.
In [Stilwell et al., (2006)] the authors consider DN

that switch their structure among a set of different
structures according to a predefined switching law, the
DN are restricted to having the same number of identi-
cal nodes. An important result is that if the switching is
fast enough, then an average model can be used, and the
fixed structure results hold. If that is not the case, the
stability of synchronized behavior needs to be deter-
mine from the hybrid system. In ([Taoet al., (2010)]),
under the assumption that some of the admissible struc-
tures be synchronizing, if the average dwell time of
structure switching is sufficiently slow then synchro-
nization is still possible. However, in these works the
number of nodes are always fixed,and in general the
number of admissible structures is small, that is, it is no
allowed to the DN to grow, which, as mention above, is
an intrench aspect of real-world networks.
In this contribution we define as a growth event the

addition of a new node to the network. In particular,
we consider the case of DN of discrete-time systems
called Logistic Maps are added periodically in a suffi-
ciently slow rate and following the BA network growth
model. We observe that if the dwelling time between
the addition of nodes is large enough, the synchronized
behavior can be preserved even when a few nodes are
added.
The remainder of the paper is organized as follows:

In Section 2, we resume some preliminary results sig-
nificant to this work. In particular, we review the syn-
chronization criterion for a discrete-time DN with fixed
structure and the BA network model. On Section 3, we
expose our interpretation of the BA model for DN as
a switching systems; and on Section 4 we analyse the
limitations of using the synchronization criterion for a
DN with fixed structure, to the case a growing DN. Nu-
merical results supporting of claim are shown in Sec-
tion 5. Finally, in Section 6 we present the conclusions
for this work.

2 Preliminaries
2.1 Discrete-Time Dynamical Networks
For a network ofN identical discrete-time systems,

lineally and bidirectionally coupled with unweighted

edges, the dynamical evolution of each node is given
by

xk+1
i = f(xk

i )+c

N
∑

j=1

aijf(x
k
j ), i = 1, . . . , N ; (1)

wherexk
i is the state variable of thei-th node at the

discrete-time instantk ∈ Z; and the mapf(·) describes
the dynamics of a single node isolated from the net-
work. We will consider that each node is a Logistic
Map:

f(xk) = rxk(1− xk), (2)

with r = 3.9 and xk
i ∈ R. The variablec ∈ R

is the uniform coupling strength; the coupling matrix
A = {aij} ∈ R

N×N describes the network structure
as follows: if thei-th and j-th node are connected,
the entriesaij = aji are set to one; if there is no
connection between them, the entries are set to zero
(aij = aji = 0). To complete the matrix, the diagonal
entries are determined in the following manner:

aii = −

N
∑

j=1

aij = −

N
∑

i=1

aij = −di, (3)

wheredi is the node degree of thei-th node.
By construction, the network structure is diffusive,

that is, all sums by row or column ofA are zero. Fur-
ther, if the network is connected in the sense that no
node is isolated from the network, then the coupling
matrix is symmetric, irreducible, and its eigenvalues
(λi) can be ordered as:

0 = λ1 > λ2 ≥ . . . ≥ λN . (4)

For a dynamical network, complete synchronization is
defined as the phenomena in which the states of all its
nodes moves at unison. In an other words, a dynamical
network is said to (asymptotically) achieve complete
synchronization if ask → ∞ the states of each node in
the network tend to the synchronized solution

xk
1 = xk

2 = . . . = xk
N . (5)

The existence of (5) as a solution of (1) is guarantee
by the diffusive nature of the network structure and the
fact that all nodes are identical. The stability of the
synchronized solution can be establish from the lin-
earized dynamics of the network, in this way diverse
synchronization criteria have been derived (see for ex-
ample [Arenaset al., (2008)]). In particular, in ([Li and
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Chen (2003)]) it was shown that the synchronized solu-
tion (5) is exponentially stable if the uniform coupling
strength satisfies the following criterion

1− e−hmax

|λ2|
< c <

1 + e−hmax

|λN |
; (6)

whereλ2 andλN are the biggest and smallest nonzero
eigenvalue ofA, respectively; whilehmax is the largest
Lyapunov exponent of an isolated node, which, for the
case of a Logistic Map ishmax = ln(2).
An important question related to the stability of the

synchronized solution is whether or not there is a pos-
itive coupling function such that the criterion in (6) is
satisfied. To this end, an alternative version of the cri-
terion can be used. Consider the ratioR = −λ2

λ2−λN
,

which measure the normalized distance of the eigen-
spectrum ofA. Then a positive coupling strength exist
if the ratio satisfies

1

R
<

2e−hmax

1− e−hmax

. (7)

For the dynamical network of Logistic Maps (1), the
condition becomes1

R
< 2.

Notice that the synchronization criteria (6) and (7) are
only valid for networks with static (fixed) structure, and
in general, can not be consider a valid criteria if the
structure of the network changes over time. In particu-
lar, in the case of network growth, this is further com-
plicated by the increment in the dimension ofA, and
the change in its eigenvalues after each growth event.
However, this result can be used as an indication of
the behavior of synchronized solution for the growing
network. We assume that after each growth event the
network of identical nodes retains a diffusive structure;
therefore as the nodes are added the same synchroniza-
tion solution remains valid and additionally the eigen-
values of the resulting coupling matrix still can be or-
ganized as in (4). Further, we assume that the time be-
tween growth events is large enough as to allow for the
network dynamics to reach their steady-state behavior.
Under these conditions, one can argue that the synchro-
nization conditions (6) and (7) can in fact be use as an
indication of the stability of the synchronized solution
on the resulting network.
We let the network growth be described by the model

proposed in [Barabási and Albert (1999)], as described
in the following subsection.

2.2 The BA Model of Network Growth
The network model proposed by Barabasi and Albert

states that as the network grows, it does so following a
preferential attachment rule, that is, a new node in the
network is more likely to connect to an important node
that to a less connected one. In what follows we briefly
describe the BA model network as a construction algo-
rithm.

The BA model consists of two steps:
The first step is simply calledGrowth.

1. Starting with a small number (m0) of nodes. At
every iteration (or growth event) a new node is
added to the network by connecting itm (≤ m0)
nodes in the network.

The second step tells us to which of node, already ex-
isting in the network, the new node will be connected.
The choice is made to favor nodes with a large num-
ber of connections, for that reason the process is called
Preferential attachment. More precisely, the second
step can be expressed as follows.

2. For each new node, say theq-th node, them nodes
to which it will be connected are selected from the
nodes already in the network through a uniformly
random process where the probability that the new
node connects to thej-th node is given by

Πq↔j =
dj

∑N

l=0 dl
. (8)

The algorithm is repeated until the network has grown
to the desired number of nodes, sayN , withN = m0+
σ whereσ is the number of iteration of the construction
algorithm, in other words, the number of growth events
that lead to a network of sizeN .
A particularly significant aspect of the BA network

model is that for a sufficiently large number of nodes,
the probability distribution of node degrees in the re-
sulting network is well approximated by a power-law
of the formP (d) ∼ d−3, which remains practically un-
changed for larger number nodes, in other words, this
feature of the topology is independent of size; this is
known as the scale-free effect.
In this contribution, we investigate the effect of the

growth events as described by the BA model on the sta-
bility of the synchronized state of the resulting DN. In
the following section, we propose an interpretation of
the BA model as a switching system, where the growth
events result on changes in the dynamical description
of the network. Namely, the dimension of the coupling
matrix increases. Then, we claim that the synchroniza-
tion solution of the growing DN preserves it stability if
the resulting network satisfies the synchronization con-
dition for the corresponding fixed structure network af-
ter each growth event.

3 An Interpretation of Dynamical Network
Growth

We start with a network composed by a small num-
ber (m0) of Logistic Maps connected in a fully cou-
pled structure. Rewriting the dynamical description (1)
of our initial network in vector form we have

X
k+1,0 = F 0(Xk,0) + cA0F

0(Xk,0), (9)
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Figure 1. The change of the growth event index for a dynamical

network that grows according to the BA model. The first growth

event (τ(k) = 1) is present atk = k0, and the subsequent growth

events occur at equal time intervalsT .

whereXk,0 = [xk,0
1 , . . . , xk,0

m0
]⊤ ∈ R

m0 ; F 0(Xk,0) =

[f(xk,0
1 ), . . . , f(xk,0

m0
)]⊤ ∈ R

m0 ; and the initial cou-
pling matrix has the form

A0 =











−m0 + 1 1 . . . 1
1 −m0 + 1 . . . 1
...

...
. . .

...
1 1 . . . −m0 + 1











.

(10)

By construction, the eigenspectrum ofA0 is λ1 = 0,
andλj = −m0 for j = 2, ...,m0. In order to ensure
that our initial network synchronizes, we select a cou-
pling strengthc such that the criterion (6) is satisfied.
We assume that the first growth event (τ(k) = 1) oc-

cur after sufficient time has passed (k = k0) such that
the transitory behaviors have die out. Further we as-
sume that all subsequent growth events occur periodi-
cally, that is

τ(k) =

{

0, if 0 ≤ k < k0
n, if k0 + (n− 1)T ≤ k < k0 + nT

(11)
for n = 1, 2, ...., N ; whereτ(k) is the growth event
index andT is the time period between growth events.
Figure (1) shows an example ofτ(k).
The initial conditions for our initial network (X0,0)

are randomly selected from[0, 1]. As discrete-time
moves along thek index, the event indexτ(k) moves
according to (11). Then, at the time instant in which the
first growth event occurs, the dynamical description of
the network changes to:

X
k+1,1 = F 1(Xk,1) + cA1F

1(Xk,1);

Since a new node is added, the vector of state variables

becomes

X
k,1 = [Xk,0, x

k,1
m0+1]

⊤ ∈ R
m0+1.

The initial condition of the added Logistic Map is a
value randomly selected from[0, 1]. In a similar man-
ner,F 1(Xk,1) is the previous vector function appended
with the dynamics of the added node

F 1(Xk,1) = [F 1(Xk,0), f(xk,1
m0+1)]

⊤ ∈ R
m0+1.

The coupling matrix of the network with an added node
becomes

Ã0 = φ1(A0) =

(

A0 v1
v⊤1 0

)

,

with v1 ∈ R
m0 a zero vector. The preferential attach-

ment of the new node to the network is done by ran-
domly selectingm entries ofv1 and change them from
0 to 1. Then we have

Â0 = φ2(Ã0) =

(

A0 v̂1
v̂⊤1 0

)

;

where v̂1 is the zero vectorv1 with m randomly se-
lected entries as ones.
In order to have a diffusive connection in the resulting

network, the diagonal entries ofA1 are calculated from
Â0 asaii = −

∑N

j=1 aij . Then, finally we have

A1 = φ3(Â0).

Summarizing in our interpretation of the growth of a
dynamical network implies a three part process: first
the previous coupling matrix is appended with zero
vector (φ1(A0)); then, the new node is randomly cou-
pled tom nodes nodes (φ2 ◦ φ1(A0)), and finally, the
diagonal entries are recalculated (φ3 ◦ φ2 ◦ φ1(A0)).
The dynamical description of the network including

growth events is

X
k+1,τ(k) = F τ(k)(Xk,τ(k))+cAτ(k)F

τ(k)(Xk,τ(k));
(12)

where X
k,τ(k) = [Xk,τ(k)−1, x

k,τ(k)
m0+τ(k)]

⊤ ∈

R
m0+τ(k); F τ(k)(Xk,τ(k)) =

[F τ(k)−1(Xk,τ(k)−1), f(x
k,τ(k)
m0+τ(k))]

⊤ ∈ R
m0+τ(k);

andAτ(k) = φ3 ◦ φ2 ◦ φ1(Aτ(k)−1); with τ(k) given
by equation (11).
Notice that when a growth event occurs, lets say at
k = k̄, τ(k) increases by one and the structure of the
network changes with the inclusion of the new node
as described above. However, the dynamical evolution
of the nodes continues along the discrete-time index
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k without change. This means that after the growth
event (k = k̄+1), the dynamical network continues its
evolution with the corresponding new structure until a
new growth event occurs (k = k̄ + T ), then the struc-
ture changes again, and the growth process continues
in that way until the network has grown to the desired
N nodes.

4 A Synchronization Criterion for Growing Dy-
namical Networks

Following the same basic ideas presented in Sub-
section2.1, we define synchronization on a growing
dynamical network as the phenomenon in which the
nodes existing in the network move at unison. That is,
a growing dynamical network is said to be synchronize
if the solution

x
k,τ(k)
1 = x

k,τ(k)
2 = . . . = x

k,τ(k)
m0+τ(k) (13)

is a stable solution of the resulting network. Consid-
ering the case of identical nodes under diffusive cou-
pling as the network grows. All the resulting networks
will have the same synchronized solution. Moreover,
if prior to the growth event the synchronized solution
(13) was stable, after the growth event, the network so-
lution is perturbed by dynamics of the new node. Then,
under the assumption that resulting network also sat-
isfies the synchronization criterion, that perturbation
will vanish into the synchronization manifold. On the
other hand, if for the resulting network does not sat-
isfy the synchronization criterion, the perturbation will
not vanish making the synchronized solution unstable.
In that sense, when the growth event does not make
the synchronized solution unstable, we say that the net-
work preserved synchronization, on the other case, the
growth event desynchronizes the network.
As mention before, we consider a growing network

where the growth events occur only after a sufficiently
large time has passed, such that all transient behaviors
have died out. This dwell time restriction, along with
the claim provided in the previous paragraph, allows us
to establish the stability of the resulting synchronized
solution (13) using the criteria (6)-(7) at each growth
event. That is, the corresponding synchronized solution
will be stable if the uniform coupling strength satisfies

1− e−hmax

|λ
τ(k)
2 |

< c <
1 + e−hmax

|λ
τ(k)
N |

; (14)

whereλτ(k)
i is thei-th eigenvalue of the coupling ma-

trix Aτ(k). In particular, for our Logistic map network,
stability of the synchronized solution is determine by
the criteria

0.5

|λ
τ(k)
2 |

< c <
1.5

|λ
τ(k)
N |

. (15)

Figure 2. Synchronization area for a dynamical network ofm0 =
5 Logistic Maps which structure evolves according to the BA model.

5 Numerical Results

According to the criterion (15), for a network of cou-
pled Logistic Maps connected in a fully coupled struc-
ture, as the number of initial nodes (m0) becomes
larger, the range of values for the coupling strength (c)
such that synchronization is achieved becomes smaller.
That is, if we start with very few nodes, the syn-
chronization will be preserved for a larger number of
growth events. As an illustration, we take a network
of m0 = 5 fully connected Logistic maps, that be-
come synchronized for a coupling strength in the in-
terval c ∈ [0.1, 0.3]. As we can see on Figure (2),
for c = 0.1 synchronization is preserved up to seven
growth events (withm = m0).

The time series of the nodes dynamics as the network
grows are shown in Figure (3), which is plotted in terms
of the error between their dynamical states. In order to
avoid the transitory behavior of the first nodes, we let
the nodes to evolve untilk0 = 100 time steps, which,
as we can seen in Figure (3.a), is enough to allow the
error between the dynamical states of them0 nodes to
died out (≈ 0), i.e, the nodes are practically synchro-
nized. After thisk0 time steps, the network start to
growth with each new node added afterT = 100 iter-
ations. In Figure (3.a) we can see that atk = 100, the
second node arrives and begins to evolve, the perturba-
tion provided by the node vanishes rapidly, and the new
node synchronized with network. Note that the second
growth event does not affect the dynamical evolution of
the firstm0 nodes. Again, in Figure (3.b), we observe
that atk = 200 andk = 300 two new events occurs
with the addition of two nodes, which alter very little
the synchronized behavior. The same is seen again in
Figure (3.c) with two next events, where the synchro-
nized behavior is significantly altered. Finally, on Fig-
ure, we observe that when the last node is added, the
nodes are no longer synchronized, as for the resulting
network the synchronization criterion is not satisfied,
that is, this growth event desynchronizes the network.
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Figure 3. Errors between the nodes dynamical states. The first

growth event occurs at the time stepk0 = 100, and the interval

between two growth events isT = 100.

6 Conclusions

In this contribution we investigate the effects of net-
work growth in the synchronized state of DN. We pro-
pose that the synchronization criterion for a dynamical
network with fixed structure can be used to establish if
the stability of the synchronized solution is preserved
as the network grows. Our claim is based on our inter-
pretation of the growth process as a switching system,
where each growth event consist on the addition of a
new node to a network that is practically synchronized.
The growth process, that is assumed to occur only af-
ter a sufficiently long time has passed, results on a dif-
fusive network with the same synchronized solution;
which experience the additional node’s dynamics as a
perturbation. Then, if the resulting network satisfies the
synchronization criterion, the perturbation will vanish
and synchronization will be preserved; otherwise, its
affect will desynchronize the collective dynamics of the
network.

A next step in the study of evolving dynamical net-
work is to analyze processes that can be improved
the synchronizability of the resulting network; possi-
bly through additional process of change a part from
growth, such as deletion of nodes or edges, rewiring
the connections, or adjusting coupling strengths. Re-
sults on these directions of research will be publish
elsewhere.
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