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Abstract: The present paper deals with 
energy transfer in a dissipative mechanical 
system. Various results, theoretical and 
numerical, based on recent works are 
given. Numerical results are given by
considering a linear interaction between 
the considered oscillators. Specifically, we 
show an energy transfer from linear to 
nonlinear oscillator (energy pumping) as 
well as from nonlinear to linear oscillator.

1. Introduction 

In this paper we extend previous
results obtained in [1, 2] on energy transfer 
in a 2-DOF system composed of two 
coupled and damped oscillators.

We investigated analytically and 
numerically the occurrence of energy 
pumping (which consists in passive 
irreversible transfer of energy from a linear 
system to a nonlinear attachment [3–15]) 
as well as the occurrence of energy transfer 
from nonlinear to linear oscillator [6, 7]. 

Previous works on transfer of 
energy concerned mainly energy transfer 
from linear to nonlinear oscillator or with 
linear absorber with important mass. 
However, the case of an energy transfer 
from nonlinear to linear oscillator has been 
passed over. Besides, some works in this 
area try to solve the problem of minimal 
energy level necessary to reach the stable 
orbit responsible for energy pumping
considering homogeneous initial 
conditions for the displacements for both 

oscillators and for the initial velocity of the 
nonlinear oscillator. An impulse is applied 
as initial velocity (the energy of the system 
at t = 0+) for the linear oscillator. So 
depending on the level of energy applied, 
energy pumping occurs (see [4, 5]).

In this work, we showed that 
depending on the initial conditions, there is
an energy transfer from linear to nonlinear 
or from nonlinear to linear oscillator.

Here we are interested in the 
oscillations of the energy of each oscillator 
calculated on the orbits of the perturbed 
system. Assuming that these oscillators are
coupled by springs, expansions of the 
energies, in a small parameter ε, are 
obtained. We consider only the resonant 
case, since if the non-resonant condition 
holds, then there is no energy transfer. 

Numerical evidences confirm our 
theoretical results.

2. Mathematical Model

All results presented here are based 
in the definition of energy transfer
presented in references [1, 2]: 

Let Hi, i =1, 2 and Rj, j = 1,…,5 be 
functions adequately smooth defined on 
open sets of ℜ2 and ℜ5 respectively. It is 
assumed that each open set contains the 
origin and each Rj is T-periodic in the 
variable t.

Consider the following system
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where (q1(t, ε), p1(t, ε), q2(t, ε), p2(t, ε)) is 
the solution of Eq.(1) such that (q1(0,ε),
p1(0,ε), q2(0,ε), p2(0,ε),) = (a, b, c, d) , it is 
said that there is a transfer of energy, from 
the oscillator 1 to oscillator 2, in the point 
(a, b, c, d) of the phase space of the 
system given by Eq.(1), if there is 
T0 = T0(a, b, c, d) ≥0 such that for all 
finite time interval [T1, T], T1 ≥ T0, there 
exists ε0 = ε0(a, b, c, d, T) > 0 such that
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for all t ∈ [T1,T] and ε ∈( 0, ε0).  

The governing equations of the 
system considered  are given by (from 
references [1, 2])
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where c0 is the coefficient of the viscous 
damping, x is the displacement of the body 
1 from its equilibrium position and y is the 
displacement of the body 2. Moreover, V is 
the potential energy associated to the 
coupling spring, A and ωωωω are the amplitude
and frequency of the external excitation 
respectively. It is assumed that V(0,0) = 0.

Here, we will consider an energy 
transfer of coupled linear and nonlinear 
oscillators for the case of linear interaction.

3. Overview on  Theoretical Results

Using the following change of 
variables ypyqxpxq && ==== 2211 ,,, , 
Eq.(4) is wrote in the stable variable (q1, p1,
q2, p2) as being
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Assuming also
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in Eq.(4), where cn[t,k], sn[t,k], and
dn[t,k], are the classical elliptic Jacobian 
functions (see reference [1]),  with 
argument 21=k  we will obtain the 
following  system
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From Eqs.(2) and (7), where H1
represents the unperturbed energies of the 
system (5), follows that,
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Taking I(0) = e1, θ(0)= α, J(0) = e2
and ϕ(0)= β as being the initial conditions, 
we gotten from the classical Theorem of 
Differentiability of the Flow of 
Autonomous Systems that given T > 0 
there is ε0 > 0 such that
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Substituting  the initial conditions I0 = e1, 
θ0 = α, J0 = e2 and ϕ0 = β and Eq.(10) into
Eq.(8) we will obtain that
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where 
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Here b1 and b2 are limited functions.

Under the internal resonance (that is, 
ω1=ω), if the condition
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where k and amo depend on the Fourier 
expansion of the periodic function cn(t).

From now, we will assume that 
A =0. Then, the problem of energy transfer 
reduces itself, to the analysis of the signal 
of the coefficients of t in the Eqs.(16). 
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So, there are three cases to be 
considered:

a) If Ψ1 < 0 and Ψ2 > 0 then energy 
pumping occurs.

b) If Ψ1 > 0 and Ψ2 < 0 then the linear 
oscillator suffers an increase of 
energy and the non-linear loses 
energy.

c) If Ψ1 < 0 and Ψ2 < 0 then both 
oscillators lose energy.

Observe that from Eq.(14), the 
conditions (a), (b) and (c) are equivalent to, 
respectively

Figure 1: Conditions for energy transfer 
between oscillators (L for linear and NL 

for nonlinear oscillator)
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Next, we will discuss some numerical 
results, those confirm the theoretical 
results presented in this section.

4. Numerical Results

For the numerical simulations we 
have used the C language and the Matlab 
environment. A fourth order Runge-Kutta 
with fixed time step was used to the 
numerical integrations.

The following parameters are 
common for all simulations: ω = 1.01, c0 =
1.0, k2 = 0.5, K = 1.854075, m0 = 3.0, ε =
0.025 and amo = 0.95. 

Particular cases satisfying 
conditions (a), (b) and (c) in previous
section were obtained for the system 
subjected to different initial conditions. 

For the plots in Fig.2 we choose the 
initial conditions e1 = 1.0, e2 = 0.01, α = π
and β = π/4. Note that both oscillators 
perform damped free oscillations and no 
energy transfer occurs. This case 
corresponds to Ψ1 < 0 and Ψ2 < 0 or, 
equivalently, 21 Ψ<Λ<Ψ  (see Fig.1). 

Analysis of the behavior of energies 
(Figs. 2a, 3a and 4a) can be done in a 
similar fashion that in reference [4]. 

In Fig.2a, we observe that the 
energies I and J (see Eq.(8) and Eq.(9)) 
decay nearly exponentially to zero 
indicating  absence of  resonance capture.
The second plot in that figure corresponds 
to the transient response of Eq.(5).

In Fig.3, we have Λ>Ψ2, 
accordingly to the notation in Fig.1, that is, 
the linear oscillator increases its energy,
while the nonlinear attachment loses 
energy. 

Here we have used the initial 
conditions e1 = e2 = 1.0, α = β = π/4.

Note that in Fig. 3a as the time 
progresses the energy of the linear 
oscillator surpasses the energy of the 
nonlinear oscillator.



Finally, in Fig.4 the irreversible 
energy transfer (that is, energy pumping)
from the linear to the nonlinear oscillator 
takes place. The numerical time decays of 
energies are depicted in Fig.4a for initial 
conditions e1 = 1.0, e2 = 0.002, α = π and β
= π/4.

Fig.4b and c depict the transient 
response of the linear oscillator 
considering coupled and uncoupled system 
(Eq.5), and the motion of the linear 
oscillator together the nonlinear 
attachment, respectively.

Figure 2: Absence of energy transfer. 
(a) Energies; (b) transient response of the system (5). 



Figure 3: Energy transfer from nonlinear to linear oscillator. 
(a) Energies; (b) transient response of the system (5). 

(a)

(b)



Figure 4: Energy transfer from linear to nonlinear oscillator. 
(a) Energies; (b) Transient response of the system (5); (c) Energy pumping.

(b)

(a)

(c)



5. Conclusion 

In this paper, we analyzed the 
problem of energy transfer in a dissipative
mechanical system. The presented 
definition of energy transfer was discussed
through a practice example. 

The results presented in this paper 
take into account a more general 
dynamical phenomenon than energy 
pumping.

As a result we showed that 
depending on the initial conditions, there is 
energy transfer from linear to nonlinear 
oscillator and from nonlinear to linear 
oscillator. Moreover, there are initial 
conditions such that both oscillators lose 
energy.

Numerical simulations are in 
complete agreement with theoretical 
results.
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