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Abstract
This paper deals with the concepts of functional

output-controllability character of a finite-dimensional
linear dynamical system. And a method for comput-
ing the functional outputcontrollability consisting on
the calculation of the rank of a certain constant ma-
trix related to the system dynamics is introduced. The
linear system under study is a fixed speed wind tur-
bine (FSWT) formed by a squirrel cage generator con-
nected directly to the grid. Due to the non-linear be-
haviour of such system, the linear system model is
calculated by means of a Taylor’s decomposition of
the non-linear equations of the squirrel cage induction
generator, being the system linearized around a steady
state operating point. Finally, the study of the func-
tional output-controllability of such system is done,
and some boundaries are given to ensure functional
output-controllability from some given operational val-
ues.
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1 Introduction
In the control theory of continuous linear time-

invariant dynamical systems the most frequently used
mathematical model is given by the following system
consisting of a differential state equation and an alge-
braic output equation

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

}
(1)

where x is the state vector, y is the output vector, u
is the input (or control) vector, A ∈ Mn(R) is the
state matrix, B ∈ Mn×m(R) is the input matrix, C ∈
Mp×n(R) is the output matrix, and D ∈ Mp×m(R) is
the feedthrough (or feedforward) matrix.

For simplicity we will write the systems as a quadru-
ples of matrices (A,B,C,D).
For its analysis and solution, this system is usually

described by the transfer function obtained by applying
Laplace transformation to equation (1). It is obtained in
the following form

sẊ = AX +BU
Y = CX +DU

}

C(sI −A)−1B +D. (2)

A related problem to the control of the system is
whether it is possible to steer the output following a
previously assigned curve over any interval of time.
The answer to this problem is given analyzing the func-
tional output-controllability.
On the other hand, the recent increasing of wind

power in the electrical network, makes interesting the
study and ensure the functional output-controllability
of Fixed-Speed Wind Turbines (FSWT), which can af-
fect directly the behavior of power systems.

2 Functional output-controllability
Definition 2.1. A system is functional output-
controllable if and only if its output can be steered
along the arbitrary given curve over any interval of
time. It means that if it is given any output yd(t),
t ≥ 0, there exists t1 and a control ut, t ≥ 0, such that
for any t ≥ t1, y(t) = yd(t).

Proposition 2.1 ([Chen, 1970]). A system is func-
tional output-controllable if and only

rankC(sI −A)−1B +D = p

in the field of rational functions



A necessary and sufficient condition for functional
output-controllability is

Proposition 2.2 ([Chen, 1970]).

rank
(
sI −A B
C D

)
= n+ p,

For systems in which the matrix D is the zero ma-
trix in [M. Garcı́a-Planas, Domı́nguez-Garcı́a, 2013],
a simple test to compute the functional output-
controllability is obtained. In this section, a general-
ization of this test is presented.
For a linear continuous-time system, like (1), de-

scribed by matrices A, B, C and D, the functional
output-controllability matrix can be defined as.

Definition 2.2.

oCf(A,B,C,D) =
C D
CA CB D
CA2 CAB CB D

...
. . .

. . .
CAn CAn−1B . . . CAB CB D

 .

and the following result is obtained.

Theorem 2.1. The system (A,B,C,D) is functional
output-controllable if and only if

rank oCf(A,B,C,D) = (n+ 1)p.

The null terms are not written in the matrix.
In order to prove this theorem an equivalence relation

preserving the functional output-controllability is de-
fined that permit to consider an equivalent simple re-
duced form for the system

Definition 2.3. Two systems (A,B,C,D) and
(A1, B1, C1, D1) are equivalent if and only there
exist matrices P,∈ Gl(n;R), R,∈ Gl(m;R),
S,∈ Gl(p;R), V ∈ Mm×n(R) and W ∈ Mn×p(R)
such that

(
A1 B1

C1 D1

)
=

(
P−1 W

0 S

)(
A B
C D

)(
P 0
V R

)
.

This equivalence relation coincides with the strict
equivalence relation defined over pencils in the form

H(λ) =

(
λI −A B
C D

)
. So the Kronecker canonical

reduced form can be considered [Garcı́a-Planas, Ma-
gret, 1999].

Proposition 2.3. The functional output-controllability
character is invariant under equivalence relation.

Proof.

(
sI −A1 B1

C1 D1

)
=(

P−1 −W
0 S

)(
sI −A B
C D

)(
P 0
−V R

)

Proof of the Theorem. It suffices to consider the Kro-
necker reduced form of the pencil associated to the sys-
tem.

Corollary 2.1. The system (A,B,C,D) is functional
output-controllable if and only if

rank
(
C D

)
= p

rank ( C D
CA CB D ) = 2p

...

rank


C D
CA CB D
CA2 CAB CB D

...
. . .

CAi CAi−1B ... CAB CB D

 = (i+ 1)p

...

Analogously to the case of triples of matrices
(A,B,C) [M. Garcı́a-Planas, Domı́nguez-Garcı́a,
2013], this corollary provides an iterative method to
compute functional output-controllability. Calling oCf

the matrices in the corollary, it is shown an example of
a flowchart in Figure 1.

(A, B, C,D) 

rank( C D) < p 

i= 0 

Update oCf 

rank( oCf) <(i+1)p 

Yes No functional  
output-controllable 

Yes 

i= n 
Yes Functional  

output-controllable 
No 

No 

No 

i= i+1 

Figure 1. Flowchart showing the required iteration for functional
output-controllability computation

3 A lower bound on the distance to a non func-
tional output-controllable system

The goal is to obtain a bound for the value of the radius
of a ball which is neighborhood of a functional output-
controllable element, containing only elements which
are also functional output-controllable.



The distance considered is that deduced from the
Frobenius norm. We recall that given a matrix A =
(aij) =∈ Mn×m(C), its Frobenius norm is defined as

‖A‖
√∑

ij a
2
ij .

This norm leads to the natural definition of the norm
of quadruples inM and the corresponding definition of
the distance in M .

Definition 3.1. Given a quadruple (A,B,C,D) ∈ M
its norm is defined as

‖(A,B,C,D)‖=
√
‖A‖2 + ‖B‖2 + ‖C‖2 + ‖D‖2

and the distance between the quadruples (A,B,C,D),
(A′, B′, C ′, D′) is defined as

d((A,B,C,D), (A′, B′, C ′, D′)) =
‖(A−A′, B −B′, C − C ′, D −D′)‖.

Finally, the distance between a functional output-
controllable quadruple and the nearest non-functional
output-controllable one is defined as

inf‖(δA, δB, δC, δD)‖

where (δA, δB, δC, δD) is a quadruple such that (A+
δA,B + δB,C + δC,D + δC) does not satisfies the
given property.

The starting point to find a bound is the rela-
tionship between the norm of the associated matrix
oCf(A,B,C,D) to the quadruple (A,B,C,D) and the
norm of this quadruple.
The difficulty to relate the norm of oCf(A,B,C,D)

to the quadruple (A,B,C,D) induce to consider the
following matrix

M(A,B,C,D) =

A B −I 0 0 0 0 . . . 0 0
C D 0 0 0 0 0
0 0 A B −I 0 0
0 0 C D 0 0 0
...

. . . A B −I 0

. . . C D 0 0

. . . 0 0 C D


∈M((n2+(n+1)p)×(n(n+1+m(n+1))(C).

The following theorem ensures that we consider this
matrix to study the functional output-controllability.

Theorem 3.1.

rank


C D
CA CB D
CA2 CAB CB D

...
. . .

CAn CAn−1B CB D

+ (n− 1) =

rank



A B −I 0 0 0 0 . . . 0 0
C D 0 0 0 0 0
0 0 A B −I 0 0
0 0 C D 0 0 0
...

. . . A B −I 0

. . . C D 0 0

. . . 0 0 C D


Proof. Making block elementary row and columns
transformations we have

rank



A B −I 0 0 0 0 . . . 0 0
C D 0 0 0 0 0
0 0 A B −I 0 0
0 0 C D 0 0 0
...

. . . A B −I 0

. . . C D 0 0

. . . 0 0 C D


=

rank



I
. . .

I
C D
CA CB D
CA2 CAB CB D

...
. . .

CAn CAn−1B CB D


.

Relating the norm of the associated matrix
M(A,B,C,D) to the quadruple (A,B,C,D)
and the norm of this quadruple.

Theorem 3.2. Given a non-functional output-
controllable quadruple (A,B,C,D) a lower bound
for the distance to the nearest non-functional output-
controllable quadruple is given by

‖(δA, δB, δC, δD)‖ ≥
1√
n+ 1

σn2+(n+1)pM(A,B,C,D)

where σn2+(n+1)pM(A,B,C,D) denotes
the smallest non-zero singular value of
M(A,B,C,D).



Proof. The functional output controllability of
(A,B,C,D) implies that rankM(A,B,C,D) = n2 +
(n+1)p and that if (A+δA,B+δB,C+δC,D+δD)
is not functional output controllable, rankM(A +
δA,B + δB,C + δC,D + δD) ≤ n2 + (n+ 1)p.
The Eckart-Young and Minkowski theorem states that

the smallest perturbation in the Frobenius norm that re-
duces the rank of a matrix A with rankA = r from r to
r − 1 is σr(A), the smallest non-zero singular value of
A.
Noting that

M(A+ δA,B + δB,C + δC,D + δD) =
M(A,B,C,D) +M(δA, δB, δC, δD)

where

δA δB 0 0 0 0 0 . . . 0 0
δC δD 0 0 0 0 0
0 0 δA δB 0 0 0
0 0 δC δD 0 0 0
...

. . . δA δB 0 0

. . . δC δD 0 0

. . . 0 0 δC δD


and it is easy to prove that, for all quadruple
(A,B,C,D),

‖M(δA, δB, δC, δD)‖ ≤
√
n+ 1‖(δA, δB, δC, δD)‖.

It suffices to compute.

‖M(δA, δB, δC, δD)‖2 =
n(‖δA‖2 + ‖δB‖2) + (n+ 1)(‖δC‖2 + ‖δD‖2) ≤
(n+ 1)‖(δA, δB, δC, δD)‖2.

Therefore, the norm of the perturbation of the
matrix M(δA, δB, δC, δD) must be at least
σn2+(n+1)(M(A,B,C,D)),
Hence, a bound for the distance from (A,B,C,D) to

the nearest non-functional output-controllable quadru-
ple, taking into account above proposition is

‖(δA, δB, δC, δD))‖ ≥
1√
n+ 1

‖M(δA, δB, δC, δD)‖ ≥
1√
n+ 1

σn2+(n+1)p(M(A,B,C,D)).

4 Modeling of FSWT
The global analyzed system is a wind power generator

connected directly to the grid.

The linear system is defined by means of the squir-
rel cage induction generator differential equations and
a first order mechanical system. The differential
equations considered within this system are time de-
pendant [Domı́nguez-Garcı́a, M. Garcı́a-Planas, 2011]
[Ugalde-Loo, Ekanayake, Jenkins]. Its inputs are the
voltage of the grid. Supposing the system to be in
steady state, the system can be described as:

Ẋ = AFSWTX +BFSWTU
Y = CciX +DciU

(3)

AFSWT =

KG ·


α11 α12 α13 α14 a15
−α12 α11 −α14 α13 a25
α31 α32 α33 α34 a35
−α32 α31 −α34 α33 a45
Kωiqr0 −Kωidr0 −Kωiqs0 Kωids0 0



α11 = −RTXrr, α12 = α10ωs + XTXrr, α13 =
−RrXm, α14 = −βr0ωs, α31 = RTXm, α32 =
−βs0ωs −XTXm, α33 = −RrXss, α34 = −α20ωs.

BFSWT =


γXrr 0 0

0 γXrr 0
γXm 0 0

0 γXm 0
0 0 1

2H


γ =

−ωb

XssXrrσ
.

Where,
KG = ωb(XssXrrσ)−1,
Kω = Xm(2HKG)−1 = −γ,
RT = Rs +RE ,
XT = XE +Xtr,
Xss = X ls +Xm,
Xrr = X lr +Xm,

σ =
1−X2

m

XrrXss

α10 = XssXrr − s0X
2

m,
βs0 = XmXss(1− s0),
βr0 = XmXrr(1− s0),

α20 = X
2

m − s0XssXrr,
a15 = Xm(Xmiqs0 −Xrriqr0),
a35 = Xss(Xmiqs0 −Xrriqr0),
a45 = Xss(−Xmids0 +Xrridr0),
a25 = Xm(−Xmids0 −Xrridr0).
Subindex 0 in some terms of the matrix AFSIG in-

dicates evaluation at the initial condition. Observe
that the terms ai5 appear because the slip s is a func-
tion of ωr. The effect of the transmission line has
been considered through the following relations vds =
vd∞ −XT iqs +RT ids and vq∞ +XT ids +RT iqs.



4.1 Output variables selection for C and D matri-
ces definition

The active and reactive power delivered by the induc-
tion generator, and also the stator currents of the wind
turbine have been chosen for such analysis.

4.1.1 Active and reactive power selection The
output system described as Y = Cc1X +Dc1U can be
written as follows:

(
∆Qss

∆Pss

)
=

(
vsd0 −vsq0 0 0 0
vsq0 vsd0 0 0 0

)
︸ ︷︷ ︸

Cc1


isq
isd
irq
ird
ωr


+

(
−isd0 isq0 0
isq0 isd0 0

)
︸ ︷︷ ︸

Dc1

 vsq
vsd
Tm


(4)

where the subscripts 0 (as previously stated) represents
the operating point selected to linearize.

4.1.2 Stator currents of the FSWT In this case,
the state variables have been selected as outputs vari-
ables to be analyzed. Then,

Cc2 =

(
1 0 0 0 0
0 1 0 0 0

)
(5)

and Dc2 = 02×3

5 Functional Output-controllability of FSWT
In the following subsections it is studied functional

output-controllability of FSWT.
Applying the theorem 2.1 in the linearized system, it

can be computed rank oCf(A,B,C,D).

5.1 Case FSWT with active and reactive power as
measured outputs

Taking into account that isd0 and iso0 can be not zero
simultaneously, the matrix

D =

(
−isd0 isq0 0
isq0 isd0 0

)

has full row rank, then applying the test 2.1 it can
be concluded that the system is functional output-
controllable.
Notice that if the matrix D has full row rank the test

finish in the first iteration, since the ranks of the itera-
tive matrices differs exactly the rank of the matrix D.
Taking particular values it is possible to compute a

bound ensuring functional output-controllability.

5.2 Case FSWT with stator currents of the induc-
tion generator as measured outputs

In this case the matrixD is the zero matrix, but matrix
C has full row rank, and taking into account that γ 6= 0
and Xrr 6= 0, the matrix

CB =

(
γXrr 0 0

0 γXrr 0

)
has full row rank and applying the test 2.1, as before
it is concluded that the system is functional output-
controllable.
Notice that if D = 0 but matrices C and CB have full

row rank the test finish in the second iteration, since the
ranks of the iterative matrices differs exactly the rank of
the matrix CB from second iteration.

6 Computing bounds for particular cases
Due to the fact that the linear system under study is

derived from a non-linear system, it is important to de-
termine the confidentiality of the linear system in com-
parison with the real one.
In order to be able to compute a boundary which en-

sures functional output-controllability characteristic of
the system, some values for the symbolic parameters
previously presented are used. Such parameters are de-
fined in Appendix A

6.1 Case FSWT with active and reactive power as
measured outputs

If matrixD has full row rank, the system can be deter-
mined functional output-controllable. For that reason,
a proper first boundary approximation can be obtained
by computing the singular values of matrix D.
In order to calculate the boundary, the system is eval-

uated under two different operational cases: a wind tur-
bine connected into a weak network and a wind turbine
connected into a strong network. The initial conditions
derived from those cases are introduced in Appendix A

6.1.1 Weak network (V ASC = 16MVA) In this
particular case matrix D is

D =

(
0.527 0.791 0
0.791 −0.527 0

)
and the smallest singular value of the matrix D is

0.9488.
It is worth to remark, that if the parameters selected

for the analysis implies that the smallest singular value
of matrixD is 0, the boundary must be computed using
matrix M .

6.1.2 Strong network (V ASC = 40MVA) In
this particular case matrix D is

D =

(
0.458 0.789 0
0.789 −0.458 0

)



and the smallest singular value of the matrix D is
0.9201.
Analogously, it is worth to remark, that if the param-

eters selected for the analysis implies that the smallest
singular value of matrix D is 0, the boundary must be
computed using matrix M .

6.2 Case FSWT with stators currents of the induc-
tion generator as measured outputs

In this case D = 0, but matrices C and CB has full
row rank, taking into account C is a fixed matrix, then
a proper first boundary approximation can be obtained
by computing the singular values of matrix CB.
In our case

B =


87.0454 0 0

0 87.0454 0
84.9079 0 0

0 84.9079 0
0 0 0.1429


Then

CB =

(
87.0454 0 0

0 87.0454 0

)

and the smallest singular value of the matrix CB
is 87.0454. Then, the nearest non-functional output-
controllable system (A + δA,B + δB,C + δC) is in
such a way that ‖δ(C ·B)‖ > 87.0454.
It is worth to remark, that if the parameters selected

for the analysis implies that the smallest singular value
of matrix CB is 0, the boundary must be computed
using matrix M .

6.2.1 Weak network (V ASC = 16MVA) In this
particular case matrix A is

A =

( 1.5058 −369.1080 0.4661 345.9649 46.2303
369.1080 1.5058 −345.9649 −0.4661 −282.1571
−1.0525 360.1678 0.4769 337.5596 26.1976
−360.1678 −10.5254 −337.5596 0.4769 −170.7528
−0.4812 0.1740 −0.4511 −0.3007 0

)

Using Matlab it can be obtained the singular values of
the matrix M , and the smallest one is 0.003.

6.2.2 Strong network (V ASC = 40MVA) In
this particular case matrix A is

A =

( 0.8614 −362.5157 0.4661 345.8275 20.5053
362.5157 0.8614 −345.8275 0.4661 −143.3823
−0.8399 345.2217 −0.4769 337.4178 20.9843
−345.2217 −0.8399 −337.4178 −0.4769 −236.5390

0.4734 0.1272 −0.4511 −0.2578 0

)

Using Matlab it can be obtained the singular values of
the matrix M , and the smallest one is 0.0002.

7 Conclusion
This paper has presented the concept of functional

output-controllability and applied to a linearized sys-
tem from the nonlinear equations representing the
squirrel cage induction generator. Functional output-
controllability has been determined using the A, B, C
and D matrices. Moreover, the demonstration is made
with a generic system. Therefore, it can be ensured
not only for an example. Due to the functional output-
controllability condition, it can be concluded that any
output can be reached regulating the voltage inputs.

A System under study parameters
The parameters of the squirrel cage induction gener-

ator used for the evaluation of the boundaries are the
following: Vb = 690V , Sb = 2MVA, fb = 50Hz,
ωb = 2πfb, H = 3.5s, Xtr = 0.05, Rs = 0.00488,
X ls = 0.09241, Rr = 0.00549, X lr = 0.09955,
Rd = 0.2696, X ld = 0.0453, Xm = 3.95279 and
Xrm = 0.02.
V ASC = 16MVA, X/R = 10, ZE = Sb/V ASC ,
RE = ZE/(1 + (X/R)2)1/2, XE = RE(X/R).

A.1 Weak network (V ASC = 16MVA)
The operating point of a weak network used for sys-

tem linearization is ids0 = −0.527, iqs0 = 0.791,
idr0 = −0.306, iqr0 = 0.846 and s0 = −0.0055.

A.2 Strong network (V ASC = 40MVA)
The operating point of a strong network used for sys-

tem linearization is ids0 = −0.458, iqs0 = 0.798,
idr0 = −0.225, iqr0 = 0.838 and s0 = −0.0051.
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