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Abstract

The study investigates a model of the dynamics of a
two-rotor vibrating system (VS) with rotors of different
masses and a non-stationary elastically attached mass.
It is assumed that the supporting platform of the VS
moves in the vertical plane, taking into account the ro-
tation angle. Using computer modeling, the influence of
rotor non-identicality on the stability of the frequency-
coordinate synchronization regime is analyzed under
various loading conditions. A special synchronization
control algorithm, synthesized using the speed-gradient
method, is employed in the work to ensure a stable syn-
chronous regime.
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1 Introduction

One of the problems that arises in the operation of
multi-rotor vibration systems (MRVS) is the synchro-
nization of the angular positions of the unbalanced rotors
of the vibration exciters [Blekhman, 1994; Blekhman
and Fradkov, 2001]. As is known, the synchronization
process is influenced by many factors: the manufactur-
ing accuracy of the unbalanced rotors, the method of
loading the vibration system, and so on. A stable syn-
chronous rotation of the vibration exciter rotors allows
for the maximum amplitude of the sieves’ oscillations
with bulk material being sifted at the same energy ex-
penditure [Blekhman, 1994].

Additional possibilities for various technological pro-
cesses are provided by system asymmetry. In particu-
lar, for processes such as vibrational transport of dusty,
wet, and sticky materials, where it is desirable to ensure
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complex trajectories of the working element. Asymme-
try can be introduced either programmatically or phys-
ically by using non-identical unbalanced vibration ex-
citers (UVEs). Maintaining a stable synchronous mode
can be achieved using special control algorithms. In the
development of such control algorithms, the speed gra-
dient method has proven to be effective [Blekhman and
Fradkov, 2001; Andrievsky et al., 1996; Miroshnik et al.,
2000; Andrievsky and Fradkov, 2021; Borisenok and
Gogoleva, ]. Some interesting results can be found in
[Tomchina, 2023; Zaitceva et al., 2023].

In this work, the dynamics of a two-rotor vibration sys-
tem with non-identical rotors and a non-stationary mass
are considered. Taking into account the dynamics of the
mass in the vibration system model allows for a more
effective evaluation of the quality of the control algo-
rithms. To study these processes, the SV-2 vibration test
bench was created. The mass of the sifted material was
considered in its design as an additional non-stationary
load, attached via an elastic connection. The other re-
lated approaches to the problem can be found in [Za-
itceva et al., 2025; Shagniev, 2025].

2 Synthesis of the dynamic model of a multi-rotor
vibration system (MRVS)

In this section, based on the design of the mechani-
cal part of the SV-2/SV-2M vibration test bench, models
of the multi-rotor vibration system (MRVS) are derived.
Figure 1 shows the vibration test bench under study,
with a detailed description provided in [Blekhman, 1994;
Blekhman and Fradkov, 2001]. Unlike the original two-
rotor SV-2/SV-2M scheme, the computational MRVS
scheme, shown in Figure 2, allows for an increase in the
number of rotors up to n.

The coordinate system associated with the platform is
denoted as 0'z'y’. The coordinates of the platform cen-
ter (point 0”) are {x., y.}. The platform is mounted on
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elastic supports (springs). The abscissas of the spring at-
tachments are x,,; = +a. The axes of rotor rotation are
perpendicular to the plane of motion and are assumed
to be strictly horizontal. Therefore, the displacement of
the MRVS along the 0z axis is not considered in this
model. Consequently, the four elastic supports can be
represented as two springs with corresponding equiv-
alent stiffness cg;, neglecting their transverse stiffness
along the 0z axis and torsion.

Top view

Front view

Figure 1. Mechanical part of the SV-2/SV-2M vibration test bench:

1 — electric motors driving the rotors; 2 — cardan shafts connecting
motors and rotors; 3 — unbalanced rotors; 4 — supporting frame; 5
— platform (vibrating working body); 6 — lower springs isolating the
platform from the frame; 7 — upper springs for load attachment; 8 —
load support base.

In Figure 2, the following notations are used: x., Y,
©», pi, © = 1,...,n are the generalized coordinates of
the system, where .9 = 0, y.o = 0 are the coordinates
of the center of mass of the supporting body (platform)
of the MVM in a Cartesian coordinate system rigidly at-
tached to the foundation; ¢ is the rotation angle of the
platform in the vertical plane Oxy, measured counter-
clockwise; ; is the rotation angle of the i-th unbalance
about the motor axis, measured counterclockwise; M; is
the driving torque of the ¢-th motor; k.¢; is the resist-
ing torque of the ¢-th unbalance; m; is the mass of the
MVM platform; m; is the mass of the i-th unbalance;
0; is the eccentricity of the i-th unbalance relative to the
rotation axis; r; is the distance from the platform center
of mass to the rotation axis of the i-th unbalance; ¢y,
co2 are the equivalent stiffness coefficients of the elas-
tic supports along the vertical and horizontal axes; 3 is
the damping coefficient in the springs; k. is the viscous
friction coefficient in the bearings of the vibration ex-
citers; g is the gravitational acceleration; AUy, AU, are
the spring elongations.

The rotors in this model may have identical or differ-
ent mass—inertial parameters (m; and 0;, ¢ = 1,...,n).
my, 1s the mass of the load; x, y;, are the coordinates
of the load center of mass; c¢;; and c12 are the horizon-
tal and vertical stiffness coefficients of the upper spring
connecting the load to the platform.
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The coordinates of the centers of mass of the unbal-

anced rotors in the fixed coordinate system are expressed
as:

i = T+ 15080+ 0;co8 (@ + i), n
Yi = Yo + 1ising + g;sin (¢ + @) .
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Figure 2. Computational model of the MVM with load (front view).

The kinetic energy of the system is given by:

T—fmox + moyc+05meo+2yLmo+
3J9% + @ mezcowﬁ%Zmz

$ E Jipi + Z [%'%mmgi COS Y; —

i=1 i=1

Topmir; sin @i + Tepm; o sin(p + @;)—
e 0; sin(p + ©;) + Yepimyr; cos p+
Yepmio; cos(p + ;) + Yepimioi cos(p + ;)] -

(@)

n
where mg = mgs + > (my), J; = Joi + myo? and J =
=1

Js + Z Ji + Z (m;r?) are the moments of inertia of
i=1

the ¢-th rotor and the platform, respectively.
The potential energy of the MVM has the form:

n
IT = mogye. + mrgyr +g Z (m;r; sin o+

1=1
m;;sin (¢ + ;) + co1 (mg + a2 cos? gp) + co2 gyf
+a? sin? gp) + %cu (xe — xL)2 + %012 (Ye —yL)".
3
The equations of motion of the MVM, obtained in the
form of Lagrange equations of the second kind, are writ-
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ten as:
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“
where M; are the control moments, ¢ = 1,...,n; F,
and [, are the projections onto the Ox and Oy axes of
the resultant external force F, caused by the velocity and
mass of the processed material falling from the platform.

3 Synthesis of synchronization algorithms for a
two-rotor vibratory system with a nonstationary
load

Integral-differential speed gradient algorithms, par-
ticular cases of which are proportional, integral, and
proportional-integral speed gradient algorithms, are de-
scribed in [Fradkov et al., 2013].

In this work, a proportional-integral speed gradient al-
gorithm is applied for synchronization, synthesized for
the vibratory system model taking into account a non-
stationary load.

Important types of synchronization for vibratory sys-
tems are frequency and coordinate synchronization of
vibratory exciters.

Frequency synchronization is understood as the exact
matching of the exciter speeds:

Ws = Wy} s,r=1,...,k. ®)]

In practice, approximate synchronization is consid-
ered:

lws —wr| <, (6)
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where € > 0 can be chosen as € = 0.05w™, analogously
to the given accuracy in the conventional definition of
the transient process time.

Coordinate synchronization occurs when the outputs
or certain phase coordinates of one of the vibratory ex-
citer subsystems coincide, up to constant values, with
the corresponding coordinates of other subsystems for
all t > to; that is, the exciter phases p;, ¢ = 1,...,k,
satisfy the identities:

Ps (t) -

In practical problems, expression (7) is replaced with
an approximate one:

s (t) —

The system is said to exhibit approximate frequency-
coordinate synchronization if conditions (6) and (8) hold
simultaneously for some ¢ > 0, ¢; > 0, and Ly, =
const [Fradkov et al., 2013].

This work is devoted to solving the problem of synthe-
sizing a controlled algorithm for approximate frequency-
coordinate synchronization of a nonstationary vibratory
system with non-identical rotors.

According to the speed gradient scheme [Fradkov
et al., 2013], we obtain the equation for calculating con-
trol torques:

or(t) = Lgr, s,r=1,... k. @)

or(t) — Le| <1, s,r=1,....k. (8)

My =-m[1-a)(H-H")p1+
T (P1E @)+ F (o1 2 + A‘P*l)]
My =—7[(1—-a)(H - H") g+
H(orE@)+ 7 (prEe2 + ASD*Q)] ;

©))

where ¢, is the integration constant, H* is the given to-
tal mechanical energy of the system.

Since the expression for the total mechanical energy [
is cumbersome, it is reasonable to reduce it for simplify-
ing the calculation of control actions. It is assumed that
this simplification weakly affects the closed-loop system
dynamics due to the robust properties of speed gradient
algorithms.

Finally, the electromechanical control torques are cal-
culated as:

M1 -1 [ ].704) (H H*) g01+

F(r1t¢)+ 7 (pr1te2+ A‘P*l)}
Mg —Y2 [ Oé) (H H*) (,0 +

(@1 @2) + 1 (o1 i<P2+A<P*2)} ;

(10)

where H is the reduced mechanical energy of the vibra-
tory system with non-identical rotors:

H = tmoi? + Imoy2 + 3193 + L a3~
m101 8N QY1T:P1 + M2 02 COS YacP2—
M2 02 SiN Y22 + M101 COS P1YcP1+ (11)
mogyYe + m101g8in 1 + ma2gsin pa+
cor (22 4 a?) + co2y?.
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Figure 3. Simulation results without load for m1 = mo = 1.5
kg.
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Figure 4. Simulation results without load for M1 = 1.5 kg, mg =
2.5 kg.

4 Results of computer simulation of the dynamics of
a two-rotor vibratory system with non-identical
rotors and variable load

This section presents the results of studying the dy-
namics of a vibratory system with rotors differing in
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mass and a variable load, obtained from the analysis of
system (4) in MATLAB.

It is assumed that loading does not start at the moment
of system start-up but after the system reaches the oper-
ating regime at time ¢;, which exceeds the time of ini-
tial rotor synchronization. The mass of the bulk material
(load) changes starting from time ¢;. Before this mo-
ment, the load mass is constant (corresponding to the
mass of the loaded tray).

The load is considered as an elastically attached point
mass. During the simulation, the stability of the syn-
chronous mode was analyzed depending on the average
loading rate and the established average load mass. It is
assumed that at time ¢, the average amount of material
being added approximately equals the amount removed
from the platform, leading to a practically constant load
mass for t > ts.

The reduced expression for the mechanical energy (11)
allows calculating the control torques based on the posi-
tions and velocities of the platform and rotors. Platform
velocity information can be obtained using an observer
similar to that described in [Fradkov et al., 2016]. Thus,
the synchronization algorithm (10) can be practically im-
plemented.

The system parameters corresponded to the SV-2 test
stand: m, = 9 kg, ¢ = 9.81 m/s?, co1 = cg2 = 5300
N/m, C11 = C12 = 2650 N/m, kc =0.01 J/S, ﬂ =5 kg/S,
Ji = Jo = 0.014 kg'm?, mp(0) = 1 kg, m; = ma
1.5kg, 01 = 02 = 0.04 m.

The existence of a stable synchronous mode was con-
firmed by plots of the difference in angular velocities
(¢1 — ¢2) and the phase difference Ap = @1 — po.
As seen from the figures, the required relationship be-
tween the average speeds is satisfied (|ws — w,| < e,
where w; = ¢;), and the phase shift Ap(co) stabilizes
at a constant level, which corresponds to the definition
of coordinate synchronization. In the table, the coordi-
nate synchronization time ¢, is determined from the
phase difference plots as the time at which A enters
the 5% neighborhood of its steady-state value Ag(c0),
while the transient time ¢, is determined from the rotor
angular velocity plots.

At the first stage, the permissible difference in unbal-
ance masses was investigated, at which the synchroniza-
tion algorithm (10) ensures stable frequency-coordinate
synchronization for the system without a load. Algo-
rithm parameters: v; = v = 0.012, a3 = as = 0.25,
H* =2001.

The simulation results are shown in Figs. 3-5 and in
Table 1. The figures present plots of the horizontal and
vertical coordinates of the platform, x. and y.; plots of

the rotor angular velocities w;; plots of the phase and
velocity differences of the rotors, Ap = @1 — @9, (W1 —

wo); the system energy H (t); and the load mass m,.
As seen from Table 1, the control algorithm (10) en-

sures a stable synchronous mode for unbalance masses

differing by no more than a factor of two (m; =
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Table 1. Simulation results of the system without load
3N my,ma | tsyn | te Range of y..(c0)
1
3 20 , : ke) | ® | © (m)
0 10 20 30 15,25 | 1.2 | 0.8 | —0.025 < y. < 0.005
t,s 15,15 | 06 | 0.5 —0.020 <y, <0
rf)l(t)-qbz(t) 125,25 | 1.8 | 1.1 | —0.030 < y. < 0.010
=] .
c 2 10,25 | — | — —
%-:N 0 3
T, 1.25,my = 2.5). In the case of m; = 1.0 kg and
< -2 me = 2.5 kg, the synchronous mode is not achieved

0 10 20 30 (Fig. 5). With an increase in the difference between the
rotor masses, the values of ty,, ty, and the oscillation
t,s amplitude y.(t) increase.

At the second stage, the dynamics of the two-rotor
vibratory system with non-identical rotors and variable
load were studied. The programmed change of mass m,
was defined by the loading rate V. The maximum mass
of the attached load, according to the technological spec-
ifications of the SV-2 stand, does not exceed 6 kg.

The simulation results are shown in Table 2 and in

Figs. 6-8. The tray mass at the initial moment was
mr(0) = 1 kg. The average loading rates V ranged
from 1 to 2.5 kg/s.

Figure 7. Simulation results of the system with load for my = 1.5
kg, mo = 2.5kg, H* = 3001,V = 1.0kgls, t1 = Ts,
to = 12s.
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Figure 8. Simulation results of the system with load for my = 1.5

kg, mo = 2.5kg, H* = 3001,V = 1.0kgls, t1 = Ts,

to = 12s.

Table 2. Simulation results of the system with load

my, Mo | t1,ts Vv Tsyn te
(kg) (s) | (kgls) | (5) | (9)
1.5,2.5 7,12 1.0 1,5 1.2
1525 | 10,12 | 25 [ 15| 1.2
1.25,2.5 | 7,12 1.0 42 | 6.25
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Thus, if the loading of the tray begins at t; > %y, the
variation of my,(t) does not disturb the established op-
erating regime of the vibrator unit. The transient time
for the model with the attached load (m(0) = 1 kg)
is somewhat longer than for the model without the load
(Table 1). Since the loading begins after rotor synchro-
nization is achieved, the loading rate does not affect %y,
and t,. At the maximum admissible difference between
the rotor masses (m1 = 1.25 kg, my = 2.5 kg), the tran-
sient time increases sharply in the presence of the load.

5 Conclusion

The presented results of computer simulations al-
low us to conclude that the synchronization algorithm
(10), which uses the reduced expression for energy H
and does not account for the dynamics of the elasti-
cally attached load, ensures a stable synchronous mode.
Thus, the proposed approach to implementing control
via adaptive speed gradient algorithms, based on sim-

plifying the expression for the total mechanical energy,
eliminates the need for sensors measuring load parame-

ters and ensures the achievement of the control objective,
as well as the maintenance of a stable synchronous mode
under nonstationary loading conditions.

As seen from the presented results, the control algo-
rithm (10) provides a stable synchronous mode for a two-
rotor vibratory system with non-identical rotors when
the unbalance masses differ by no more than a factor of
two. For larger differences, synchronization is not main-
tained.
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