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1 Multi-level Quantum
Control System

We consider a forced (controlled) system repre-
sented by the state equation

ih̄
d

dt
|ψ(t) >= HA|ψ(t) > +ih̄B|u(t) > (1)

where the system Hamiltonian operators HA

and B are taken to be matrices of dimensions
n× n and n×m respectively.

Applying the classical variational principle
the state vector of the quantum dynamical sys-
tem (1) can be represented in the form as

|ψ(t) >
= U(t− t0)|ψ(t0 > +

∫ t

t0
U(t− τ)B|u(τ) > dτ

(2)
where U is the unitary matrix operator corre-
sponding to the Hamiltonian HA.

We assume that the eigenvalues a1, a2, . . . an

of the system matrix operator HA are distinct.
Then the adjoint of the unitary operator U(t)
assumes the representation

U+(t) =
n∑

r=1

e
i
h̄ artPr =

n∑
r=1

gr(t)Pr (3)

with gr(t) = e
i
h̄ art, n = 1, 2, . . . n.

Then the system state is given by taking t0 =
0 with initial state |ψ(0) >,

|ψ(t) >
= U(t){|ψ(0) > +

∫ t

0

∑n
r=1 gr(τ)PrB|u(τ) > dτ}

= U(t){|ψ(0) > +S0|W (t) >}
(4)

where
S0 = [P1B,P2B, . . . , PnB] (5)

and

|W (t) >=


|w1(t) >
|w2(t) >

...
|wn(t) >

 (6)

with |wr(t) >=
∫ t

0
gr(τ)|u(τ) > dτ .

1.1 Formulation of the Optimal
Control Problem

Given a quantum mechanical control system de-
scribed in section-1 in the Hilbert space H =
L2(ICn) by the time evolution state vector as

ih̄
d

dt
|ψ(t) >= HA|ψ(t) > +ih̄B|u(t) > (7)

the optimal control problem is to find the con-
troller |u(t) >∈ L2(ICm) which steers the initial
state |ψ(0) > to the final state |ψ(T ) > in ICn
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and minimizes the energy cost functional over
the time interval 0 ≤ t ≤ T prescribed by

J(u) =
∫ T

0

< u+(t)|Q|u(t) > dt (8)

where Q is a positive definite self-adjoint oper-
ator in the respective Hilbert space of the con-
troller |u(t) >.

Without loss of generality the operator Q in
(8) of the cost functional may be taken to be
unity operator I. Because, for a positive definite
self-adjoint operator Q there exists a nonsingu-
lar operator P such that Q = P+P .

Now put |v(t) >= P |u(t) >. Then (8) be-
comes

J =
∫ T

0

< v+(t)|v(t) > dt = ‖|v > ‖2 (9)

the norm of the vector |v(t) > and in this case,
we have to replace |u(t) > by |v(t) > and B by
BP−1 in (1).

Hence, in general, we can take the cost func-
tional (8) to be the norm functional as

J(u) = ‖|u(t) > ‖2. (10)

1.2 Solution of the optimal prob-
lem

The solution of the optimal control problem is
given in the form of the following theorem where
the notations in the theorem will be clear when
we describe optimal control of quantum two-
state system.

Theorem
If the rank of controllability matrix S0 defined

by (5) of the system (7) is n, then the optimal
control |û(t) > minimizing the energy cost func-
tional (10) which transfer the state of the system
from the initial state |ψ(0) > to the target state
|ψ(T ) > can be formulated as

|û(t) > = K(t)|Y >
|Y > = U−1(T )|ψ(T ) > −|ψ(0) >, 0 ≤ t ≤ T

(11)
where U+(T ) is given by (3) for t = T and K(t)
is an m × n matrix function of t(0 ≤ t ≤ T )

written as

K(t) = F (t)S+
0 (S0DS

+
0 )−1 (12)

with

F (t) = [Im(g1), Im(g2), . . . , Im(gn)],

and Im(gr) is a scalar matrix as

Im(gr) =


gr(t) 0 . . . 0

0 gr(t) . . . 0
. . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . gr(t)


1.2.1 Electron spin:Quantum two-state

system

The spin state of an electron is represented on
IC2 in the basis formed by the eigenstates of the
spin operator

Sx =
h̄

2

(
0 1
1 0

)
(13)

The control system is defined by

ih̄
d

dt
|ψ(t) >= Sx|ψ(t) > +ih̄α|u(t) > (14)

The eigenvalues of Sx are h̄
2 and − h̄

2 . The

eigenvectors are given by | ↑>= 1√
2

(
1
1

)
and

| ↓>= 1√
2

(
1
−1

)
. The projection operators,

for a1 = h̄
2 and a2 = h̄

2 , are P|↑> = 1
2

(
1 1
1 1

)
and P|↓> = 1

2

(
1 −1
−1 1

)
respectively.

The adjoint of unitary operator U(t) is

U+(t) = e
i
h̄ Sxt = eia1tP|↑> + eia2tP|↓>.

The optical control of the system can then be
synthesized using the explicit formula

|û(t) >= K(t)|Y > (15)

where

K(t) = F (t)S+
0 (S0DS

+
0 )−1 (16)
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and

|Y >= U−1(T )|ψ(T ) > −|ψ(0) > (17)

Now

S0 = [P1B,P2B] = α[P1, P2] (18)

Then

S+
0 = α

[
P1

P2

]
(19)

Also
F (t) = [g1(t)I, g2(t)I] (20)

Now we have

F (t)S+
0

= [g1(t)I, g2(t)I]α
[
P1

P2

]
= α[g1(t)P1 + g2(t)P2]

(21)

Again

D =
[
D11 D12

D21 D22

]
(22)

where

D11 =
[
< g1g1 > 0

0 < g1g1 >

]
(23)

and similarly

D12 = < g1(t)g2(t) > I,
D21 = < g2(t)g1(t) > I,
D22 = < g2(t)g2(t) > I.

We then at once obtain

S0DS
+
0 = α2(TP1 + TP2) = α2T. (24)

Hence

(S0DS
+
0 )−1 = (α2T )−1 =

1
α2T

. (25)

Now

K(t) = F (t)S+
0 (S0DS

+
0 )−1

= α[g1(t)P1 + g2(t)P2] 1
α2T

= 1
αT [g1(t)P1 + g2(t)P2]

(26)

In special case, let us try to find |û(t) > for
which the system is transferred from |ψ(0) >=[

1
0

]
to the state |ψ(T ) >=

[
0
1

]
. Then

|Y >

=
(
e

iT
2 P1 + e−

iT
2 P1

) [
0
1

]
−

[
1
0

]
=

(
e

iT
2

2

[
1
1

]
+ e

−iT
2

2

[
−1
1

])
−

[
1
0

]
(27)

Thus the optimal control of the two-level
Pauli spin system minimizing the system is given
by

|û(t) >
= 1

αT [g1(t)P1 + g2(t)P2]|Y >

= 1√
2

{
e

i(t+T )
2 | ↑> +e

−i(t+T )
2 | ↓>

}
− |ψ(0) >

(28)
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