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Abstract
We consider problems on attitude guidance and con-

trol of the agile spacecraft for surveying the Earth sur-
face. We present developed methods for synthesis of
nonlinear guidance and attitude control laws, results on
dynamic research of the spacecraft attitude control sys-
tem under disturbances and digital control of the gyro
moment clusters by two excessive gyrodine schemes.
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1 Introduction
Dynamic requirements to an attitude control system

(ACS) for a land-survey spacecraft (SC) are as follows:
(i) guidance the telescope’s line-of-sight to a predeter-
mined part of the Earth surface with the scan in desig-
nated direction; (ii) stabilization of an image motion
at the onboard optical telescope focal plane. These
requirements are expressed by the SC rapid angular
manoeuvering and spatial compensative motion with a
variable angular rate vector. Attitude guidance laws of
a land-survey SC are presented into a sequence of time
intervals for the observing scanning routes (SRs) and
rotational maneuvers (RMs), Figs. 1 and 2.

Lifetime up to 10 years, exactness of spatial rota-
tion maneuvers with effective damping the SC flexi-
ble structure oscillations, robustness, fault tolerance as
well as the reasonable mass, size and energy charac-
teristics have motivated intensive development of ACS
with the gyro moment clusters (GMCs) based on exces-
sive number of gyrodines (GDs) – single-gimbal con-
trol moment gyros.

In the paper we present new results on synthesis of
nonlinear laws for guidance and gyromoment attitude
control of an agile land-survey satellite.

Figure 1. The space observing scanning routes on a map

2 Models and the Problem Statement
We have applied standard reference frames – the

inertial reference frame (IRF) I⊕ (O⊕XI
eY

I
eZ

I
e),

the geodesic Greenwich reference frame (GRF) Ee

(O⊕XeYeZe) rotated with respect to IRF by angular
rate vector ω⊕ ≡ ωe and the geodesic horizon ref-
erence frame (HRF) Eh

e (C Xh
cYh

c Zh
c ) with origin in a

point C and ellipsoidal geodesic coordinates on altitude
H, longitude L and latitude B. There are also applied
the SC body reference frame (BRF) B (Oxyz) and the
orbit reference frame (ORF) O (Oxoyozo) with origin
in the SC mass center O, the optical telescope (sen-
sor) reference frame (SRF) S (Oxsyszs) and the image
field reference frame (FRF) F (Oix

iyizi) with origin
in center Oi of the telescope focal plane yiOiz

i.



Figure 2. The scanning routes on a map during areal observation

In IRF the BRF orientation is defined by quaternion
Λb

I≡Λ = (λ0,λ),λ=(λ1, λ2, λ3) and with respect to
the ORF – by column φ= {φi} (i= 1, 2, 3 ≡ 1 ÷ 3)
of Krylov angles φ1 (roll), φ2 (yaw) and φ3 (pitch).
Let us vectors ω(t), r(t) and v(t) are standard nota-
tions of the SC body angular rate, the SC mass cen-
ter’s position and progressive velocity with respect to
the IRF. Further symbols 〈·, ·〉, ×, { · }, [ · ] for vec-
tors and [a×], (·)t for matrices are conventional no-
tations. Assume that Λp, ωp = {ωpi } and εp = ω̇p

are the quaternion, angular rate and acceleration vec-
tors of SC body’s attitude guidance law in the IRF.
The error quaternion is E = (e0, e) = Λ̃p(t)◦Λ, Eu-
ler parameters’ vector is E = {e0, e}, the attitude er-
ror’s matrix is Ce ≡C(E) = I3 − 2[e×]Qt

e with ma-
trix Qe ≡ I3e0 + [e×], and angular rate error vector
is δω = ω − Ceωp(t). The GMC’s angular momen-
tum (AM) vector H has the form H(β) = hgh(β) ≡
hg
∑

hp(βp), there hg is a constant own AM value for
each GD p = 1 ÷ m with the GD’s AM unit hp(βp)
and column β={βp}. Within precession theory of the
control moment gyros, for a fixed position of the SC
flexible structures with some simplifying assumptions
and t ∈ Tt0 = [t0,+∞) a SC angular motion model is
appeared as follows

Λ̇ = Λ ◦ω/2; Ao {ω̇, q̈} = {Fω,Fq}, (1)

Figure 3. The GMC scheme 3-SPE based on six gyrodines

where ω={ωi, i = x, y, z ≡ 1÷ 3}; q={qj};
Fω = Mg − ω×G + Md(t,Λ,ω) + Qo(ω, q̇,q);
Fq={−aqj((δq/π)Ωqj q̇j+(Ωqj)

2qj)+Qq
j(ω, q̇j , qj)};

Ao=

[
J Dq

Dt
q Aq

]
;
G=Go + Dqq̇; Mg =−hgAh(β)β̇;

Go=Jω + H(β); Ah = ∂h(β)/∂β;

vector Md(·) presents the external disturbance torques,
and Qo(·),Qq

j(·) are nonlinear continuous functions.
The GMC torque vector Mg is presented as follows

Mg = −H∗ = −hgAh(β) ug; β̇ = ug, (2)

ug = {ug
p}, ug

p(t) = Zh[Sat(Qntr(ugpk, d
g), ūm

g ), Tu]
with period Tu= tk+1− tk, k∈N0 ≡ [0, 1, 2, . . . ); dis-
crete functions ugpk ≡ ugp(tk) are outputs of nonlinear
control law (CL), functions Sat(x, a) and Qntr(x, a)
are general-usage ones, while the holder model has the
form y(t) = Zh[xk, Tu] = xk ∀t ∈ [tk, tk+1).
Collinear pair of two GDs was named as Scissored

Pair Ensemble (SPE ) in well-known paper J.W. Cren-
shaw (1973). Redundant multiply scheme, based on
six gyrodines in the form of three collinear GD’s pairs,
has name 3-SPE. Fig. 3 presents a simplest arrange-
ment of this scheme into canonical orthogonal gyro-
scopic basis Oxgcy

g
c z

g
c . By a slope of the GD pairs sus-

pension axes it is possible to change essentially a form
of the AM variation domain. Based on four gyrodines
the redundant scheme 2-SPE is obtained from the 3-
SPE scheme – without third pair (GD #5 and GD #6).
In park state above GMC schemes have the vector of
summary normed AM h(β) = 0.
We apply a strapdown inertial navigation system

(SINS) with an inertial measurement unit (IMU) based
on the gyro sensors corrected by an astronomical sys-
tem (AS) with the star trackers, the that are fixed to the
SC body. We use our approach (Somov et al., 2013)
to a signal processing in the SINS applying the follow-
ing methods: (i) approximation and interpolation of the
IMU quasi-coordinate increment vector values into two
adjacent sliding windows; (ii) estimating of the IMU
bias vector, the matrix of a mutual angular position of
the IMU and AS reference frames; (iii) estimating of
angular rate vector and IMU scale factor’s value, com-



pensation of the IMU bias; (iv) discrete filtering and
forming of the SINS coordinated digital output signals
on orientation and angular rate in the time moments
tl, l ∈ N0 with given period Tp. We assume also that
column βk ≡ {βpk} of the GDs measured angles is
accessible for the SC attitude digital control.
For given the SC body angular guidance law during a

time interval t ∈ T ≡ [ti, tf ] ⊂ Tt0 , tf ≡ ti + T and
a forming of the vector of continuous control torque
Mg (2), the columns β̇ = {β̇p} and β̈ = {β̈p} are
component-wise module restricted

|β̇p(t)| ≤ ūg < ūm
g , |β̈p(t)| ≤ v̄g, ∀t ∈ T, (3)

where values ūg and v̄g are some constants.
At simplest modeling of the SC body as a free solid,

the ACS AM vector has a constant value Go = Go
0.

Assume that the ACS is balanced on its AM with con-
dition Go

0 ≡ 0, moreover model of the SC attitude dy-
namics has the form ω̇ = ε, where ε = J−1Mg is
vector of angular acceleration, and model of SC atti-
tude motion has the following kinematic representation

Λ̇ = Λ ◦ ω/2; ω̇ = ε; ε∗ = ε̇ = v. (4)

Modules of vectors ω(t), ε(t) and ε∗(t) are restricted,
namely |ω(t)| ≤ ω̄, |ε(t)| ≤ ε̄ and |ε∗(t)| ≤ ε̄∗,
that is connected with a limited envelop of the variation
domains for the GMC vectors of the AM H and control
torque Mg with permissible rate of its variation.
We apply vector σ = {σi} = e tg(Φ/4) of the mo-

dified Rodrigues parameters (MRP) with traditional
notations of Euler unit e and angle Φ of own rotation.
Vector σ is one-one connected with quaternion Λ by
straight σ = λ/(1 + λ0) and reverse

λ0 = (1− σ2)/(1 + σ2); λ = 2σ/(1 + σ2)
relations, its kinematic equations have the form
σ̇ = 1

4 (1− σ2)ω + 1
2σ × ω + 1

2σ〈σ,ω〉;
ω = 4

(1+σ2)2 [(1− σ2)σ̇ − 2(σ × σ̇) + 2σ〈σ̇,σ〉],
and its second derivative is presented as follows
σ̈ = 1

2 [−〈σ, σ̇〉ω + 1
2 (1− σ2)ε+ σ̇ × ω + σ × ε

+σ̇〈σ,ω〉+ σ〈σ̇,ω〉+ σ〈σ, ε〉].
The first problem gets up on angular guidance of the

SC during its spatial route motion when a space obser-
vation is executed at given time interval t ∈ T – de-
termination of quaternion Λ(t), vectors of angular rate
ω(t) and acceleration ε(t) in the form of explicit func-
tions, proceed from the main requirement: optical im-
age of the Earth given part must move by desired way in
focal plane yiOiz

i of the telescope. The problem con-
sists in analytical representation of the guidance law
with given accuracy without any restriction on dura-
tion of interval T. This law corresponds to required SR
Λ(t),ω(t) by arbitrary type – trace, orthodromic, with
optimal alignment of a longitudinal image motion ve-
locity (IMV), areal and stereo observation etc.
If we have two adjacent time intervals of a scan-

ning observation, then for model (4) we obtain the RM

boundary conditions on quaternion ΛΛΛ, vectorsωωω, εεε, and
also on vector εεε∗ in a time moment when second route
is beginning. For RM time interval Tp ≡ [tpi , t

p
f ],

tpf ≡ t
p
i + Tp and boundary conditions

ΛΛΛ(tpi )=ΛΛΛi; ωωω(tpi )=ωωωi; εεε(t
p
i )=εεεi;

ΛΛΛ(tpf )=ΛΛΛf ; ωωω(tpf )=ωf ; εεε(t
p
f )=εεεf ; εεε

∗(tpf )=εεε∗f ,
(5)

taking into account given restrictions on modules of
vectorsωωω(t), εεε(t) and εεε∗(t), the SC spatial RMs are not
the only ones. We consider second problem on synthe-
sis of a guidance law at the SC RM using analytic rela-
tions only, a planning of land-survey as a sequence of
alternating SRs with rotational maneuvers in-between
and analytical synthesis of an unified vector spline law
for the satellite guidance during standard (Fig. 1) and
areal (Fig. 2) land-surveying.
Finally, the third considered problem consists in syn-

thesis of algorithms for discrete filtering of the SINS
signals and the GMC nonlinear digital control, analy-
sis of the SC ACS accuracy characteristics during the
above types of a scanning land-survey.

3 Spacecraft attitude guidance laws
Analytic matching solution have been obtained for

problem of the SC angular guidance during an scanning
observation (Somov et al., 2011; Somov, 2016). The
solution is based on a vector composition of all elemen-
tal motions in GRF Ee using the following reference
frames: HRF Eh

e , SRF S and FRF F . For any observed
point C the oblique range D is analytically calculated
as D = |rec − re|. If orthogonal matrix Cs

h≡ C̃=‖c̃ij‖
defines SRF S attitude with respect to HRF Eh

e , then
for any point M(ỹi, z̃i) at the telescope focal plane
yiOiz

i the components Ṽ iy and Ṽ iz of normed vector
by an image motion velocity is appeared as follows

[
Ṽ iy
Ṽ iz

]
=

[
ỹi 1 0
z̃i 0 1

]qiṽs
e1 − ỹi ωs

e3 + z̃i ωs
e2

qiṽs
e2 − ωs

e3 − z̃i ωs
e1

qiṽs
e3 + ωs

e2 + ỹi ωs
e1

. (6)

Here ỹi = yi/fe, z̃
i = zi/fe are normed focal coor-

dinates where fe is the telescope equivalent focal dis-
tance; function qi≡1−(c̃21ỹ

i+ c̃31z̃
i)/c̃11, and vector

of normed SC’s mass center velocity has components
ṽs
ei = vs

ei/D, i = 1 ÷ 3. Assume that taking into ac-
count (6) and some kinematic requirements we com-
puted the SC guidance attitude law by numerical inte-
grating of the nonlinear quaternion kinematic equation
in (1) for any time interval t ∈ T ≡ [0, T ].We consider
the interval T with the following notations for its four
points τp, p = 1 ÷ 4 : τ1 = 0, τ2 = T/3, τ3 = 2T/3

and τ4 = T . For six values ωl, l ∈ Ñ ⊂ N0 nearby
points τ1 = 0 and τ4 = T standard interpolation is
carried out by the vector spline of degree five, that al-
lows to calculate values ε1 = ω̇(τ1) and ε4 = ω̇(τ4)



Figure 4. The SC vector spline guidance law for a scanning land-survey of Benevento, Rome, Florence, Padua and Munich

of angular acceleration vector. For four points τp ∈ T
values σp, p = 1÷4 are computed, also values σ̇p and
σ̈p, p = 1, 4 for two boundary points are calculated.
Interpolation of the MRP vector σ(t) ∀t ∈ T is car-

ried out by the vector spline of 7 degree σa(t) =∑7
0 ast

s with 8 columns as ∈ R3, s = 0 ÷ 7 of un-
known coefficients. Eight columns as are defined for
spline σa(t) on the basis of (i) three boundary con-
ditions σa(0) = σ1; σ̇a(0) = σ̇1; σ̈a(0) = σ̈1 on
the left end of interval T, that results in a0 = σ1,
a1 = σ̇1 and a2 = σ̈1/2; (ii) two conditions
σa(τ2) =σ2;σa(τ3) =σ3; (iii) three boundary condi-
tions σa(T )=σ4; σ̇a(T )= σ̇4; σ̈a(T )= σ̈4. The ma-
trix relation is formed for computing columns as, s =
3 ÷ 7 and it is applied for simultaneous analytic com-
putation of these five sought columns. Verification of
the proposed method was carried out, we have obtained
that the errors are δφm = max |δφ| = 0.03 arc sec and
δωm ≡ max |δω|= 0.04 arc sec/sec for arbitrary type
of scanning observation at a route duration T ≤ 40 s.
The applied interpolation method allows a smooth con-
jugation for adjacent parts of a guidance law on val-
ues of vectors σ,ω and ε during a scanning obser-
vation with arbitrary duration (Somova, 2016a; So-
mova, 2016b).
For problem on synthesis of SC guidance law dur-

ing its RM we have developed analytical method based
on necessary and sufficient condition for solvability
of Darboux problem. Here solution is obtained as
the result of composition by three simultaneously de-
rived rotations of ”embedded” bases Ek about units ek,
k = 1 ÷ 3 of Euler axes, quaternion Λ is defined as
Λ(t) = Λi ◦ Λ1(t) ◦ Λ2(t) ◦ Λ3(t), where Λk(t) =
(cos(ϕk(t)/2), ek sin(ϕk(t)/2)) and ϕk(t) is angle of

k’s elementary rotation (Somov, 2016). Unit ek is
fixed in base Ek−1, therefore the vectors are ωk(t) =
ϕ̇k(t)ek,εk(t) = ϕ̈k(t)ek, ε

∗
k(t) ≡ ε̇k(t) =

...
ϕk(t)ek.

We use notations ω(k), ε(k), ε̇(k) with k = 1 ÷ 3 for
vectors ω, ε and ε̇ in base Ek and the vector operator
a
(k)
k−1 = Φ(ak−1,Λk) ≡ Λ̃k ◦ ak−1 ◦ Λk for conver-

sion from basis Ek−1 to basis Ek. Assume that we as-
signed vectors ω1(t) = ϕ̇1(t)e1, ε1(t) = ϕ̈1(t)e1 and
ε̇1(t) =

...
ϕ1(t)e1. Then vectors ω(t),ε(t),ε̇(t) in BRF

are computed by the reccurrent formulas with k = 2, 3:
ω

(k)
k−1 =Φ(ωk−1,Λk); ε

(k)
k−1 =Φ(εk−1,Λk);

ε̇
(k)
k−1 =Φ(ε̇k−1,Λk);

ω(k) = ω
(k)
k−1 +ωk; ε(k) = ε

(k)
k−1 +εk +ω

(k)
k−1×ωk;

ε̇(k) = ε̇
(k)
k−1 + ε̇k + ω

(k)
k−1 × εk

+(2ε
(k)
k−1 + ω

(k)
k−1 × ωk)× ωk.

In result we obtain vector functions ω(t) = ω(3)(t),
ε(t) = ε(3)(t) and ε∗(t) = ε̇(t) = ε̇(3)(t) by explicit
analytic relations.
Assume that quaternion Λ∗ ≡ (λ∗0,λ

∗) = Λ̃i ◦ Λf

has unit e3 = λ∗/ sin(ϕ∗/2) for 3rd rotation on angle
ϕ∗ = 2 arccos(λ∗0). For quaternions of the 1st and 2nd
rotations the boundary conditions Λ1(tpi ) = Λ1(tpf ) =
Λ2(tpi ) = Λ2(tpf ) = 1 are applied, and for 3rd rota-
tion – conditions Λ3(tpi ) = 1, Λ3(tpf ) = (cos(ϕf

3/2),
e3 sin(ϕf

3/2)), where ϕf
3 = ϕ∗ and 1 is a unit quater-

nion. The Euler axis unit e1 of 1st rotation is assigned
from the condition of its orthogonality to unit e3, unit
e2 =e3×e1. Vectorsω(t), ε(t) and ε∗(t) are presented
in analytic form at assigning splines ϕk(t) by different
degrees, using three parts of given RM time interval Tp
in general case :
1) initial part of the time-optimized acceleration under



constraints when the SC moves to its attitude motion
with angular rate on fixed unit e3;
2) SC motion with a constant angular rate on unit e3;
3) final part to guarantee the specified boundary con-

ditions on the RM right end when the sixth order scalar
splines ϕk(t) are applied, moreover all parameters of
these splines are computed by explicit relations.
In result for sequence of the SRs and RMs at land-

survey from current orbit we obtain the uniform vec-
tor spline attitude guidance law which is a vector com-
mand signal for the satellite ACS.
We assume that a land-survey SC is moving on sun-

synchronous orbit with altitude 720 km, longitude of
the ascending node (AN) 23.5 deg and it fulfills the
task for the trace scanning optoelectronic observations
of Benevento, Rome, Florence, Padua and Munich with
duration of 10 sec each route, Fig. 1. At referencing a
time t from the AN flyby moment, the guidance law
synthesis was carried out for the following data:
the SC body orientation in ORF ∀t ∈ [0, 630) s;
RM 1 ∀t ∈ [630, 660) s with duration 30 s;
SR 1 (Benevento) ∀t ∈ [660, 670)s;
RM 2 ∀t ∈ [670, 705)s;
SR 2 (Rome) ∀t ∈ [705, 715) s;
RM 3 ∀t ∈ [715, 735) s;
SR 3 (Florence) ∀t ∈ [735, 745) s;
RM 4 ∀t ∈ [745, 770) s;
SR 4 (Padua) ∀t ∈ [770, 780) s;
RM 5 ∀t ∈ [780, 805) s;
SR 5 (Munich) ∀t ∈ [805, 815) s.
Obtained results are presented in Fig. 4, where com-

ponents of vectors σ(t), ω(t) and ε(t) are marked by
different colors – blue color on roll, green on yaw and
red color on pitch, modules of vectors ω(t) and ε(t)
are marked by black color.
The aim of an area land-survey is to cover a given area

on the Earth’s surface with geographical center C by a
sequence of partly overlapping scanning routes (OSRs,
scans). The initial data for planning such a land-survey
are the size of the area, parameters of the SC orbital
motion, characteristics of the telescope and OECs with
the possibility of reverse, restrictions on the kinematic
parameters of satellite angular motion. Allowed val-
ues of azimuth deviation of orthodromic OSRs from
the route are up to ±π/9 and (1 ± 1/9)π. The main
steps in solving this problem are the following: deter-
mining required number of scans N and longitudinal
IMV in the telescope focal plane during the OSR per-
forming; synthesis of the SC guidance laws for runnig
the central and side scans.
Fig. 2 represents the map with projections of scans

and of telescope target line trace obtained in planning
two single SRs (the first SM Antalya and the final SM
Varna) and area land-surveying of neighborhoods of Is-
tanbul for the SC on sun-synchronous orbit with alti-
tude of 720 km and inclination of 98.27 deg, when the
allowed deviation of the target line from Nadir is within
the cone with semi-angle of 40 deg.

Figure 5. The SC vector spline guidance law for areal land-survey

In Fig. 5 we present the unified vector spline SC gui-
dance law corresponding to the developed plan for the
area land-survey. Here angles φi of the BRF orientation
in the ORF, components of vectors σ(t), ω(t) and ε(t)
are marked by the same colors.

4 Control of the Gyro Moment Cluster
At the SC attitude gyromoment control the problem

is appeared – a possibility of the GMC singular states.
Into orthogonal canonical basis Oxyz (Fig. 3) the GD’s
AM units have the following projections:

x1 = C1;x2 = C2; y1 = S1; y2 = S2;
x3 =S3;x4 =S4; z3 = C3; z4 = C4;
y5 = C5; y6 = C6; z5 = S5; z6 = S6,

where Sp ≡ sinβp and Cp ≡ cosβp. Then column
h(β) = {x, y, z} of normed GMC’s AM vector and
matrix Ah(β) = ∂h/∂β have the form

h(β)={Σxp,Σyp,Σzp};

Ah(β)=

−y1 −y2 z3 z4 0 0
x1 x2 0 0 −z5 −z6
0 0 −x3 −x4 y5 y6

 .
For 3-SPE scheme singular state is appeared when the

matrix Gramme G(β) = Ah(β)At
h(β) loses its full

rang, e.g. when G ≡ det G(β) = 0. At introducing
the notations

x12 = x1 + x2; x34 = x3 + x4; y12 = y1 + y2;

y56 = y5 + y6; z34 = z3 + z4; z56 = z5 + z6;

x̃12 = x12/
√

4− y212 ; x̃34 = x34/
√

4− z234;

ỹ12 = y12/
√

4− x212 ; ỹ56 = y56/
√

4− z256;

z̃34 = z34/
√

4− x234 ; z̃56 = z56/
√

4− y256
components of the GMC explicit vector tuning law

fρ(β) ≡ {fρ1(β), fρ2(β), fρ3(β)} = 0 (7)

are applied in the form
fρ1(β) ≡ x̃12 − x̃34 + ρ (x̃12 x̃34 − 1);

fρ2(β) ≡ ỹ56 − ỹ12 + ρ (ỹ56 ỹ12 − 1);

fρ3(β) ≡ z̃34 − z̃56 + ρ (z̃34 z̃56 − 1).



Figure 6. The SC attitude and angular rate errors during fulfillment of a space scanning land-survey with high spatial resolution

The analytical proof has been elaborated that vector
tuning law (7) ensures absent of singular states in this
GMC scheme for all values of the GMC AM vector
inside its variation domain. For notations

x12 = (x + ∆x)/2; x34 = (x−∆x)/2;
y56 = (y + ∆y)/2; y12 = (y −∆y)/2;
z34 = (z + ∆z)/2; z56 = (z−∆z)/2

and ∆ = {∆x,∆y,∆z} one can obtain the nonlinear
vector equation ∆(t) = Φ(h(t),∆(t)). At a known
vector h(t) this equation has single solution ∆(t),
which is readily computed by method of a simple it-
eration. Further units hp(βp(t)) and vector columns
β(t), β̇(t), β̈(t) are calculated by explicit analytical
relations.
For the 2-SPE scheme such evaluation is carried out

by the explicit analytical formulas only.

5 Filtering and Robust Digital Control
For continuous forming the control torque Mg (2) and

the SC model as a free rigid body the simplified con-
trolled plant is as follows

Λ̇ = Λ ◦ω/2; Jω̇ + [ω×]Go = Mg; β̇ = ug(t)

and we suggest to form the GMC’s control torque vec-
tor Mg = ωωω×Go + J(Ceεp(t)− [ωωω×]Ceωp(t) + m̃),
where vector m̃ is a stabilizing component.
For period Tp applied filter has the discrete transfer

function Wf(zp) = (1+b1)/(1+b1z−1
p ),where coeffi-

cient b1 = − exp(−Tp/Tf) with a time constant Tf and
zp = exp(sTp) with a complex variable s of Laplace
transformation. For l ∈ N0 and the MRP vector error
σσσe
l = el/(1 + e0l) a filtering is executed by relations

x̃l+1 = Ãx̃l + B̃σσσe
l and σσσef

l = C̃x̃l + D̃σσσe
l , where

matrices Ã, B̃, C̃ and D̃ have diagonal form with
ãi=−bf

1; b̃i=bf
1; c̃i=−(1 + bf

1) and d̃i=1 + bf
1.

Applied stabilizing component m̃k is formed as fol-

lows: εεεk=−σσσef
k ;

gk+1 =Bgk + Cεεεk; m̃k=K(gk + Pεεεk). (8)

Here matrices B,C,P and K also have diagonal form
with pi = (1− bi)/(1− ai); ci = pi(bi− ai) and ai =
(duτ1i−1)/(duτ1i+1); bi = (duτ2i−1)/(duτ2i+1),
where du = 2/Tu, and τ1i, τ2i, ki are the tuning pa-
rameters for ensuring the robust properties of the SC
gyromoment ACS. Moreover only the SC attitude fil-
tered MRP vector error σσσef

k is applied for forming the
stabilizing component m̃k (8).
The GMC’s control torque is digitally formed by the

analytic relations

Ĝo
k = Jω̂ωωk +HHHk; Ce

k = C(EEE fk); Mg
k =

ω̂ωωk×Ĝo
k + J(Ce

kεεε
p
k − [ω̂ωωk×]Ce

kωωω
p
k + m̃k). (9)

The continuous tuning law fρ(βββ(t)) = 0 (7) bijectively
connects continuous vector Mg(t) with vectors βββ(t)

and β̇ββ(t) = ug(t).
Taking into account restrictions (3) the GDs’ control

vector ug(t) is formed by the analytic relations

Ah(βββ) ug(t) = −Mg(t)/hg; β̇ββ(t) = ug(t);
(∂fρ(βββ)/∂βββ) ug(t) = −Sat(µ fρ(βββ),∆ūm

g ) (10)

with ∆ūm
g = ūm

g − ūg, Sat(µ x, a)={Sat(µ xi, a)},
where µ is a constant parameter.
The GDs’ digital control vector ug

k is carried out
by relations (9) and (10) presented in discrete form
(Somov, 2016).



Figure 7. Errors during areal land-survey and the GD angular rates

Figure 8. Errors during second OSR and the GD angular rates

6 Simulation of the ACS Operation
Developed algorithms for discrete filtering and digital

control of GMC were simulated taking into account the
vector spline guidance laws at different sequences of
the SRs and RMs.
In Fig. 6 the SC attitude and angular rate errors are

presented during fulfillment of a land-surveying Be-
nevento, Rome, Florence, Padua and Munich.
Figs. 7 & 8 present errors on stabilization of the

SC angular motion and the GD angular rates (2-SPE
scheme) during the areal land-survey. In the lower
part of Fig. 7 we have pointed the time intervals of the
OSMs with their indexes and scanning directions. .

Conclusions
We have considered problems on attitude guidance

and robust gyromoment control of agile land-survey
spacecraft. We briefly have presented methods for syn-
thesis of nonlinear guidance and attitude control laws,
and also results on dynamic research of the spacecraft
attitude control system under disturbances and digital
control of the gyro moment clusters.
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