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Abstract 
 The interaction of external and 1:1 internal

resonances in 2DOF nonlinear systems with
symmetric cubic characteristics is studied. Steady–
state modes in undamped systems are studied, with an
emphasis on stability properties of coupled steady-
state modes (CSMs) that appear in a vicinity of the
primary resonance. 
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1  Introduction
Dynamic behavior of nonlinear systems with

closed eigenfrequencies for at least two natural modes
(circular plates, disks, cylindrical shells and other
structures) was studied in a few works (see, e. g.,
[Williams and Tobias, 1963; Evensen, 1966; Sridhar,
Mook and Nayfeh, 1978; Yasuda and Asano, 1986;
Nayfeh and Balachandran, 1989; Nayfeh and
Balachandran, 1993; Ribeiro and Petyt, 1999; Touze,
Thomas and Chaigne, 2002; Vakakis, 1992;
Manevich A. I., Manevich L. I., 2005]. It has been
established that 1:1 internal resonance results in
appearance of coupled (two-mode) steady-state and
non-stationary oscillations under external resonance
condition. 
  The stability properties of these modes until now
were studied only on illustrative examples or for
particular structures, and some general results have
been obtained only for autonomous systems [10]. In
this paper the interaction of 1:1 internal resonance
with primary external resonance under harmonic
excitation in 2DOF cubic symmetric systems is
investigated with focusing on stability properties of
the steady-state coupled modes for undamped
systems.
  

2 Governing Equations and Solution by the
Multiple Scales Method

2.1  Equations of motion 
  In the main cubic approximation for symmetric
systems the unharmonic part of the potential can be
assumed in the form
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,   (2.1)

where 1 2,U U are principal coordinates of the
linearized system,  ε is a small parameter. An external
force F (per unit of mass) is assumed to act only on
the first degree of freedom; damping coefficients are
supposed to have the order of ε, these coefficients for
both principal coordinates being the same. So
equations of motion are as follows:
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The eigenfrequencies are assumed to be close, and
the difference between the external force frequency
and the first eigenfrequency is also assumed to be
small. These conditions are specified by the following
expressions:

1 2,ω ω ω ω ε σ≡ ≡ + ,  ω ε δΩ = +       (2.3)

where σ and δ  are detuning parameters. After
introducing dimensionless variables tτ = Ω ,

0/u U U= , where 0U  is a characteristic scale, the
set (2.2) with account of (2.3) and smallness of ε
takes the form:
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where the upper dot denotes differentiation with
respect to τ and  following notations are introduced:
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2.2   Solution by the multiple scales method
 

The set of equations (2.4) has been solved by the
multiple scales method. Introducing the fast and slow
times 0T t= , 1 0T Tε= , ...,  expanding the solution
in  series by ε

...,...),(,...),( 10110 ++= TTuTTuu kkok ε (k=1,2),

                       
and applying the standard procedure of the method,
one obtains the equations of the first and second order
approximations. Solution of the first order equations
can be taken in the form

)2,1()(cos0 =+Ω= ktau kkk θ  (2.6) 

Then in the second order approximation the
conditions of vanishing secular terms results in the
following set of equations governing the slow
modulation of amplitudes 1 2,a a  and phase

components 1θ , 2θ  of two linear modes:
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where 2 1γ θ θ= − . It can be seen that equations (2.7)
in the case 0µ =  may be written in a
“quasihamiltonian” form
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where Hamiltonian H  is as follows:
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So the first integral of set (2.7) for 0µ =  is

1 2 1 2( , , , )H a a Cθ θ =                       (2.10)

 3   Steady-state modes in undamped systems
Consider steady-state (stationary) modes in

undamped systems. For ka const= , k constθ =
( 1,2k = ), one obtains the following set of equations:
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where the nonlinear coefficients, detuning parameters
and the external force are normalized by dividing
them by 12с :
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The uncoupled (driven) mode, for which
2 0a = , is governed by the equation (from the second

equation (3.1))

3
1 1 1 0 13 8 4 sina a fα δ θ∗− = ,         (3.3)

where (from the first equation (3.1))
1 (2 1) / 2mθ π= − , 0,1,...m = , so 1sin 1θ = ± .

Equation (3.3) provides the frequency response curve
(f. r. c.) for uncoupled steady-state modes with δ∗  as

a frequency parameter. Alternation of sign of 1sinθ  is
equivalent to alternating 1a  sign, so one may assume

1sin 1θ = , but allow negative 1a , see Fig. 1

(here 1 0.5α = ,  0 0.5f = ). 

The fourth equation (3.1) with 1 0a =
determines the “backbone curve” for the second mode
(“companion mode”):  

2
2 23 8 ( ) 0aα δ σ∗ ∗− − = .          (3.4)

For the coupled steady-state modes (CSM),
from the third and the first equation (3.1) we obtain



2 1sin 2( ) 0θ θ− = , 1cos 0θ = , so the following
relations for the phase differences between two
degrees of freedom γ and for 1θ  hold for undamped
systems:

2 1 2
nπγ θ θ≡ − =  ( 0, 1,2,...n = ),

    1 (2 1)
2

m πθ = −   ( 0, 1,...m = ) .     (3.5)

Fig. 1. Frequency response curves for uncoupled
steady-state modes with allowing negative 1a .

For 0n = and even n  the phase difference γ
between two linear modes can be assumed to be equal
to 0 or π . These are normal modes (NM) – in-phase
or anti-phase oscillations. For odd n  the phase
difference γ  can be assumed equal to / 2π  or

/ 2π− . These are elliptic modes (EM) for which
maximal deflection in one linear mode corresponds to
zero in another one, and inversely. For both normal
and elliptic modes the phase difference 1θ  between
the external force and the driven mode can be
assumed equal to / 2π± .

With these 1θ , 2θ  values the set of equations with
respect to amplitudes a1, a2 takes the form:
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where the upper sign relates to the normal modes and
the lower sign to the elliptic modes.  For coupled
modes the expression in square brackets in the second
equation (3.6) equals to 0, whence
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Excluding then a2  from the first equation (3.6) one
obtains cubic equations governing amplitudes of the
driven mode for NMs and EMs: 
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From (3.7) the condition of existence of CSMs
follows:
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Equations (3.8) (together with (3.9)) determine  the
f. r. curves for CSMs, where δ∗  plays role of a
frequency parameter. Note that the f. r. c. for coupled
modes should be constructed in 3D space (a1, a2, δ∗ ).
Uncoupled modes are depicted by curves lying in the
planes (a1, δ∗ ) or  (a2, δ∗ )

If the CSM’s frequency response curve is branching
off the f. r. c. for the driven uncoupled mode then for
the bifurcation (branching) point 2 0a = , so along
with equation (3.3) this point satisfies condition (3.9)
as equality. After exclusion of δ∗  from these
equations one obtains the following equations for the
branching points (for NMs and EMs,  index “b”
stands for branching) :
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So there exist one or three branching points on the
f. r. c. (for a given σ∗ ), separately for NMs and EMs. 

It follows from (3.10) that bδ σ∗ ∗> . With account
of denotations (2.3) and (3.2) one can conclude that
in case 12b  >0  ( 12b <0) bifurcation points on the f.
r. c. for driven uncoupled mode appear when the
excitation frequency is larger (lesser) than the natural
frequency of the second uncoupled mode.

In Fig. 2 the frequency response curves for the
system with parameters: 1 1.1α = , 2 0.1α = − ,

0σ∗ = , 0 5f =  (exact internal resonance) are
presented. Frequency response curves for uncoupled
modes, coupled normal modes and coupled elliptic
ones are depicted in 3D space (a1, a2, δ∗ ).  Black
curves 1 relate to uncoupled driven modes; blue one 2
are backbone curve for the companion modes. These
curves lie in the planes (a1, δ∗ ) and (a2, δ∗ ),



relatively. Red curve 3 correspond to NMs, and
brown one 4 – to EMs (both these curves are spatial).
(the curves are symmetric with respect to (a1, δ∗ )
plane; negative a2 values are not shown here). In this
case only one bifurcation point exists for NMs and 

Fig.2. Frequency response curves for coupled steady-
state modes (one bifurcation point for NMs and EMs)

EMs, respectively, on the f. r. c. for the driven mode
Each point gives rise to one branch for the coupled
NMs or EMs. Each branch approaches the backbone
curve for the companion mode

Fig. 3. Spatial freq. response curves for uncoupled
driven (black curves) and companion (blue) modes;
coupled NMs (red curves) and EMs (brown curves) 

In Fig. 3 the frequency response curves are
depicted for case 1 0.5α = − , 2 0.5α = − ,

0σ∗ = , 0 5f = . Here also only one bifurcation point
exists for NMs and EMs, respectively.

But along with these branches there exist
additional curves for the NMs and for EMs, which are
not branching off the driven modes curve. These

curves approach the backbone curve for the
companion mode 2.

In Figs. 4, 5 results for variant 1 0.5α = − ,

2 0.5α = , 3σ∗ = − , 0 5f =  are presented. In Fig. 4,
a, b, the projections of the f. r. c. for NMs and EMs,
respectively, on the plane (a1, δ∗ ) are depicted
(together with the f. r. c. for uncoupled driven modes
depicted by thin curves). 

(a)

(b)

Fig. 4. Projections of the frequency response curves
for NMs and EMs on the plane (a1, δ∗ ) (the case of
three bifurcational points)

The dotted parts of the curves relate to portions of
the f. r. c., where CSMs disappear (condition (3.9) is
not satisfied). In this case three bifurcation points
exist both for NMs and EMs on the f. r. c. for the
driven mode. For the NMs these points give rise to
three infinite curves, but for EMs one finite curve
connects two bifurcation points (forming a loop),
along with one infinite curve branching off the
uncoupled driven mode f. r. c. 

In Fig. 5 spatial f. r. curves are depicted for NMs
and EMs. 



Note that one of the CSMs curves (for NMs and for
EMs) approaches the backbone curve for the
companion mode, similarly to Fig. 2 and 3. 

4.  Stability of the coupled stationary modes  in
undamped systems

A CSM is stable if the corresponding stationary
point ( 1 2 1 2, , ,s s s sa a θ θ ) of system (2.7) is stable.
Consider first particular cases. 

Fig. 5. Spatial freq. response curves for uncoupled
driven (black curves) and companion (blue) modes;
coupled NMs (red curves) and EMs (brown curves) 

1. Uncoupled modes (forced oscillations in  1DOF
systems). Hamiltonian (2.9) after dividing by 12с is
reduced to

2 4
1 1 1 1 1 1 0 1

1 3 1( , ) sin
2 32 2

H a a a a fθ δ α θ∗= − +        (4.1)

where 0 12f f c= . The uncoupled mode is stable, if
point 1 1( , )a θ  is an elliptical point of surface

1 1( , )H a Cθ = , and is unstable, if it is a hyperbolic
one. So the stability governed by hessian h  of
function (4.1). Accounting that 1 (2 1) / 2mθ π= − ,
one has 
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Therefore the condition of stability of uncoupled
mode is as follows (one may assume 0 0f > ):

( )2
1 1 19 8 0 2aα δ θ π∗− > =       (4.3 a)

( )2
1 1 19 8 0 2aα δ θ π∗− < = −     (4.3 b)

Note that these conditions with account of
frequency response equation (3.3) are reduced to
condition
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∂
>

∂
                         (4.4)

(“increasing amplitude corresponds to increasing
force”). As is known, condition (4.4) allows one
easily to ascertain stable and unstable portions of f. r.
c. (see Fig. 1, where unstable part of the f. r. c. is
shown by dashed curve).

2) Free coupled oscillations in 2DOF systems.
Putting in (2.9) 0 0f =  and accounting (for 0µ = )

an energy integral  2 2
1 2a a E+ =  (yielding from

(2.7)), we reduce Hamiltonian (2.9) to a function
2
1( , )H a γ . Hessian of this function is positive under

condition (it is seen from (2.7) that in this
case 2nγ π=  with even n  for NMs and odd n for
EMs):

[ ]1 23 3 2(2 1) 0α α+ − ± >∓        (4.5)

(upper sign relates to the NMs and lower sign – to the
EMs). This conditions have been derived in
[Manevich A. I., Manevich L. I., 2005, p.56]. It has
been proved there with use of (4.5),  that parts of f. r.
curves for uncoupled modes lying between
bifurcation points are always unstable. Note that at
free oscillations the stability of CSMs depends only
on nonlinear coefficients.

Let us now consider the general case of forced
coupled oscillations in the 2DOF system. Jacobian

{ }lsJ j= of system (2.7) (written in the normal
form) in stationary points is as follows:
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(other elements are zero). Here 1sin 1sθ = ± , 2sa  is

given by expression (3.7), 1sa is obtained from (3.8).
The characteristic equation for matrix (4.6) is

biquadratic one
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Roots of (4.7) have no positive real parts only in the

case when both roots 2λ  are real and negative.
Therefore the CSMs are stable under conditions

1 0d > , 2 0d > , 2
1 2 0d d− >          (4.11) 

In Figs. 2-5 unstable portions of the frequency
response curves for CSMs are shown with dashed
lines. Portions of f. r. c. for uncoupled modes between
two bifurcation points are always unstable.

It would be interesting to clarify the physical sense
of conditions (4.11). Note that G (4.10) coincides
with derivative of the left hand side of equation (3.8)
with respect to 1a . Expression in the first square
brackets in the r. h. s. of (4.8) coincides with (4.5),
and expression in the second square brackets is
similar to the left hand side of equation (3.8), divided
by 1a . Using these observations it can be established
a linkage between the condition of stability for free
oscillation (4.5), condition of type (4.4) for forced
oscillation in 1DOF and conditions of stability of
coupled steady-state modes in non-autonomous 2DOF
systems. This enables one to ascertain certain
correspondence between the shape of projection of the
f. r. curve for CSMs on plane (a1, δ∗ ) and stability of
CSMs.

4  Conclusion
  
The primary resonance in 2DOF cubic symmetric
systems with close eigenfrequencies has been
investigated. The general analysis of steady-state
oscillations, their bifurcations and stability has been
presented.  Alongside with one-mode (uncoupled)
oscillations there exist two-mode (coupled)
oscillations with synchronized motions in two degrees
of freedom.  These coupled oscillations are normal
modes (which can be in-phase or anti-phase

oscillations), or elliptic modes (for which maximal
deflection in one linear mode corresponds to zero in
another one, and inversely). 

The spatial frequency response curves for these
modes are branching off the f. r. c. for the uncoupled
driven mode, and/or approach the f. r. c. for the
companion uncoupled mode. There exist three or one
bifurcations points (separately for normal and elliptic
modes). Conditions of stability for these modes have
been obtained, and it is shown that a certain
correspondence can be established between stability
properties and shape features of the f. r. curves. 
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