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Abstract
This paper proposes an algorithm for stabilizing non-

linear Lipschitz systems with a known constant input de-
lay and an unknown bounded disturbance. The control
law is designed based on both a state predictor and a dis-
turbance predictor. The stability of the closed-loop sys-
tem is established using the Lyapunov-Krasovskii func-
tional method, which provides sufficient conditions in
the form of a feasible linear matrix inequality (LMI). The
ultimate boundedness of all system signals is formally
proven. Furthermore, it is shown that the derived LMI
is influenced by system parameters, sector bounds of the
nonlinearity, and the delay, allowing for the determina-
tion of their limit values while ensuring system stability.
The effectiveness of the proposed approach is validated
through numerical simulations in MATLAB/Simulink.
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1 Introduction
The control of nonlinear systems in the presence of ex-

ternal disturbances presents a significant challenge with
broad applications across various practical domains, par-
ticularly where delayed input signals are involved. These
nonlinear systems serve as the foundation for numer-
ous technologies and processes, including automation,
robotics, energy systems, and other industrial sectors.

Advancing control methodologies for nonlinear systems
remains a critical focus in control theory.

In the field of control with delay, a common synthe-
sis approach involves designing a predictor block that
forecasts the system’s future state. This approach gained
popularity after the publication of [Smith, 1959], where
O. Smith proposed a compensator based on a predictor
for stable linear systems with a known delay. Various
modifications and applications of the Smith predictor are
discussed in [Palmor, 1996; Furtat and Tsykunov, 2005].
In [Manitius and Olbrot, 1979], A. Manitius and A.
Olbrot introduced a proportional-integral predictor for
unstable systems, constructed by solving the system’s
equations. The predictor scheme presented in [Mani-
tius and Olbrot, 1979] was employed in [Krstic, 2009;
Mazenc et al., 2012] to attenuate bounded disturbances,
due to the resulting distribution of the closed-loop eigen-
values. However, subsequent studies [Van Assche et al.,
1999; Engelborghs et al., 2001; Mondié et al., 2002; Fur-
tat et al., 2018; Furtat, 2012; Furtat, 2014; Margun and
Furtat, 2015] indicated that the numerical implementa-
tion of the predictor proposed in [Manitius and Olbrot,
1979] is effective only for a specific class of unstable
systems with delay.

A new predictor for controller synthesis in unstable
systems was introduced in [Dugard and Verriet, 1997].
Unlike the predictor in [Manitius and Olbrot, 1979], the
approach in [Dugard and Verriet, 1997] omits an integral
component, simplifying both technical implementation
and parameter calculation. Additionally, in [Najafi et al.,
2013], a subpredictor for the controlled variable was de-
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veloped based on the predictor from [Dugard and Ver-
riet, 1997]. This subpredictor enhances control perfor-
mance for systems with longer delay times compared to
the method in [Dugard and Verriet, 1997]. The applica-
tion of the predictor and subpredictor from [Dugard and
Verriet, 1997; Najafi et al., 2013] to systems with signif-
icant external disturbances was further explored in [Fur-
tat and Gushchin, 2019a; Furtat and Gushchin, 2019b].
However, the results in [Dugard and Verriet, 1997; Na-
jafi et al., 2013; Furtat and Gushchin, 2019a; Furtat and
Gushchin, 2019b] are limited to linear systems.

The objective of this paper is to extend the results
from [Furtat and Gushchin, 2019a; Furtat and Gushchin,
2019b] by synthesizing a control law for nonlinear
systems with input delays under external disturbances.
Specifically, a new state predictor is developed based on
the predictor in [Furtat and Gushchin, 2019a; Furtat and
Gushchin, 2019b], and a disturbance predictor is intro-
duced for nonlinear systems. The paper is structured as
follows: Section 2 formulates the problem of stabiliz-
ing an unstable nonlinear system with delayed input sig-
nals in the presence of disturbances. Section 3 presents
methods for synthesizing state and disturbance predic-
tors, along with sufficient conditions for closed-loop sys-
tem stability. These conditions, expressed in terms of
LMI solvability, depend on system parameters and de-
lay values. Section 4 provides computational results and
simulation studies for a specific nonlinear control system
with given parameters.

Notation: Rn denotes the n-dimensional Euclidean
space with the vector norm | · |; Rn×m represents the set
of all real matrices of size n ×m; col{·} denotes a col-
umn vector; I , 0, and diag{·} denote the identity matrix,
zero matrix, and diagonal matrix (of the corresponding
dimensions), respectively; blkdiag{A,B, . . . , F} de-
notes the block diagonal matrix of matricesA,B, . . . , F ;
δ(s) = O(s) means lim

s→0

∣∣∣ δ(s)s

∣∣∣ <∞; p = d
dt denotes the

differentiation operator; symmetric elements of a sym-
metric matrix are denoted by ⋆.

2 Problem Statement
We consider a nonlinear system with an input delay,

represented by the following equation:

ẋ(t) = Ax(t) +Gφ(x(t)) +Bu(t− h) +Bf(t),

t ≥ 0, u(s) = 0, s < 0.
(1)

where x(t) ∈ Rn is the measurable state vector, u(t) ∈
Rm is the control signal, f(t) ∈ Rm is an unknown ex-
ternal bounded disturbance with bounded (r+3) deriva-
tives, h > 0 is the known time delay, φ(·) is a known
nonlinearity function, A, B, and G are known matrices
of appropriate dimensions. The pair (A,B) is control-
lable, and the condition B+B = I holds, where B+

denotes the pseudoinverse of matrix B.

Assumption 1. The function φ(x) is globally Lipschitz,
meaning there exists a constant L > 0 such that for any

x1, x2 ∈ Rn, the following condition holds:

|φ(x1)− φ(x2)| ≤ L|x1 − x2|. (2)

It follows that if φ(x) is globally Lipschitz, it also sat-
isfies the sector constraint:

|φ(x)| ≤ L|x|, ∀x ∈ Rn. (3)

The objective of the control algorithm is to ensure that
the system state satisfies the following condition:

lim
t→∞

|x(t)| ≤ δ, (4)

where:

δ = O
(
lim
t→∞

hr+1
∣∣∣f (r+1)(t)

∣∣∣) . (5)

Remark 1. From (5), it can be observed that the
regulation accuracy depends on the magnitude of
lim
t→∞

hr+1
∣∣f (r+1)(t)

∣∣. This indicates that the proposed
algorithm is capable of compensating for disturbances
with larger amplitudes. In contrast, for the known al-
gorithms [Manitius and Olbrot, 1979; Krstic, 2009;
Mazenc et al., 2012], the steady-state regulation error
δ depends only on the magnitude of lim

t→∞
|f(t)|.

3 Solution Method. Main Results
To ensure the stability of the closed-loop system, we

employ the control signal u1(t), while disturbance com-
pensation is achieved using the control signal u2(t). The
control law for the system is given by:

u(t) = u1(t) + u2(t). (6)

Since direct state feedback control is not feasible due
to the unavailability of x(t+ h), we propose a state pre-
dictor for the variable x(t) in Subsection 3.1 to facili-
tate the synthesis of the control signal u1(t) for nonlinear
systems. The disturbance is then estimated and approxi-
mated using a derivative estimation algorithm.

To compensate for the disturbance, we introduce a pre-
dictor that estimates f(t), from which the compensation
signal u2(t) is generated. This predictor is referred to as
the “disturbance predictor”.

In Subsection 3.2, using the Lyapunov-Krasovskii
method, we derive sufficient conditions for the stability
of the closed-loop system, formulated as a solvable LMI.

3.1 Synthesis of the State and Disturbance Predic-
tors

Following [Furtat and Gushchin, 2019a; Furtat and
Gushchin, 2019b], we introduce a predictor for the non-
linear system (1) as follows:

˙̄x(t) = Ax̄(t) +De(t) +Gφ(x̄(t)) +Bu1(t), (7)
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where e(t) ≜ x(t) − x̄(t − h) denotes the state predic-
tion error, and the matrix D ∈ Rn×n is chosen such that
the following linear time-delay system is exponentially
stable:

ω̇(t) = Aω(t)−Dω(t− h), (8)

where ω(t) ∈ Rn.
The selection of the matrix D is formulated as a feasi-

bility condition for a LMI, presented in Proposition 1.

Proposition 1. If, for a given matrix D, there exist pos-
itive definite matrices P = PT , S = ST, R = RT ∈
Rn×n and matrices P2, P3 ∈ Rn×n such that the fol-
lowing LMI is feasible:Π1 P − PT

2 +ATP3 PT
2 D +R

⋆ −P3 − PT
3 + h2R −PT

3 D
⋆ ⋆ −S −R

 < 0, (9)

where Π1 = ATP2+P
T
2 A+S−R, then lim

t→∞
ω(t) = 0.

Proof: The proof of Proposition 1 can be found in Sec.
3.6.2 of [Fridman, 2014].

Remark 2. Finding a matrix D that satisfies the con-
dition in Proposition 1 can be challenging in practice,
particularly for high-dimensional matrices A. Instead
of explicitly defining D and verifying the feasibility of
LMI (9), an alternative approach is to fix P2 and P3 as
known matrices, for example, P2 = P3 = I , and solve
(9) for D,P, S, and R. The obtained matrix D is then
used in the predictor (7).

The control signal u1(t) is chosen in the form

u1(t) = −Kx̄(t), (10)

where K ∈ Rm×n is selected such that A−BK is Hur-
witz.

Taking the derivative of the error e(t) using (1) and (7),
we obtain

ė(t) = Ae(t)−De(t− h) +Bu2(t− h)

+G[φ(x(t))− φ(x̄(t− h))] +Bf(t).
(11)

From (11), it is evident that if u2(t) = −f(t + h),
the disturbance is completely compensated. However,
since f(t) is unmeasured, it is necessary to estimate and
predict the disturbance.

To achieve this, we introduce an auxiliary loop

ėa(t) = Aea(t)−Dea(t− h)

+G
[
φ
(
x(t)

)
− φ

(
x̄(t− h)

)]
+Bu2(t− h).

(12)

where ea(t) ∈ Rn.
Defining ζ(t) ≜ e(t)− ea(t) and substituting (11) and

(12), we obtain

ζ̇(t) = Aζ(t)−Dζ(t− h) +Bf(t). (13)

Hence, the disturbance f(t) can be estimated as [Furtat
and Gushchin, 2019a; Furtat and Gushchin, 2019b]

f̂(t) = B+
(
ˆ̇
ζ(t)−Aζ(t) +Dζ(t− h)

)
, (14)

where the signal ˆ̇ζ(t) is defined by

ˆ̇
ζi(t) =

p

µp+ 1
ζi(t), i = 1, . . . , n. (15)

Here, ζi, ζ̂i denote the i-th elements of the vectors ζ(t)
and ζ̂(t), respectively, µ is selected as a small positive
constant satisfying µ ∈ (0, 1).

To predict the disturbance f̂(t + h), we apply the
method described in [Furtat et al., 2018]:

f̂(t+ h) =

r+1∑
j=1

(−1)j−1Cj
r+1 f̂

(
t− h(j − 1)

)
+R(t).

(16)

where Cj
r+1 = (r+1)!

(r+1−j)!j! , and

R(t) = hr+1f̂ (r+1) (t− [(r + 1)θ − 1]h) ,

represents the remaining term in the expansion, with θ ∈
(0, 1).

Since R(t) is not available for measurement, the con-
trol signal u2(t) is chosen as

u2(t) = −f̃(t+ h), (17)

where

f̃(t+ h) ≜ f̂(t+ h)−R(t)

=

r+1∑
j=1

(−1)j−1Cj
r+1f̂(t− h(j − 1)).

(18)

Thus, the proposed algorithm consists of the state pre-
dictor (7), the auxiliary loop (12), the disturbance pre-
dictor (18), and the control laws (10) and (17). In the
next subsection, we analyze the closed-loop system and
present the main results of the proposed approach.
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3.2 Closed-Loop Stability Analysis
We introduce the variables ξ ≜ ζ̇ − ˆ̇

ζ, η ≜ ξ(r+1), and
g ≜ ζ(r+3). Defining λ(t) = u2(t − h) + f(t) as the
disturbance compensation error, we obtain the following
relation:

λ(t) = f̂(t)− f̃(t) + f(t)− f̂(t)

= R(t− h) +B+ξ(t)

= hr+1
[
f (r+1)

(
t− (r + 1)θh

)
−B+ η

(
t− (r + 1)θh

)]
+B+ξ(t).

(19)

Since f (r+1)(t), η(t), and ξ(t) are bounded signals, it
follows that λ(t) is also bounded (for a detailed proof,
see Sec. 4 in [Furtat and Gushchin, 2019b]).

Taking into account (19), one can rewrite (11) as

ė(t) = Ae(t)−De(t− h)

+G
[
φ
(
x(t)

)
− φ

(
x̄(t− h)

)]
+Bλ(t).

(20)

Next, we introduce a new variable xe(t) ≜ x̄(t−h) =
x(t)− e(t). Taking the derivative of xe(t) using (7) and
(10), we obtain

ẋe(t) = (A−BK)xe(t)+De(t−h)+Gφ(xe(t)). (21)

As a result, the closed-loop system is described by (20)
and (21).

Before analyzing the input-to-state stability (ISS) of
the closed-loop system, we define the following vectors
and matrices:

xp = col{xe, e},
ψ(t) = col{φ(xe(t)), φ(x(t))− φ(x̄(t− h))},
Ap = blkdiag{A−BK,A}, Bp = blkdiag{0, B},

Cp = blkdiag{G,G}, Dp =

[
0 D
0 D

]
.

Thus, (20) and (21) can be rewritten as

ẋp(t) = Apxp(t) +Dpxp(t− h)

+Bpλ(t) + Cpψ(t).
(22)

Using the Newton-Leibniz formula, we further express
(22) as

ẋp(t) = (Ap +Dp)xp(t)−Dp

∫ t

t−h

ẋp(s)ds

+Bpλ(t) + Cpψ(t).

(23)

Theorem 1. Consider the nonlinear system (1), the
state predictor (7), the disturbance predictor (18), and
the control laws (10) and (17). If, for a given α > 0
and matrices K and Dp, there exist coefficients β > 0,
γ > 0, and positive-definite matrices P,Q, S ∈ Rn×n

and matrices P2, P3 ∈ Rn×n such that the following
LMI is feasible:

Ψ :=


Ψ11 Ψ12 0 Ψ14 Ψ15 Ψ16

⋆ Ψ22 0 Ψ24 Ψ25 Ψ26

⋆ ⋆ Ψ33 0 0 0
⋆ ⋆ ⋆ −hS 0 0
⋆ ⋆ ⋆ ⋆ −βI 0
⋆ ⋆ ⋆ ⋆ ⋆ −γI

 ≤ 0, (24)

where

Ψ11 = PT
2 (Ap +Dp) + (Ap +Dp)

TP2

+ 2αP +Q+ βL2I,

Ψ12 = P − PT
2 + (Ap +Dp)

TP3,

Ψ14 = −hPT
2 Dp, Ψ15 = PT

2 Bp, Ψ16 = PT
2 Cp,

Ψ22 = −P3 − PT
3 + hS,

Ψ24 = −hPT
3 Dp, Ψ25 = PT

3 Bp, Ψ26 = PT
3 Cp,

Ψ33 = −e−2αhQ.

then the closed-loop system defined by (1), (6), (7), (10),
(12), (17), and (18) is ultimately bounded. Moreover, the
tracking objective (4) holds with

δ = O
(
lim
t→∞

hr+1
∣∣∣f (r+1)(t)

∣∣∣) . (25)

Proof. Consider the Lyapunov-Krasovskii candidate
function in the form

V = V1 + V2 + V3, (26)

where

V1 = xTp Pxp, V2 =

∫ t

t−h

e2α(σ−t) xTp (σ)Qxp(σ) dσ,

V3 =

∫ 0

−h

∫ t

t+τ

e2α(σ−t) ẋTp (σ)S ẋp(σ) dσ dτ.

Note that the component V3 is essential in deriving the
stability condition for the closed-loop system, explicitly
incorporating the delay (i.e., a delay-dependent condi-
tion [Fridman, 2014]). Using equation (23), we con-
struct the following expressions:

V̇1 + 2αV1 = xTp Pẋp + 2αxTp Pxp

+ 2
(
xTp P

T
2 + ẋTp P

T
3

)[
(Ap +Dp)xp(t)

−D

∫ t

t−h

ẋp(s)ds+Bpλ(t)

+ Cpψ(t)− ẋp(t)
]
,

V̇2 + 2αV2 = xTp (t)Qxp(t)

− e−2αhxTp (t− h)Qxp(t− h),

V̇3 + 2αV3 = hẋTp Sẋp

−
∫ t

t−h

e2α(σ−t)ẋTp (σ)Sẋp(σ)dσ.

(27)
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In deriving the first expression in (27), the descriptor
method [Fridman, 2014] was employed. By applying
Jensen’s inequality [Fridman, 2014], the last expression
in (27) can be estimated as follows

V̇3 + 2αV3 ⩽ hẋTp Sẋp −
e−2αh

h
ϖTSϖ. (28)

where ϖ(t) =
∫ t

t−h
ẋp(σ)dσ.

Using the Lipschitz property of the function φ(·), we
obtain:

ψTψ ≤ [φ
(
xe(t)

)
]2 +

[
φ
(
x(t)

)
− φ

(
x̄(t− h)

)]2
≤ L2

[
x2e(t) +

(
x(t)− x̄(t− h)

)2]
= L2

[
x2e(t) + e2(t)

]
= L2 xTp xp.

(29)
Defining y(t) = col{xp(t), ẋp(t), xp(t −

h), 1hϖ(t), λ(t), ψ(t)}, we establish the following
inequality to study ISS property:

V̇+2αV+β
(
L2
1x

T
p xp − ψTψ

)
−γλTλ ⩽ yTΨy. (30)

If condition (30) is satisfied, then it follows that
yTΨy ≤ 0, which implies

V̇ + 2αV ≤ γλTλ

for all xp ∈ R2n×2n, provided that the function φ(·)
satisfies the Lipschitz condition. Therefore, xp(t) is ul-
timately bounded.

Next, consider the control objective (4). From (6) and
(26), we rewrite (1) as

ẋ(t) = Ax(t) +Gφ(x(t)) +Bu1(t− h) +Bλ(t).

If λ ≡ 0, then according to (30), the closed-loop system
is exponentially stable. Defining

∆(µ) = lim
t→∞

|λ(t)|,

and using (19), we obtain

lim
µ→0

∆(µ) = lim
t→∞

hr+1
∣∣∣f (r+1)(t)

∣∣∣ .
Thus, the proposed algorithm ensures the control ob-

jective (4), achieving the accuracy

δ = O
(
lim
t→∞

hr+1
∣∣∣f (r+1)(t)

∣∣∣) . (31)

Theorem 1 is proved.

Remark 3. We establish the boundedness of all signals
in the closed-loop system. Since xp(t) is bounded, it
follows that xe(t) and e(t) are also bounded. The re-
lation xe(t) = x(t) − e(t) implies the boundedness
of x(t). Consequently, x̄(t) is bounded, ensuring that
u1(t) remains bounded. Furthermore, given that f̃(t) is
bounded, it follows that u2(t) is also bounded. There-
fore, all signals in the closed-loop system are bounded.

4 Example
Consider a single-link robot with a flexible joint rotat-

ing in a vertical plane, described by the following param-
eters [Alessandri, 2004]:

A =


0 1 0 0

− k

J1
0

k

J1
0

0 0 0 1
k

J2
0 − k

J2
0

, B =


0
0
0
1

J2

,

G =


0 0 0 0

−mgl
J1

0 0 0

0 0 0 0
0 0 0 0

,

φ(x(t)) = sinx(t), x0 =
[
0.1 0 0.1 0

]T
,

where x = col{x1, x2, x3, x4} ∈ R4, sinx =
col{sinx1, sinx2, sinx3, sinx4}, with x1 and x2 repre-
senting the link displacement and velocity, and x3 and
x4 representing the rotor displacement and velocity, re-
spectively. The parameters J1, J2, k, l, g denote the link
inertia, rotor inertia, elastic constant, position of the cen-
ter of mass, and gravitational acceleration, respectively.
The system parameters are given as:

J1 = J2 = 30 Kg/m2, k = 1 N/m, l = 1 m, g = 10 m/s2.

The Lipschitz constant is equal to 1.
Let us consider the disturbance with the following

form:

f(t) = 2 + 10 sin(0.2t)

+ 5 cos(0.1t) + sin
(
0.15t+

π

4

)
+

100

(5p+ 1)7
sat

(
d(t)

10

)
,

(32)

where sat(·) denotes the saturation function, and d(t) is
a noise signal modeled in MATLAB Simulink using the
”Band-Limited White Noise” block with a noise power
of 0.1 and a sample time of 0.1.

To determine the matrix D, we set P2 = P3 = I ∈
R8. It is then verified that the LMI (9) is solvable for
the variables D,P,R, S when h ≤ 1.2 seconds. For
hmax = 1.2 seconds, we obtain

Dmax =


0.4896 0.5744 0.0085 −0.0101
−0.4052 0.4583 0.0227 0.0098
0.0085 −0.0101 0.4896 0.5744
0.0227 0.0098 −0.4052 0.4583

 .
Since LMI (9) is convex with respect to h, the system

(1) remains stable for h ∈ [0, 1.2] when using the com-
puted matrix Dmax [Fridman, 2014].
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(a) f(t) (b) x(t), h = hmax = 1.2, r = 2 (c) x(t), h = hmax = 1.2, r = 4

Figure 1: Graphs of: (a) f(t), (b) x(t) for r = 2, (c) x(t) for r = 4.

(a) f2(t) (b) x(t), h = hmax = 1.2, r = 2 (c) x(t), h = hmax = 1.2, r = 4

(d) x(t), h = 0.3, r = 2 (e) x(t), h = 0.3, r = 4

Figure 2: Graphs of: (a) f2(t), (b) x(t) for h = 1.2, r = 2, (c) x(t) for h = 1.2, r = 4, (d) x(t) for h = 0.3, r = 2,
(e) x(t) for h = 0.3, r = 4.

Using the acker command in MATLAB, we com-
pute the gain matrix K such that the eigenvalues of
the closed-loop system are {−0.8,−0.8,−0.8,−0.8},
yielding

K = [255.4, 1747.2, 113.2, 96].

For the derivative estimator (15), we set µ = 0.001.
Checking the feasibility of LMI (24) for the givenD and
K, we verify that (24) is feasible for h ≤ hmax = 1.2
seconds.

Let us consider the simulation results.
Fig. 1a shows the graph of the disturbance f(t). Fig. 1b

and Fig. 1c depict the transient response of x(t) for a de-
lay h = hmax = 1.2 seconds, respectively. As can be
observed, the given open-loop nonlinear system is un-

stable, and the disturbance f(t) has a large magnitude.
However, the proposed algorithm ensures the bounded-
ness of all controlled variables in the closed-loop system
(see Fig. 1a and Fig. 1b). Furthermore, when increasing
the value of r in the disturbance predictor, the ultimate
bound δ decreases. As the simulation results indicate,
when r is doubled, the value of δ reduces by a factor of
10. This can be explained by the fact that although in-
creasing r causes the value of hr+1 to rise, the magnitude
lim
t→∞

∣∣f (r+1)(t)
∣∣ decreases faster, leading to a reduction

in the value of lim
t→∞

hr+1
∣∣f (r+1)(t)

∣∣. Consequently, the
value of δ decreases.

Thus, we can see that the proposed algorithm is highly
effective for disturbances with large magnitudes that sat-
isfy the condition lim

t→∞
hr+1

∣∣f (r+1)(t)
∣∣ ≪ lim

t→∞
|f(t)|.
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Now, consider the case where the disturbance f(t)
has an amplitude lim

t→∞

∣∣f (r+1)(t)
∣∣ that increases as r in-

creases. For example, consider the signal f(t) in (32),
where the frequency of each harmonic component in-
creases by a factor of 10 (see Fig. 2a) as

f(t) = f2(t) = 2 + 10 sin(2t)

+ 5 cos(t) + sin
(
1.5t+

π

4

)
+

100

(5p+ 1)7
sat

(
d(t)

10

)
.

As shown in Fig. 2b and Fig. 2c, the bound δ has larger
values compared to the case in Fig. 1. Furthermore, δ
increases significantly as r increases.

The value of δ can be significantly reduced when the
time delay value h is small (h ≪ 1, see Fig. 2d and
Fig. 2e for the case h = 0.3 seconds). In this case, hr+1

can decrease faster than the increase in lim
t→∞

∣∣f (r+1)(t)
∣∣

as r increases, leading to a reduction in the ultimate
bound δ.

5 Conclusion
In this work, we synthesized control algorithms for

nonlinear systems with delayed input signals. The pro-
posed approach employs predictors for both the con-
trolled variable and the disturbance. By applying the
Lyapunov-Krasovskii method, we derived sufficient sta-
bility conditions for the closed-loop system in the form
of LMI solvability.

Simulation results demonstrate that the algorithm is
highly effective for disturbances with large magnitudes
that satisfy the condition limt→∞ hr+1

∣∣f (r+1)(t)
∣∣ ≪

limt→∞ |f(t)| . Moreover, for disturbances whose am-
plitude limt→∞

∣∣f (r+1)(t)
∣∣ increases with r, the control

system designer can select a smaller value of r if h > 1,
and a larger value of r if h≪ 1.

Future research would be devoted to applying the pro-
posed method to the study of control for real-world sys-
tems, taking into account nonlinearity under input de-
lay conditions, such as stepper motor control [Furtat et
al., 2023], vibration stand system [Tomchina, 2023; Za-
itceva et al., 2023], etc.
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Mondié, S., Dambrine, M. and Santos, O. (2002). Ap-
proximation of control laws with distributed delays: a
necessary condition for stability. Kybernetika, 38(5),
541–551.

Furtat, I. B., Fridman, E. and Fradkov, A. (2018). Distur-
bance compensation with finite spectrum assignment
for plants with input delay. IEEE Transactions on Au-
tomatic Control, 63(1), 298–305.

Furtat, I. B. (2012). Adaptive control of an object with a
delay in control without the use of predictive devices.
Control of Large Systems, 40, 144–163.

Furtat, I. B. (2014). Adaptive predictor-free control of
a plant with delayed input signal. Automation and Re-
mote Control, 75(1), 144–163.

Margun, A. and Furtat, I. (2015). Robust control of lin-
ear MIMO systems in conditions of parametric uncer-
tainties, external disturbances and signal quantization.
In Proceedings of the 20th International Conference
on Methods and Models in Automation and Robotics
(MMAR), Miedzyzdroje, Poland, 341–346.

Dugard, L. and Verriet, E. (1997). Stability and Control
of Time-delay Systems. Springer, London.

Najafi, M., Hosseinnia, S., Sheikholeslam, F. and Kari-
madini, M. (2013). Closed-loop control of dead time
systems via sequential sub-predictors. International
Journal of Control, 86(4), 599–609.

Furtat, I. B. and Gushchin, P. A. (2019a). A control al-
gorithm for an object with delayed input signal based
on subpredictors of the controlled variable and distur-
bance. Automation and Remote Control, 80(2).

Furtat, I. B. and Gushchin, P. (2019b). Tracking con-
trol algorithms for plants with input time-delays based
on state and disturbance predictors and sub-predictors.
Journal of the Franklin Institute, 356, 4496–4512.

Fridman, E. (2014). Introduction to Time-Delay Sys-
tems: Analysis and Control. Birkhäuser, Basel.
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