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Abstract
The problem of motion of a dumb-bell satellite in an

orbital plane passing through the attracting center is
considered. It is assumed that the satellite is equipped
with a cabin that is allowed to slide along the straight
connection of the two endbodies. The structure of the
set of stationary configurations depending on the pa-
rameter, which is the position of the cabin, is studied
both analytically and numerically. Especially bifurca-
tion of trivial configurations for which the dumb-bell
is located along the local vertical is considered. It is
shown that this bifurcation is accompanied by the ap-
pearance or disappearance of ”oblique” configurations,
for which all massive points composing the satellite are
not located at the common vertical.
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1 Introduction
The objective of the investigation is to show that the

possible bifurcation of relative equilibrium configura-
tions which can be obtained as the result of a slow
change of the cabin’s position will not lead to the loss
of stability of the ”working”, vertical position of the
satellite. These results are important for the deploy-
ment of large-scale tethered satellite systems.
Stationary configurations are obtained by Routh’s

method (see [Routh, 1892], [Karapetyan, 1998]). The
same method allows to investigate the sufficient con-
ditions of stability of the considered motions. Bi-
furcations of the stationary motions are studied with
the methods of bifurcation theory initiated by Poincaré
(see, for example, [Chetaev, 1961]).
The dynamics of space objects, including moving

parts, has been investigated by many authors. This
usually has been connected with the necessity to esti-
mate the influence of relative motions of moving parts

(crew motion, circulation of liquids, etc.) on the atti-
tude dynamics of a spacecraft [Thomson, Fung, 1965;
Amin, Newton, 2000; Moisseyev, Rumyantsev, 1965].
Investigations in dynamics of space dumb-bells arise
to [Okunev, 1971] (see also [Beletsky, Ponomareva,
1990]).
The possibilities of loss of stability of the symmet-

ric motions were pointed out in [Burov, Karapetyan,
1995], [Burov, 1996] for cross-shaped satellites. The
possibilities of sudden overturn of the satellite due to
loss of tension in the tethered elements were pointed
out in [Burov, Troger, 2000] (see also [Kosenko,
Stepanov, 2006]).
The modern development of large-scale space sys-

tems, in particular, of satellite systems with tethered
elements and space elevators, have posed problems re-
lated to their dynamics. The considered system belongs
to the mentioned class of systems and represents by
itself one of the simplest systems allowing both ana-
lytical and numerical treatment without supplementary
simplifying assumptions such as the so-called ”satellite
approximation”. Another set of applied problems is re-
lated to orientation keeping of the system for deploy-
ment and retrieval of tethered sub-satellites as well as
for relative cabin motions of space elevators. In partic-
ular the problem of the possibility of stabilization (and
destabilization) of the given state of motion due to rapid
oscillations of the cabin exists. This could be the sub-
ject of separate investigation.
In this paper we present an investigations of the exis-

tence, stability and bifurcation of stationary motions in
dependence on the position of the cabin.

2 Description of motion
Let us describe dynamics with Lagrange equations.

2.1 Lagrange equations
We consider the dynamics of a dumb-bell composed

of two points A and B of masses mA and mB , respec-
tively, connected with a massless rod of length `. We



further assume that there exists a third point C of the
mass mC which is constrained to move along this rod
according to a given rule, for example, periodically. Let
us introduce an absolute frame OX1X2X3 (AF) with
the origin at the point O coincident to the attracting
center.
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C (0<f<1)

A

C (f>1)C (f<0)

Figure 1. The dumb-bell configuration

Let P = (P1, P2, P3)T , P ∈ I = {A,B, C} be a
vector giving the position of the system with respect to
the AF. The position of the point C can be described as
C = fA + (1 − f)B, f ∈ R, where f is a variable
parameter. Then the velocities of the mentioned points
are given as vA = Ȧ, vB = Ḃ, vC = ḟA + fȦ −
ḟB+(1−f)Ḃ = ḟ(A−B)+fvA +(1−f)vB . This
allows to write the expression for the kinetic energy as

T = 1
2 [mAv2

A + mBv2
B + mC(ḟA + fvA − ḟB+

+(1− f)vB)2] = T (vA,vB ;A,B; f, ḟ)
(1)

The introduction of the distances rP = (P,P)1/2, P ∈
I allows to write down the expression for the potential
energy as

U = −GM

(
mA

rA
+

mB

rB
+

mC

rC

)
(2)

Finally, the expression for the constraint reads

ϕ = (A−B,A−B)− `2 = 0 (3)

which expresses the inextensibility of the rod.
If the rule of motion of the third point is prescribed,

the Lagrange equations are:

d

dt

∂L

∂vP
=

∂L

∂P
, P ∈ {A,B}. (4)

The Lagrange function reads

L = T − U − 1
2
λϕ, (5)

where λ is the Lagrange multiplier. These equations
have to be analysed together with the constraint equa-
tion (3). We further assume f = const.

Suppose Z is the mass center of the whole system.
Then

−→
ZA = µ1

−−→
BA,

−−→
ZB = µ2

−−→
BA,

−→
ZC = µ3

−−→
BA,

µ1=
mB+(1−f)mC

m , µ2=−mA+fmC

m , µ3=
mA(f−1)+mBf

m
(6)

m = mA + mB + mC

Assume that the points move in the orbital plane pass-
ing through the attracting center. Let us introduce polar
coordinates with the angle measured starting from the
axis OX1. Then

−→
OZ = [r cos ν, r sin ν]T . (7)

Assume that

−−→
BA = [` cos(ν + ϕ), ` sin(ν + ϕ)]T , (8)

i.e. ϕ is the angle between
−→
OZ and

−→
ZA. Then the

kinetic energy can be represented as

T ′(ṙ, ϕ̇, ν̇, r, ϕ) = TZ + Tr (9)

where TZ = m
2 (ṙ2 + r2ν̇2), Tr = 1

2Jz(ν̇ + ϕ̇)2, Jz =
m−1(mAmB

−−→
AB2+mBmC

−−→
BC2+mCmA

−→
AC2). The

use of (6), (7) allows to put

rA =
√

r2 + µ1l(µ1l + 2r cosϕ),
rB =

√
r2 + µ2l(µ2l + 2r cosϕ),

rC =
√

r2 + µ3l(µ3l + 2r cosϕ)
(10)

in the expression for the gravitational potential (2) and
rewrite it as U ′ = U ′(r, ϕ).
Since the system is invariant with respect to rota-

tions about the point N, the coordinate ν – the “true
anomaly” – is cyclic: the Lagrange function L′ =
T ′ − U ′ does not have any ν dependency, and

Jν =
∂L′
∂ν̇

= mr2ν̇ + m̃l2(ν̇ + ϕ̇) = p = const,

m̃ = µ2
1mA + µ2

2mB + µ2
3mC (11)

The function (11) is an appropriate first integral, and
the order of the system can be reduced by means of the
Routh reduction.
This reduction yields Routh’s function:

R = R(ṙ, ϕ̇, r, ϕ; p) = [L′ − pν̇] =
= 1

2

(
mṙ2 + mr2l2m̃ϕ̇2

J0
+ pl2m̃ϕ̇

J0
− p2

J0

)
− Ua

J0 = mr2 + l2m̃
(12)



and the equations of motion can be written as

d

dt

∂R

∂ẏ
=

∂R

∂y
, y ∈ {r, ϕ} (13)

3 Stationary motions and their stability
Here we consider stationary motions and obtain the

conditions of their stability.

3.1 Stationary configurations: Existence
In order to investigate the stability of the stationary

motions we consider the critical points of the amended
(reduced) potential

Ua(r, ϕ; p) = −R(0, 0, r, ϕ, p) =
p2

2(mr2 + l2m̃)
−

−GM

(
mA

rA
+

mB

rB
+

mC

rC

)
=

p2

2J0
+ U

(14)
Critical points of the amended potential are the solu-

tions of the equations:

∂Ua

∂r
= −p2mr

J2
0

+ GM(rP0(r, ϕ; f)+

+l cos ϕP1(r, ϕ; f)) = 0
∂Ua

∂ϕ = −GMlr sin ϕP1(ϕ, r; f) = 0

(15)

where

Pk(r, ϕ; f) =
mAµk

1

r3
A

+
mBµk

2

r3
B

+
mCµk

3

r3
C

(16)

The second equation of (15) possesses solutions:

I. ϕ = 0,
II. ϕ = π,
III. (r, ϕ) : P1(r, ϕ; f) = 0,

For the solutions I and II the points N, A, C and B
are located on the same straight line radially oriented
and passing through the attraction point (center of the
Earth) (see Fig. 2).
For the solution III the system moves in one of the so-

called ”oblique” configurations. They are symmetric
with respect to the local vertical, as shown in Fig. 3.
The dependence of the integral’s constant p on the al-

titude r and the angle ϕ on can be presented as:

p2 =
GMJ2

0

mr
(rP0 + l cosϕP1) (17)

For every fixed value of f and p the corresponding
curve on the plane (r, ϕ) intersects the sets of the
curves I

⋃
II

⋃
III = S, at the points of appropriate

stationary motions.
For the solution I-III the relation between radius r and

inclination ϕ can be drawn as in Fig. 4 for f < 0, as
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Figure 2. Solutions I and II
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Figure 3. Solutions III
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Figure 4. Curves I-III for f < 0 at (r, ϕ)

in Fig. 5 for f ∈ [0, 1] and as in Fig. 6 for f > 1,
respectively.
Here and below in the figures we use dimensionless

parameters, chosen in such a way that M = 1, G =
1, l = 1. For all figures the following values of
masses are used: mA = mB = 20/41, mC = 1/41.
If we add to the Figs 4-6the curves, determined by

(17) and parameterized by the integral constant p, then
for every p we obtain the solutions as intersection with
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Figure 5. Curves I-III for f ∈ [0, 1] at (r, ϕ)
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Figure 6. Curves I-III for f > 1 at (r, ϕ)

the curves I-III.
One can focus on the branching of solutions I, II ac-

companied by the birth (or disappearance) of solution
III. It is instructive that for certain, sufficiently large
values of f the branch starts for example at I and tends
asymptotically to ϕ = ±π/2 for r → ∞ However, for
other sufficiently moderate values of f the branch III
connects solutions I and II.
These two classes of curves are separated from each

other by a saddle-like curve, existing for f = f∗. This
value of f can be found from the equation

P1(π, r; f∗) = 0 (18)

as a condition of existence of the unique solution of
(18) with respect to r. This equation reads explicitly as

mAµ1

|r + µ1l|3 +
mBµ2

|r + µ2l|3 +
mCµ3

|r + µ3l|3 = 0. (19)

For fixed values of mA, mB and mC the set (19) in
the plane (r, ϕ) is given in Figs.8-11. The curve (17) in
the same plane (r, ϕ) for fixed values of f and p allows
to find geometrically the appropriate orientation of the
considered system.
According to the theory of bifurcation by following

along a connected component of the curve (17) one can
observe the change of stability properties of appropri-
ate steady motions.

Fig. 7 illustrates the set I-III for f = −5 and its in-
tersection with the curve (17). The intersection for
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Figure 7. Curves I-III and (17) for f = −5 at (r, ϕ)

f = 1/2 is shown in Fig. 8. Intersections of appro-
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Figure 8. Curves I-III and (17) for f = 1/2 at (r, ϕ)

priate curves for f = 5, f = 10.32 and f = 12 respec-
tively are shown in Figs. 9 through 11.
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Figure 9. Curves I-III and (17) for f = 5 at (r, ϕ)
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Figure 10. Curves I-III and (17) for f = 10.32 at (r, ϕ)
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Figure 11. Curves I-III and (17) for f = 12 at (r, ϕ)

3.2 Stationary configurations: Stability
For the investigation of sufficient conditions of sta-

bility of the stationary motions we must consider the
second derivatives of the reduced potential Ua:

∂2Ua

∂r2 = 2p2mr
J3
0

∂J0
∂r − p2m

J2
0

+ GM(P0 − 3S)
∂2Ua

∂ϕ∂r = −GMl sin ϕ(P1 + r ∂P1
∂r )

∂2Ua

∂ϕ2 = −GMl(cos ϕP1 + l sin2 ϕ∂P1
∂ϕ )

(20)

where

S(r, ϕ) = mA(r+µ1l cos ϕ)2

r5
A

+ mB(r+µ2l cos ϕ)2

r5
B

+

+mC(r+µ3l cos ϕ)2

r5
C

∂P1
∂r = −3

(
mAµ1

r4
A

∂rA

∂r + mBµ2
r4

B

∂rB

∂r + mCµ3
r4

C

∂rC

∂r

)
=

= −3(Q1r + Q2l cos ϕ)
∂P1
∂ϕ = −3lr sin ϕ

(
mAµ2

1
r5

A
+ mBµ2

2
r5

B
+ mCµ2

3
r5

C

)
=

= −3lr sin ϕQ2

Qk(r, ϕ; f) = mAµk
1

r5
A

+ mBµk
2

r5
B

+ mCµk
3

r5
C

We now consider separately the cases ϕ = 0, ϕ = π,
P1(r, ϕ) = 0.

3.3 Stability of the class I. motions
Let ϕ = 0, cos ϕ = 1. Hence the mixed derivative

of the amended potential vanishes, and sufficient con-
ditions of stability read:

Crr = p2m(3mr2−l2m̃)
(mr2+l2m̃)3 − 2GM

[
mA

|r+µ1l|3 + mB

|r+µ2l|3 +

+ mC

|r+µ3l|3
]

> 0

Cϕϕ = −GMl
(

mAµ1
|r+µ1l|3 + mBµ2

|r+µ2l|3 +

+ mCµ3
|r+µ3l|3

)
> 0

(21)
The relative equilibria are drawn on the plane (p2, r)
(see Fig. 12). The first condition provides stability of
the system with respect to the radial variable. This con-
dition depends on the value of the integral constant p.
The second condition provides stability of the system
with respect to its deviations from the local vertical.
This condition does not depend on p. It is remarkable,
that Cϕϕ has the term P1(0, r; f) as a multiplier. It
means the birth of oblique motions of type III and is
accompanied by a change of the degree of instability of
the motion from class I. The relative equilibria which
are located above the curve Γ1 are Lyapunov stable.
For the equilibria below this curve the degree of insta-

0

2
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Γp 1

Figure 12. Curves I and (17) for f = −5 at (r, p2)

bility is equal to 1 or 2, and they are Lyapunov unstable.

3.4 Stability of the class II. motions
Let ϕ = π, cos ϕ = −1. Then conditions for stability

may be written as follows:

Crr = p2m(3mr2−l2m̃)
(mr2+l2m̃)3 − 2GM

[
mA

|r−µ1l|3 +

+ mB

|r−µ2l|3 + mC

|r−µ3l|3
]

> 0

Cϕϕ = GMl
(

mAµ1
|r−µ1l|3 + mBµ2

|r−µ2l|3 +

+ mCµ3
|r−µ3l|3

)
> 0

(22)

The first condition provides stability of the system with
respect to the radial variable. This condition depends



on the value of the integral constant p. The second con-
dition provides stability of the system with respect to its
deviations from the local vertical. This condition does
not depend on p. It is remarkable, that Cϕϕ has the term
P1 as a multiplier. It means that the birth of oblique
motions of the III. kind is accompanied by a change of
degree of instability for motions from the class II. The
situation with stability is similar as for the class I. mo-
tions. The set of motions are drawn in the plane (p2, r)
(see Fig. 13). The equilibria located above the curve G
are Lyapunov stable.
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Figure 13. Curves II and (17) for f = −5 at (r, p2)

3.5 Stability of the class III. motions
Let P1(r, ϕ) = 0. For this class of motions the con-

ditions of stability with respect to the radius and with
respect to the angle are coupled and can be presented,
for example, as

Cϕϕ =
[
∂2U

∂ϕ2

]

III

= −3GMl2r sin2 ϕQ2 > 0 (23)

D =
[

∂2U
∂r2

∂2U
∂ϕ2 −

(
∂2U
∂r∂ϕ

)2
]

III

=

= 3G2M2l2 sin2 ϕr × (Q2F − r (Q1r+
+Q2l cosϕ)2

)
> 0

F = P0mr2 − 3m̃l2mr2 + m̃l2 + 3l2 sin2 ϕQ2

Here we used effectively for the simplification the con-
dition P1 = 0. One can easily see that the condition
(23) fails for all values of parameters. It means that the
III. motions are unstable, if D < 0, or one can pose the
question on their gyroscopic stabilization if D > 0.
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