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Abstract

In two-dimensional turbulent convection, the effects of
roughness configurations on heat transport and flow re-
versal are examined in this work. The impact of five dis-
tinct rough models on the Nusselt number (Nu) as a func-
tion of Rayleigh number (Ra) is investigated and anal-
ysed. All the rough models show reduced heat transport
at low Ra; the model with locally compact roughness
elements shows the most significant reduction in heat
transport. As Ra increases, the normalized Nu gener-
ally increases, with differences observed between mod-
els with sparsely distributed and locally compact rough-
ness. Flow reversals in 2DRB convection are also ex-
plored, with the presence or absence of reversals cat-
egorized among the rough models. Flow reversal pro-
cesses are identified using angular momentum analysis.
The study reveals chaotic oscillations in the flow field
and Nu for certain models, indicating the influence of
roughness on the Large-Scale Circulation (LSC). Sparse
models with widely spaced rough elements exhibit more
active correlations between the cavity’s fluid and LSC,
leading to enhanced heat transfer. The scaling relation-
ship between Nu and Ra is investigated, showing dis-
tinct scaling regimes for different Ra ranges. The dis-
tribution of roughness elements and the relative contri-
butions of the majority of the surface and boundary-
layer areas to thermal dissipation influence scalar be-
haviour. Machine learning techniques, including Con-
volutional Auto-encoders (CAEs) and Gated Recurrent
Units (GRUs), are employed to compress and predict
snapshots of turbulent convection data. These techniques
offer a promising approach to analyse complex turbu-
lence data and facilitate sequence analysis and predic-
tion. Overall, this work delivers valuable insights into
the role of roughness configurations in two-dimensional
turbulent convection, shedding light on heat transport,
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flow reversals, and scaling relationships. The use of ma-
chine learning models enhances the understanding and
prediction of complex turbulence behaviour.
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1 Introduction

For heat-driven flows, which are common in both
organic and industrial environments, Rayleigh—-Bénard
convection (RBC) offers a well-researched paradigm
[Ecke et al., 2023]. Temperature gradients [Plumley et
al., 2019] and their influence on heat transport investi-
gate buoyancy effects that eventually lead to fluid dy-
namics instability. One excellent area of study with im-
portant implications for science is the regulation of RBC
[Shishkina et al., 2021]. Furthermore, in many appli-
cations, controlling heat transport and/or preventing, re-
ducing, or enhancing such instabilities are essential. Pro-
cesses for crystal growth, such as those used to make sil-
icon wafers, are examples [beintema et al., 2020]. A fre-
quent occurrence in nature, buoyancy-driven turbulent
fluid motion is influenced by rotation and has numer-
ous industrial uses. Rayleigh-Benard convection (RBC)
[Liu, et al., 2020], a well-researched laboratory imple-
mentation of turbulent convection, involves a fluid con-
tained within a convection cell featuring adiabatic verti-
cal walls, a cooled top, and a heated bottom. Under these
circumstances, cooperative plume motion gives rise to
a large-scale circulation (LSC) that is a crucial aspect
of turbulent RBC [Ecke et al., 2023]. Heat transport is
improved by Ekman pumping [Shishkina et al., 2021],
[beintema et al., 2020], [Liu, et al., 2020], [Favier et al.,
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2019], [Wang et al., 2019], [[Zhang, et al., 2023], [Cheng
et al., 2022], [Horn et al., 2022] numerical assessments
of vorticity and temperature fluctuations in the bulk are
significantly impacted [Xu et al., 2022], [Huang et al.,
2022], [Schneide, et al., 2022], [[Madonia, et al., 2023],
[[Boot, et al., 2021], [[Zhang, et al., 2023], [[Song, et al.,
2023] and heat plumes change into vortices of heat when
rotation about a vertical axis is added. These changes
result in a distinct kind of convection. Suppressing the
LSC of nonrotating convection is an essential part of ro-
tation for rotation rates that are fast enough [Huang et al.,
2022], [Schneide, et al., 2022], [[Madonia, et al., 2023],
[[Boot, et al., 2021], [[Zhang, et al., 2023], [[Song, et
al., 2023], [[Vogt, et al., 2021], [[Tagawa, et al., 2023].
The nature of this suppression seems to be influenced by
the aspect ratio of diameter to height I' = % [[Chong,
et al., 2023] In RBC geometries where % <TI <2
the LSC typically covers the cell in a roll-like movement
of size H. With increasing rotation rate, rotating convec-
tion exhibits a reduced naturally occurring linear vortex
separation scale [Plumley et al., 2019], [kashanj, et al.,
2023]. This implies that lowering the geometric aspect
ratio, or I' < 1, could be achieved while preserving a
lateral cell size to linear scale ratio is large [5]. Sev-
eral new experiments are utilising these convection cells
[Abbate, et al., 2024]. The existence of a global circu-
lation that significantly affects the internal state of the
system and contributes to a significant amount of global
heat transport is therefore a crucial question concern-
ing rotating convection in thin cylindrical cells. Using
I" = 1 inverse Rossby number ﬁ = 2.78 Rayleigh
number Ra = 10° and Prandtl number Pr = 6.4 (Ro,
Ra, and Pr defined below), a core region of anti-cyclonic
circulation, located close to the cylinder sidewall, was
surrounded by a cyclonic azimuthal velocity boundary-
layer flow, as demonstrated by direct numerical simula-
tions (DNS) of rotating convection[23]in cylindrical ge-
ometry. The outcomes were clarified by means of active
Ekman layers powering sidewall Stewartson layers at the
top and bottom of the cell [?], [Kannan, et al., 2024].

2 GOVERNING EQUATIONS AND PARAME-
TERS

To facilitate a clear understanding of the physical mod-
eling involved in rotating Rayleigh—Bénard convection
(RRBC), we first define all the variables and parame-
ters used in the governing equations. The fluid mo-
tion is described in a rotating frame with a constant an-
gular velocity vector 2 = (. ) where () is the rota-
tion rate and e, is the unit vector in the vertical direc-
tion. The primary field variables are the velocity vector
u = (u, v, w) the temperature T, and the pressure p. The
equations are written under the Oberbeck—Boussinesq
approximation, which assumes that all fluid properties
are constant except for the density variation in the buoy-
ancy term. The reference density is denoted by pg the

kinematic viscosity by v the thermal diffusivity by &
the thermal expansion coefficient by o and the gravita-
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tional acceleration by g = —g(._) The Rayleigh num-

ber Ra = % characterizes the ratio of buoyancy
to viscous and thermal diffusion effects, where AT is
the temperature difference across the fluid layer and H
is the vertical height of the domain. The Prandtl num-
ber Pr =  expresses the relative importance of mo-
mentum diffusion to thermal diffusion. The centrifugal
force appears as —€2 x (€ x r) and the Coriolis force
as —2€2 x u where r is the position vector. The gradi-
ent operator is V and the Laplacian is V2 Additionally,
ey is used to denote the vertical unit vector in the 2D
case. The governing equations include the incompress-
ible continuity equation, the Navier-Stokes momentum
equation modified by rotation and buoyancy terms, and
the thermal energy equation accounting for convection
and diffusion.

When transitioning from a fixed coordinate system to
a rotating one with an angular velocity of Q= Qe,
you introduce extra Coriolis —2€ x i and centrifugal
— x (€ x 7) accelerations, which manifest as supple-
mentary efficient forces within the momentum equation
(1) is given below.

%ﬂﬁ-vw = f¥+uv2ﬁ+§—2ﬁxﬁfﬁx (Qx7)
1

(The sidebar labelled Dimensional Characteristics of
RRBC contains information on notational conventions).
For ( = Qé, one obtains —0 x (O x 7) = Q2ré,.

In the most basic Oberbeck-Boussinesq (OB) approx-
imation that includes the effects of buoyancy as de-
scribed by Oberbeck in 1879 and Boussinesq in 1903,
all of the fluid’s characteristics are taken to stay con-
stant, with an exemption of the buoyancy term’s density.
This density is considered to have a linear dependency
on temperature, expressed as, p = po [1 — a(T — Tp)].
By introducing a reduced pressure term, denoted as
p= P+ pogzeé. — 50*r? ¢, and considering |a(T —
To)| < % < 1 which is a valid assumption within
the OB approximation, we can derive the relation % ~
(p%) [1 + (T — Tp)]. This also holds true for the mo-
mentum equation within the Oberbeck-Boussinesq ap-
proximation, as described by Becker et al. (2006) [REF].
The equation (2) is given as

ou - o Vp 2 -
a-l—(wV)u— E—&-VV

208, x il — (T — Tp) Q*ré, +a(T —Tp) gé. ()

Which, in addition to the heat equation is given as eq.
(3) and the continuity equation, V - & = 0

or

R T = 2
o + (i V)T = kYT 3)
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the governing equations where u is velocity, T is tem-
perature, p is pressure, p is reference density, v is kine-
matic viscosity, « is thermal diffusivity, g is gravita-
tional acceleration, « is thermal expansion coefficient,
Q) is angular rotation vector, Ra is Rayleigh number,
Pr is Prandtl number, V is gradient operator, and V?
is Laplacian operator within the context of OB rotating
Rayleigh-Bénard convection. Both gravitational buoy-
ancy and buoyancy are present in RRBC, as can be seen
from the two final variables in Equation 2, acting verti-
cally (similar to non-rotating Rayleigh-Bénard convec-
tion), and centrifugal buoyancy, exerting itself radially.
The centrifugal term can only be disregarded when the
angular velocity € is relatively small. It is important
to note that, the centrifugal term is assessed assuming
a constant density. This allows for the integration of
the complete centrifugal phrase into the decreased pres-
sure, resulting in a formula that is similar to equation
2 but lacks the final term. Nevertheless, when studying
the centrifugal effects within the Oberbeck-Boussinesq
(OB) approximation, the complete momentum. The
standard boundary conditions for Equations 2 and 3 con-
sist of no-slip conditions for velocity u = 0 at all bound-
aries, isothermal temperature at the bottom 7' and a
lower temperature T~ < T+ at the top, as well as adia-

batic conditions gT = 0 at the lateral boundaries.

3 NUMERICAL METHOD

We conduct DNS simulations of turbulent Rayleigh-
Bénard convection in 2D containers featuring distinct ar-
rangements of triangular rough elements located on the
horizontal walls. The container’s height and horizontal
length are both consistently set at 1 unit. We explore the
effects of different spatial distributions of these rough el-
ements on Rayleigh-Bénard convection using five com-
putational models, denoted as modell, model2, and so
forth (refer to Fig. 1 for visualization). These models
are selected to maintain the same total contact area for
the rough elements.

modell model2 modeld

h
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Figure 1. ayleigh-Bénard convection using five computational mod-

els

The figure illustrates that models 1 through 3 have a
dense concentration of rough elements on certain por-
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tions of the horizontal walls, while models 4 and 5 show-
case a sparser and more uniform distribution. We clas-
sify these models into two categories based on a spar-
sity ratio, denoted as I', which represents the propor-
tion of rough component width to vertex spacing. Com-
pact models, including model 1 through 3, have I'r = 1
whereas sparse models, represented by model 4 and
model 5, feature I'r = 2.

Since the height of each rough element is constant at
h = i across every structure, and with a vertex angle of
90 degrees, all rough elements are isosceles right trian-
gles, it do not add to variations in the measured Nusselt
number (Nu). A = 1—12 for compact models and 1/6 for
sparse models is the wavelength, which is expressed as
the ratio of vertex spacing to cell height. A variable that
improves the rough contact area between the upper and

lower surfaces of @ in the current configurations.

the horizontal (vertical) direction in relation to the
centre and central symmetry regarding the cavity cen-
tre. Model 1 possesses central symmetry, designed to
amplify large-scale circulation. Model 2 features all
three symmetries, potentially leading to a splitting of the
large-scale structure. Since Model 3 only has vertical
symmetry, the large-scale circulation may be diminished
by the placement of rough elements on one side. Both
model 4 and model 5 share the characteristic of verti-
cal symmetry and central symmetry, with the expectation
that these models will enhance plume emission.

The thermal convection system is described by a set
of equations governing the conservation of mass, mo-
mentum, and energy, which incorporates the Oberbeck-
Boussinesq approximation. We use the height of the box
(H) to scale the imposed temperature difference A time
HT and velocity 7+ to make these equations dimension-
less (4-6) as a result:

V-ou=0 (4)

%‘; +(u-V)u=—Vp+ Prviu+ RaPrTeé, (5
ar 27
o (V)T = VT ©)

The velocity field (u), temperature field (T), pressure
field (p), and the vertical direction e are key compo-
nents of the system. At every solid wall, we enforce
no-slip boundary conditions (u=0). The top and bottom
plates are kept at constant dimensionless temperatures,
T=0 and 1, respectively, while the side walls are heat
isolated aT = 0 Fischer et al.’s open-source spectral el-
ement code Nek5000 [Fischer, et al., 2006] is used in
our simulations. This code has a strong track record in
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accurately simulating turbulent RB convection and con-
vection involving rough surfaces.

In our simulations, the Prandtl number (Pr) remains
constant at 0.7, while the Rayleigh number varies from
10° to 10°. We collect data for a duration exceeding
500 times the free-fall time 7; = +/Ra Pr. To en-
sure the smallest turbulence scales are resolved, for dis-
tinct Rayleigh numbers, we employ various amounts of
spectral elements (SE). These elements are concentrated
near solid walls to effectively capture the boundary lay-
ers. After further decomposition, every component is di-
vided into a grid with P Gauss-Lobatto-Legendre (G-L-
L) quadrature points; P = 11 is used in the present article.
Notably, as Wagner and Shishkina [Wagner, et al., 2006]
point out, at Ra=109, approximately seven spots are lo-
cated inside the boundary layers, and in the bulk region,
the dimension of the grid is sufficiently small to figure
out the Batchelor and Kolmogorov scales [Hurtan, et al.,
2006].

4 RESULTS
4.1 Heat transmission and flow patterns

Nu/Nu
smooth

Ra

Figure 2. Nusselt number with models

Initially, examine how heat transport changes with Ra
for our five different rough models. We present the re-
sults in Figure 2, where we normalize the Nusselt num-
ber (Nu) by the smooth cell’s value to highlight the ef-
fects of improvement or decrease. By comparing this
Nusselt number ratio, we can evaluate the effect of the
rough models. All five rough models clearly show re-
duced heat transport at low Ra. At approximately Ra =
2107 in model 1, compared to the smooth case, Nu is
decreased by 17.7% the largest reduction in heat trans-
fer occurs. The normalised Nu typically rises with Ra at
higher Ra. When comparing models with locally com-
pact roughness (model 1, model 2, and model 3) to those
with sparsely distributed rough elements (models 4 and
5), the increase in Nu/Nu”smooth” happens at smaller
Ra. As aresult, Heat transfer improvement is depicted in
the figure 3 is attained for compact models with I, =1
(models 1-3) at a comparatively high Ra > 10® and re-
garding sparse approaches with I',, = 2 (models 4 and
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5), at a relatively low Ra Ra(107 < Ra < 108). It
is stated that the distinct roughness distribution on the
boundaries results in increased heat transfer above a crit-
ical Rayleigh number, Ra. which is established by the
roughness distribution [32]. When Ra is less than the
crucial value, the temperature boundary layer is larger
than the average roughness dimensions. Enrichment is
observed when the thermal boundary layer is smaller
than the roughness size. Additionally, we include the
results of roughness covering all the plate models from
Zhang et al, [Zhang, et al., 2024]. for comparison. It is
noticeable that the value of the crucial R,_ is compara-
ble to that of the smaller models (models 1-3); but these
models exhibit more of an increase in heat transfer when
Ra exceeds the critical level.

Figure 3.

Heat transfer improvement

In 2DRB convection, it’s known that the flow field
experiences a reversal around Ra = 107 for medium
Prandtl numbers. It is highly desirable to comprehend
how roughness configurations affect these flow reversals.
In our work, we categorize the rough models into two
groups when Ra is less than 107. One group consists of
model 3, model 4, and model 5, in which flow reversal
is observed, while the other group consists of model 1
and model 2, where our simulations show that there is
no flow reversal. We can identify the reversal process by
examining the net angular momentum L(t), calculated as
L(t) = <_(y - 05) u(a:, Y, t) + (‘T - 05) U(ZL', Y, t)>v
where (-),, denotes averaging over the entire region. A
change in the sign of L indicates a flow reverse. In Figure
3, we display the Nu time series and immediate flow field
for model 1 at Ra = 107 which displays the temperature
and velocity fields. There are chaotic oscillations with
a dominant vortex in a combination of the field of flow
and the immediate Nu that is measured.

Similar features can be seen in the field of flow in
model 2 at a similar Ra. In models 3, 4, and 5, flow
reversals are detectable over the Rayleigh number range
of 4 x 10% < Ra < 107. Figures 4 and 5 depict, respec-
tively, the time-varying Nu and L as well as two typical
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Figure 5. Time-varying Nu and L

immediate flow fields at Ra = 107 that are derived from
models 3 and 5. It should be noted that because the rough
element arrangements in models 4 and 5 are similar, the
reversal processes in the two models are nearly identical.

When comparing Nu’s time series in Figs. 4 and 5, it is
evident that the value fluctuates significantly during re-
versals. L’s sign changes during reversals, as we can see
in the interim. We compute the flow reversal frequencies
for Ra = 107, which have the reverse data per free-fall
time as the definition. Models 3, 4, and 5 have respec-
tive values of 0.022, 0.025, and 0.026. These models
have very similar reversal frequencies, however model
5’s Nu(t) variation amplitude is substantially larger. Fol-
lowing reversal, Nu fluctuations diminish rapidly, and in
model 5, more evenly and sparsely distributed rough el-
ements even cause the flow to become quasi-steady. Ac-
cording to the average temperature near the two horizon-
tal plates, the roughness arrangements of Models 1, 2,
and 3 are more likely to trap hot or cold fluid in the cav-
ity areas among the closest rough elements. The trapped
fluid is unable to mix thoroughly as a result, which hin-
ders the cavities’ ability to transfer heat globally. On the
other hand, it will generate a hot plume if the boundary
layer in model 1-model 3 is sufficiently thin at a higher
Ra number. Ra will therefore be encouraged when it
surpasses the critical value for heat transfer. However,
the models 4 and 5 are completely distinct from the first
three. The great separation between neighbouring rough
elements makes the LSC’s penetration into the cavity
regimes, as indicated by the flow visualisations. As a
result, the LSC and the fluid inside the cavities com-
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municate more actively. It is also simpler to generate
a secondary vortex that is exactly the identical size as
the roughness, and more plume emissions can be easily
triggered by communications among the rough element
tips and the secondary vortex. Examining the instanta-
neous fields reveals that in both models 4 and 5, nearly
every rough element tip on the top and bottom plates ex-
periences a quick excitation and release of hot or cold
plumes. The local temperature oscillation is related to
the characteristic plume emission frequency. For mod-
els 1 through 5, the oscillation frequencies are 0.0264,
0.051, 0.05, 0.076, and 0.075, respectively. We have
recorded the temperature at (0.5, 0.1). As a result, mod-
els 4 and 5 have significantly higher plume emissions,
which raises the efficiency of heat transport. The flow
field cannot, however, directly reveal the significant dif-
ference in the measured Nu among both of these mod-
els for symmetric and anti-symmetric rough element ar-
rangements, as seen in Fig. 2.

4.2 Nu ~ Ra scaling

Besides impacting the Nu magnitude, rough surfaces
also serve a crucial function in altering the scaling re-
lationship between Nu and Ra. Figure 6 displays the
determined Nu values as a function of Ra on a logarith-
mic scale. In the case of smooth surfaces, the best-fitting
power-law curve for Nu versus Ra yields an exponent of
approximately 0.31, consistent with prior findings.

modell
model2

A model3 .
10 modeld %
model5

smooth

*eonOpn

10°

1
10
Nu~Ra"™*

10 10 10 10°

Ra

Figure 6. Nu values as a function of Ra on a logarithmic scale

However, with rough surface models, the behavior
of Nu for Ra becomes more complex. Three distinct
scaling regimes emerge, specifically for Ra within the
ranges 10° to 107, 107 to 102, and 108 to 10°. The five
rough models have scaling exponents ranging from 0.2
to 0.24 in the minimal Ra range (10° to 107), which
closely resemble the 1/4 scaling observed in the inade-
quate Rayleigh numbers in a smooth-wall model.

Ra increases more quickly as it approaches the moder-
ate range of 107 to 10%, and the scaling exponent fluc-
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Figure 7. Scaling exponent for Ra with Nu

tuates between 0.335 and 0.49. These numbers are sig-
nificantly higher than the smooth surface model’s. It is
important to note that, contrary to Zhu et al.[Zhu, et al.,
2018], [Plotnikoy, et al., 2024], the highest possible sys-
tem is not yet reached by the flow state, even though the
highest scaling exponent for models 4 and 5 in this range
is nearly equal to that of the ultimate regime.

The scaling-law range does not continue to expand
with additional increases in Ra. The scaling exponent
for Ra between 108 and 109 is between 0.305 and 0.379,
as shown in Figure 7. This suggests a tendency for the
scaling relationship to revert.

For Ra values between 107 and 109, the scaling ex-
ponents for compact models (model 1-model 3) exhibit
only slight variations with increasing Ra; nevertheless,
the results show notable differences for sparse models
(models 4 and 5). This variation is probably caused by
the different ways that the rough elements are arranged.

The Nu-Ra relation is significantly influenced by the
rate of thermal dissipation. If the bulk contribution is
dominant for the current variable covers of Ra and Pr,
the scaling exponent should be approximately %; if the
boundary layer is linear in form, then the scaling coef-
ficient should be roughly % if the boundary layer role is
dominant. Zhu et al. [34], have also demonstrated such
a shift from a system dominated by bulk to the system
dominated by boundary layer. We directly calculated

.. 2 2
the thermal dissipation rates, g = (%) + (%) s

for each model to determine whether this transition can
account for the observed variations of the scaling expo-
nent. In Fig. 7, the relative contributions to the total
€p of the bulk and boundary-layer regions are plotted as
functions ofRa. Observe that we use the global estima-
tion % to determine the thermal boundary-layer thick-
ness. It is evident that for all Ra studied for compact
models (models 1 through 3), the boundary layer dom-
inates the thermal dissipation rate. Nonetheless, for the
sparse models (models 4 and 5), the bulk contribution
exceeds that of the boundary-layer region for the mod-
erate Ra (107 < Ra < 10®) while the global thermal
dissipation rate is dominated by the boundary layer for

the high Ra (~ 10%) and low Ra (~ 10°) This provides
a good explanation for the various scaling exponents for
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various models measured in various Ra regimes. Com-
pared to Zhu et al [34], Ra. > 10°  with % =
1 forh = 0.05, 0.1, and 0.15, respectively, for the
current instances, the crucial Ra for the scaling transi-
tions is much reduced in size. The apparent reason for
this is most likely the two studies’ disparate rough ele-
ment arrangements.

4.3 Re ~ Ra scaling

W modell
10°H & model2
® model3

* model4
4 models
* smooth

Ra

Figure 8. a logarithmic plot for correlation among the measured
Reynolds number (Re) and the Rayleigh number (Ra) for various mod-

els

The Reynolds number can be used to assess the impact
of roughness on flow strength R.. In this case, we com-
Um Ums = /(02 +v§>A7t.
In Figure 8, a logarithmic plot displays the correlation
among the measured Reynolds number (Re) and the
Rayleigh number (Ra) for various models. Notably, it
is apparent that the scaling exponents for all models
are approximately 0.6, indicating that the arrangement
of roughness elements in these models does not signif-
icantly affect Re. Clearly, the buoyancy forces respon-
sible for driving the large-scale flow appear to be unaf-
fected by the boundary geometry. In Figure 8, plots are
presented that compensate for Re by multiplying it by
Ra raised to the power of -0.6. For all of the rough mod-
els, we can see local maxima around Ra values of about
108. These maxima may be linked to variations in the
correlation among the Nusselt number (Nu) and Ra.

pute Re = ,  Wwhere

5 DATA FROM TWO-DIMENSIONAL TURBU-
LENT CONVECTION SIMULATION

5.1 The Turbulent Convection Data

Turbulent convection data in the two-dimensional case
are produced through a DNS (Direct Numerical Simu-
lation) employing the nek5000 spectral element solver.
The simulation focuses on solving the dimensionless
Boussinesq equations (equations 7 to 8), which describe
the interaction between velocity components (ux and uz)
and temperature (T), within a closed rectangular cell
characterized by an aspect ratio of L/H=6.
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3ui
8Ii

Ou; ou; dp Pr 02,
- j =- \/ 5o T,
ot iy oz 0x; + Ra 833? + ®)

o or_ 1 #T
ot jaﬂij v RaPr 833?

=0 (N

©))

The pressure field is represented as ’p,” with ’i” and ’j’
belonging to the set x, z. °x’ signifies the horizontal co-
ordinate, while ’z’ signifies the vertical coordinate. The
dimensionless Rayleigh number, denoted as 'Ra,” quan-
tifies the intensity of convective turbulence and has been
set to a value of 107 in this context. The Prandtl number,
"Pr,” a dimensionless quantity that quantifies the ratio of
momentum to thermal diffusion, has been maintained at
7, corresponding to its value for thermal convection in
water. The specific parameter values are as follows equa-
tion (10):

3
_goATH® p Y (10)

VK K

Ra

In this context, several variables are defined: g rep-
resents the gravitational acceleration, « stands for the
thermal expansion coefficient, v is the kinematic viscos-
ity, x denotes the thermal diffusivity, and AT indicates
the temperature difference between the upper and lower
plates. Establishing with the cell height H renders ev-
ery formula undefined, the free fall velocity Uy is calcu-
lated as \/gaAT H and it’s important to note that AT is
greater than zero. Also, the temperature T is constrained
within the range of 0 to 1, which implies that ’6’ lies
between -0.5 and 0.5.

The simulation domain is divided into a grid of 48x16
spectral elements, where every component represents a
region in the simulation. Polynomials of order 11 for
every spatial dimension for the four fields characterise
these elements. The data for these fields can be ac-
quired by spectral interpolation on a uniform grid of
NxxNz=320x60 points for the machine learning analy-
sis. This process results in 2400 snapshots, yielding a
total of 2400x320x60 data points. These pictures were
collected at intervals of 0.125 free fall time units, which
is H/Uf. Comprising the probabilistic perturbation ini-
tialization stage, the entire DNS (Direct Numerical Sim-
ulation) data generation process required roughly 123
CPU-hours.

5.2 Producing a compressed snapshot image

One type of machine learning model is an auto-encoder
that comprises two main components: an encoder and a
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decoder. The encoder’s main responsibility is the input
data to be compressed into a space of latent information
that has been trained. Data in this latent representation is
taken by the accompanying decoder, which reconstructs
it to look like the original input data. It’s important to
note that autoencoders are considered self-supervised,
meaning that the network uses its input as both the input
and the expected output during training, eliminating the
need for additional labelling efforts for a training dataset.
In concept, an autoencoder takes input data I and en-
codes it into a representation ¢ = encode( fo)(I), where
¢ € R Then, it decodes ¢ back into an approximation
of the original input, denoted as I = decode(fy)(c). In
actuality, though, there might be some variations, result-
ing in I being an approximation of I, as shown in Figure
9. To train the autoencoder, an L, norm is used as the
objective function, and the training process utilizes a gra-
dient descent method, such as the adaptive momentum-
based optimization algorithm known as Adam.

- OIOIOS]

r OIeIe8

Figure 9. Auto encoder Architecture

Layers with convolution are utilised instead of fully
connected layers, in a Convolutional Autoencoder
(CAE) is particularly well-suited for handling complex
high-dimensional input data. To introduce nonlinearity,
a standard convolutional layer incorporates an activation
function with a convolution operation on the input data
using learnable kernels. Consider input data that is three
dimensional, denoted as I € R *NaXN: where C;n
represents the number of input channels. In this specific
case, C;n = 1, as we are loading only the heat flux field
entering the network convectively, so I € RN=*N=_This
input is convolved with a kernel, k,,,, as defined in Equa-
tion (9), where M = [1,Coy] C N, and C,ut is the
number of channels for output. Additionally, b,,, repre-
sents the bias term associated with kernel k,,, and ¢ is
a nonlinear activation function. Normally, zero-padding
is introduced to the layer’s input to avoid the loss of in-
formation at the outer borders of the input data. The
Equation (11) is given as

Ch
Conv(m,I) =1 <bm —|—Zkzm *Ii> , meM
i=1
(1)

In the encoder, there are naturally several convolu-
tional layers, which are usually subsequent by pooling
layers. These pooling layers use a configurable window
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size and a sliding step across the input. This process ag-
gregates the input within utilising a selected aggregation
function, combine every window into a single output el-
ement. For instance, the conventional max-pooling layer
only retains the greatest value for each window. The step
size of the pooling layer is usually selected to reduce the
input’s dimensionality. As a result, the encoder’s final
output is in a lower-dimensional latent space denoted as
RI, where I is much smaller than NxxNz.

The decoder of the Convolutional Autoencoder (CAE)
follows a similar design, with the primary difference be-
ing the use of up sampling layers as a substitute of max-
pooling layers to restore the data to its original input
size. Up sampling, or unpooling, effectively doubles the
data’s dimensions. In this work, nearest-neighbour linear
interpolation is employed for this purpose. A deep archi-
tecture with multiple convolutional layers and matching
up sampling layers is required to process complex turbu-
lence data efficiently and preserve information with the
least amount of loss.

After training every network in a complete scenario,
we use the CAE’s encoder to compress a given snapshot
It into a compressed form ct. This compressed snapshot
is then used as input for a subsequent Recurrent Neu-
ral Network (RNN) to predict the following diminished
representation c(t+1). This predicted representation is
subsequently backward-decoded into the initial input do-
main using the CAE’s decoder unit.

5.3 Gated Recurrent Unit

As previously mentioned in Section I, we are also
investigating the utilization of a gated recurrent unit
(GRU) within an encoder-decoder architecture, treating
it as a recurrent neural network (RNN) for tackling in-
tricate sequence analysis and prediction tasks. The GRU
represents an advanced type of RNN cell, employing gat-
ing mechanisms to regulate the inclusion of information
into its ongoing cell state and to determine which previ-
ously acquired data should be discarded. This system ef-
fectively addresses the issues of vanishing and exploding
gradients that are typically encountered when training
RNNs with lengthy sequences. Equation (12) is given
as

A =o (WW : [ht,ct]) (12)

And equation (13) as follows

W =0 (W(“) [he, ct]) (13)

where w; represents the update gate vector at time step
t and \;signifies the reset gate vector; The equivalent
weight matrices W) and W) are applied to a vec-
tor created by combining the hidden state vector h; with

the input vector c¢; at time step t. An output range of 0
to 1 is guaranteed by the sigmoid activation function o.
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The output is utilised to calculate how much of the value
of another vector element to retain through an element-
wise vector multiplication. In particular, when determin-
ing the updated intermediate state he, Ay is multiplied
element-wise by h; to “reset” individual values of the
previous state. The equation (14) is shown below

]Alt ztanh(W [)\t@ht, Ct]) (14)

where tanh is the hyperbolic tangent activation func-
tion defined as tanh(x) = ij::f and W is a sup-
plementary weight matrix. In (15), the element-wise
Hadamard product is represented by ©. Likewise, wy
is multiplied element-wise by h; and (1 — w;) by hy to
incorporate the latest input data into the modified cell
state h(t + 1), which is also the cell’s output, as shown

by equation (15)

hisr = (1 —w) @by +wp © hy (15)

In order to predict the next compressed snapshot,é; 1,
after that, the output is passed through one last fully con-
nected layer with a linear activation. As the encoder con-
structs the hidden state, which processes a sequence of
compressed input snapshots, resulting in a hidden ver-
sion of the input. The decoder receives this latent rep-
resentation after which it forecasts the subsequent se-
quence’s compressed picture, ¢;y1, using the data that
has been encoded up to the previous time step. Once
an external step is executed, the decoder proceeds in an
auto-regressive manner.It forecasts the next output, ¢ o,
by calculating an updated latent representation using the
earlier iteration’s output, ¢, as an input.

6 RESULTS AND DISCUSSION

It is necessary to provide some further information
about the DNS data records before moving on to the
training, validation, and testing phases. We used 2400
snapshots in total, broken down into three different sets.
The primary set, exclusively used for training and re-
ferred to as the "training set,” comprised 1000 snapshots.
The second set, known as the validation set,” consisted
of 500 snapshots, and it served the purpose of evaluat-
ing the model’s performance and tuning hyperparame-
ters during runtime to ensure an unbiased estimation of
training. This validation step occurred immediately after
training with each chosen set of hyperparameters, help-
ing to address over- and under-fitting and find the ideal
7 for the next testing stage. The final 900 pictures were
in the third set and was designated as the “’test dataset.”
This dataset was independent, unseen, and not used in
training. The final model’s evaluation was based on this
test data, offering an unbiased assessment on a com-
pletely new dataset. It’s worth noting that we trained the
Convolutional Autoencoder (CAE) and Gated Recurrent
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Unit (GRU) on NVIDIA GeForce GTX 1060 and RTX
2080TI GPUs, respectively, while the Echo State Net-
work (ESN) was trained on a CPU with 16GB of mem-
ory.

6.1 Convolutional Autoencoder Training

Initially, a 12-layer Convolutional Autoencoder (CAE)
was created for both the encoder and decoder. To restore
the original data dimensions of 320x60, the decoder in-
cluded an extra cropping layer, which employed an ac-
tivation of the sigmoid to guarantee a normalised out-
put. Bayesian optimisation (BO) was used to optimise
the network hyperparameters. A 5x5 kernel size was
used for the convolutions, resulting in a larger receptive
field. Regarding the shared latent representation of the
encoder and decoder, a 40-element size was determined
to be the most suitable for our application, yielding a 40-
dimensional latent space. A Glorot uniform distribution
was used to initialise all network weights. After acquir-
ing the optimized parameters, we initiated the training
of the CAE and performed validation on the model af-
ter each epoch. The training process typically converged
around the 30-epoch mark, but we continued it until it
met the early stopping criteria. Notably, both training
and validation errors consistently decreased throughout,
indicating the model’s robustness when dealing with pre-
viously unknown validation information.

6.2 Training of the echo state network

We first obtained a pre-trained Convolutional Autoen-
coder (CAE) that yields compressed representations of
the input data, and then we trained the Echo State Net-
work (ESN) to predict the latent space temporal vari-
ations in convection flow. We used the same dataset
and data splitting strategy as was previously mentioned.
Minimising the mean squared error (MSE) between the
forecasted and actual ground truth modes was our goal
for ESN training. In order to evaluate training effective-
ness, we also determined the mean square error (MSE)
among the forecasted values and the initial heat flux from
turbulent convection.
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Table 1. Hyperparameters used for the encoder—decoder GRU train-
ing
Parameter Search Optimized Value
Range
Kernel size (Ix1)- 5%5
(5%5)
Latent vector size 40
Learning rate 0.0001- 0.00058
0.001
Batch size 16

To achieve this, the predicted test modes were continu-
ously fed into the decoder and gathered into ensembles.

Moreover, we applied Bayesian optimisation (BO) to op-
timise the hyperparameters of the network. For this par-
ticular example, we optimised the regularisation keeping
the other hyperparametersunchanged and adjusting pa-
rameter 'b’. The red curve in these figures represents
the true (unknown and black-box) objective function. It
is evident that the objective function is quite complex,
and a grid-search approach would be ineffective if there
is insufficient grid resolution to capture the ideal values.
For our optimization, we utilized the mean squared error
(MSE) as the cost function and aimed to maximize the
negative of the MSE.

Validation

100 T T 10
Epochs

Figure 10. plot of MSE vs epochs

Table 2.
BO. Here, the prior was initialised with five randomly selected points,
the BO was iterated 50 times, and k=1

Optimised parameters for the ESN that were acquired from

Reservoir Size 100-5000 2992
Spectral radius 0.90-0.99 0.97
Reservoir density 0.05-0.20 0.09
Scaling True, False False
Leakage Rate 0.5-0.9 0.50
Regularization parameter | 0-600 4.89
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Table 3.
ing

Hyperparameters used for the encoder—decoder GRU train-

Search
Range

0.006,
0.003,
0.001,
0.0006,
0.0003,
0.0001,
0.00006,
0.00003,
0.00001

Batch Size 32, 64, | 128
128, 256,
512

128, 256, | 512
384, 512,
1024

Parameter Optimized Value

Initial learning rate 0.001

Hidden state size

7 CONCLUSION

In this study, we conducted a comprehensive analysis
of a complex dataset generated through Direct Numeri-
cal Simulation (DNS) of two-dimensional turbulent con-
vection. The dataset consisted of 2400 snapshots, and
we divided it into three distinct sets: a training set with
1000 snapshots, a validation set with 500 snapshots, and
a test dataset with 900 snapshots. This careful separa-
tion of data allowed us to train, validate, and test ma-
chine learning models in a rigorous and unbiased man-
ner. We employed various machine learning techniques
to analyze and predict the behavior of turbulent convec-
tion. The Convolutional Autoencoder (CAE) was used
for data compression and dimensionality reduction, re-
sulting in a 40-dimensional latent space. Bayesian op-
timization was utilized to fine-tune the CAE’s hyperpa-
rameters, ensuring optimal performance. The training
process for the CAE demonstrated robust convergence,
with both training and validation errors consistently de-
creasing. Subsequently, we introduced the Echo State
Network (ESN), which was trained to forecast temporal
changes in convection flow within the latent space. The
training objective was to minimize the mean squared er-
ror (MSE) between predicted modes and ground truth
modes, as well as between predicted values and origi-
nal turbulent convective heat flux. Bayesian optimiza-
tion was employed once again to optimize ESN hyper-
parameters, achieving a highly effective model. In addi-
tion, we incorporated a Gated Recurrent Unit (GRU) in
an encoder-decoder architecture to capture sequence de-
pendencies within the data. The GRU was trained with
carefully selected hyperparameters, resulting in a power-
ful model for sequence analysis and prediction. Overall,
our approach demonstrated the effectiveness of machine
learning in analyzing complex fluid dynamics data. By
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training, validating, and testing these models on separate
datasets, we ensured the reliability and generalizability
of our results. This work paves the way for improved un-
derstanding and prediction of turbulent convection and
holds promise for a wide range of applications in fluid
dynamics and beyond.
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