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Abstract

The paper describes the design of a novel control
law for step motor under participially unknown parame-
ters and bounded external disturbances. The unknown
parameters and disturbances are related to the motor
torque, the rotor moment of inertia, the viscous friction,
the resistance and the load torque. The design of a novel
control law is based on feedback linearization and linear
robust control. The gain of a linear control law is calcu-
lated by solving the linear matrix inequality and some
optimization problems. The simulations illustrate the
efficiency of the proposed scheme in comparison with
classical PID-controller and adaptive control law.
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1 Introduction

At the present moment, step motors are being replaced
by AC machines, since the latter ones have a long service
life and reliability due to the absence of sliding elec-
trical contacts [Viorel and Lorand, 1998; Gieras et al.,
2016]. Electric motors are used to study various phys-
ical phenomena [Mihalache et al., 2013; AL-Sabbagh
and Mahdi, 2010; Kelemen and Crivii, 1975; Boikov
et al., 2016; Tomchina, 2021; Ugalde-Loo et al., 2013].

In aviation and space technology, step motors are ac-
tively used in actuating systems, such as drives for open-
ing large structures, guidance and stabilization systems,
etc [Sarhan et al., 2009; Fu et al., 2022; Morar, 2007,
Acarnley, 2002; Zribi and Chiasson, 1991; Kenjo, 1984].
The most widespread are special synchronous motors,
which, compared with other electric motors, have the
best indicators of specific power, efficiency, and reliabil-
ity. These machines include step motors and permanent
magnet synchronous motors (PMSM).

In [Furtat et al., 2022] an overview of mathematical
models of step motors is given. Based on these models
the some effective existing control laws are considered.
In [Furtat et al., 2022] it is noted that step motors can be
effectively controlled without feedback in the absence of
parametric uncertainty and external disturbances. How-
ever, under conditions of uncertainty in the motor param-
eters (for example, changes in resistance, inductance,
etc. due to wear and temperature change) and under con-
ditions of external disturbances (for example, changes in
the motor load), the open-loop control becomes ineffec-
tive. The overview notes that the most effective meth-
ods are PID control and adaptive control [Marino et al.,
1995].

In this paper, we apply some existing results on ro-
bust control [Nazin et al., 2007; Furtat et al., 2020],
which allow one to calculate the controller parameters
with the solution of some optimization problems. At the
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end of the paper, we will compare the proposed results
and some effective methods, selecting from [Furtat et al.,
2022].

2 Step motor model. Problem formulation

Consider a step motor model [Marino et al.,
the form

1995] in

do _
qt — W
%“; = —%ia siTn(nQ) + %ib cos(nf)
4 —Jw— =, (1
G = — i, + Smwsin(ng) 4 e,
. Km
&b = f%zb+ 7w cos(nd) + -,

where 77, is load torque, 6 and w are rotor position and
speed respectively, i,, ¢, and u,, up are currents and sta-
tor voltages of a two-phase motor. Motor parameters are
resistance R and self-induction L for each stator phase
winding, motor torque K,,, rotor moment of inertia J,
viscous friction F', and number of rotor teeth 7.

The goal is to design the control law ensuring mini-
mization an influence of the disturbance 77, into the fol-
lowing errors ey = 6 — 6,,, and e3 = w — w;,, Where
O (t) is the reference (given, command) position of the
rotor of (1), wy, (t) = 6,,(¢) be the rate of 6,,(t). The
various number of optimization problems will be intro-
duced in Theorem 1.

3 Main results

Forward Park transform converts the input two-
coordinate vector to flux and torque components. The
Park transform can be used to realize the transformation
of the (a,b) currents from the stationary to the mov-
ing reference frame and control the spatial relationship
between the stator vector current and rotor flux vector.
To transform from (a, b) coordinate to (d, q), introduce
Park’s formula [Marino et al., 1995]

{xd} _ [ cos(nf) sin(n@)} [z} O ©

Zq —sin(nd) cos(nf) | | xp

Considering (2), the model (1) can be rewritten as fol-
lows

do __

%:U‘I)(vm' F TL

&, TR T 3)
—t——fzd—knwzq—k T

#——%iq nwiy Kme—l—u—Lq

Using the deviation errors e; = 6§ — 0,,, and e; = w —
Wm,, rewrite model (3) as

L? = €3,

%:KJmlq_gw_TTL_wm’ 4)
= —Tia + nwig + 7,

ar Fig — nwia — Fpres + 1 — Fprwn,
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Introduce the feedback linearization control law in the
form

ug = —Lnwig, )
uqg = Lnwig + Lv,
where v is an auxiliary control law to reduce the influ-
ence of disturbances under the condition of parametric
uncertainty of (1).

Substituting (5) into (4), one gets a linear model

d€1

& _ F, T, . _F

e zq Teg — Tk — W — Lwm, ©)
dig _ 'R,

& féd K K

arg __ _ m _ m

r — Lt €2t U= W

with bounded perturbations 77, wy, and wy,.
Denote by

€1 w
m
r= | s f=1lwm |,
iq
. Ty,
q
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_ T
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0—En o _R
L L
0 @
0
B= 0
1
0 0 O
_F _1_%
_ T
D= 0 0 00
~Ep 0 o

Using notations (7), rewrite model (6) in the following
form

T =Ax+ Bv+ Df.

Theorem 1. Consider the closed-loop system consisting
of the step motor model (1) as well as the feedback lin-
earization control law (5) and auxiliary control law

v=Kx ®)

with Park’s transformation (2). Then there exists K such
that the following optimization problems hold

(i) trace(P) — min,

(ii) v = maxand P —~I > 0,
(iii) trace(Q) +~ — max and Q = P71,
() ||Y|le — min,
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where

AP+ PAT +aP
+BY +YT™BT + 1DDT <0, )
K=YypP1,

P =P' >0,V € R*3 « > 0 is the rate of con-
vergence of Lyapunov function V.= z*Px, ||Y|. =

4
Zj:l 1%?5(4 |23

The proof of Theorem 1 is the same as the proofs of
theorems in [Nazin et a]., 2007; Furtat et al., 2020] by
checking the condition V 4 aV — af T f < 0.

Remark 1. Let restrictions on the auxiliary control sig-
nal v be given in the form

lv| < p,

where p > 0 is a given restriction. Then, in order for the
conditions of Theorem 1 hold, it is sufficient that the fol-
lowing additional linear matrix inequality (LMI) is sat-

isfied
pPyYy"T
A

Remark 2. In Theorem I condition (i) allows one to find
the smallest ellipsoid in terms of the sum of the squares
of the semiaxes. Condition (ii) allows one to find the
smallest value of the error in the steady state. Condition
(iii) is a linear combination of conditions (i) and (ii).
Condition (iv) makes it possible to design discharged
controllers in the sense that if some elements in the ma-
trix K are zero or sufficiently close to zero, then the cor-
responding measurement signals can not be used in the
control scheme.

Remark 3. Since the pair (A, B) is controllable, there-
fore, there always exists the solution of (i)-(iv) in Theo-
rem 1.

Remark 4. Theorem 1 is valid under known parameters
of (1) and unknown signals Ty, 0,,, and w,,. However,
problems (i)-(iv) in Theorem I can be solved under un-
known R, F, J, and K,, if the following intervals are
known

a, <L <a, a<f<a,
as < Bz <@y, oy < L <ay, (10)

1 —
g5<7<a5.

In this case LMI (9) must be solved in the vertexes of
polytop (10).

4 Example

Consider step motor model (1) with known parameters

L=39-10"3H, n =50, (11)
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unknown parameters

K,=119N -m-A"'Y, J=10"* kg -m?, (12)
F=005N-m-s/rad, R=1.4Q,
and zero initial conditions.

Assume that during operation the parameters can
change in the following intervals with known bounds

09< K,, <13, 107° < J <1073, (13)
001 <F <01, 1<R<2 05<Tp<2.5.

Then, the vertexes of polytop (10) can be rewritten as
10 < £ <10%, 26-102 < £ <5.1-10%
2.3-102 < = <33.102, 10< L <10%, (14
10% < & < 10°.

According to Theorem 1 and Remark 4 as well as in-
tervals (14), the matrices K that ensure the problems (i)-
(iv) are equal to

() K = col{—1.3 - 10°,—7.2 - 103,—7.9,—5.1}
without restrictions on v and K = col{—0.81 -
10°,—1.1-102, —5.4, —6.3} with restriction |u,| <
90 and |up| < 90;

(i) K = col{—0.9-10%,—2.3-103,0,0} without restric-
tions on u and K = col{—8.9-10%, —3.7-10°,0,0}
with restriction |u,| < 90 and |u| < 90.

Let us compare the proposed result with classical PID-
controller and adaptive control law. According to [Bod-
son and Chiasson, 1989] the PID-controller is given by

g = —nLwiq — hy(iq —iq) — hs. Jlia(s) — iam(s))ds,
Ug = Kmw — ha(iq —iqr) — hs fo [iq(s) = igm(s)]ds,
idT = 07

igr = =7 (1100 = 0) + ha [} 10(5) = Om(5)]ds

+hs(w — wm)),

where by = 6-10%, hy = 2.7-107, hz = 1.5- 103, hy =
%, and hs = %. The structure of adaptive controller
[Marino et al., 1995] is complicated and takes up a lot of
space, therefore, it is not shown here.

Figs. 1-5 show the transients of # for the proposed al-

gorithm and the control laws [Marino et al., 1995] for
Tr(t) = 1.5+ sin(20¢) N - m.
Since the transients for each K in the proposed algorithm

are almost the same, we give the worst transient for K
calculated from problem (i).
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Figure 3. The transients in the proposed algorithm for K =
001{70.81 . 105, -1.1- 102, —5.4, 76.3} (red solid line),
PID-controller (blue dashed line), and adaptive controller (green dot-
dashed line) for the largest parameter values from (13).
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Figure 4. The transients in the proposed algorithm for K =
col{—1.3-10%,-7.2-10%, —7.9, —5.1} (red solid line), PID-
controller (blue dashed line), and adaptive controller (green dot-dashed
line) for nominal system parameters (11), (12).
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Figure 5. The transients in the proposed algorithm for K =
col{—1.3-10%,-7.2-10%, —7.9, —5.1} (red solid line), PID-
controller (blue dashed line), and adaptive controller (green dot-dashed
line) for the largest parameter values from (13).
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Figure 1. The transients in the proposed algorithm for /X =
001{70.81 . 105, -1.1- 102, —5.4, 76.3} (red solid line),
PID-controller (blue dashed line), and adaptive controller (green dot-
dashed line) for nominal system parameters (11), (12).
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Figure 2. The transients in the proposed algorithm for K =
col{—0.81 - 105, —1.1 - 102, —5.4, —6.3} (red solid line),
PID-controller (blue dashed line), and adaptive controller (green dot-

dashed line) for the smallest parameter values from (13).

The advantages of the proposed algorithm are clearly
seen. The proposed algorithm is easy to implement com-
pared to the adaptive algorithm. It allows one to con-
trol the motor without measuring currents. The pro-
posed algorithm showed comparable control results with
the adaptive approach for K = col{—1.3 - 105, 7.2 -
103, 7.9, —5.1}.

However, it should be noted that the adaptive algorithm
makes it possible to estimate the values of unknown pa-
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rameters during operation, therefore, it may provide bet-
ter results, especially in the steady state.
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5 Conclusions

In this paper, we propose a nonlinear control algorithm
based on feedback linearization, linear control law and
the technique of linear matrix inequalities. Optimization
problems related to the search for parameters of control
algorithm to ensure phase responses in the smallest ellip-
soid and the smallest error in the steady state are solved.
The simulation results illustrate the efficiency of the pro-
posed method in comparison with the PID-controller and
the adaptive control law using the backstepping method.
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