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Abstract

Nowadays we observe a contradiction in Process Control when powerful methods of modern Control theory and high-capacity processors go with quite trivial set of controlling algorithms leaded by scalar PI-controllers. In our opinion, one of the main reasons of this fact is that real technological processes are specific complex multivariable objects, and fundamental theory is not entirely adapted for practical use. In this report we consider different approaches of approximate solutions for dynamical optimization of complex process control problems with technical/economical criteria. They will rely on assumptions of small disturbances, weak nonlinear and dynamic properties as the ground to start our analysis.
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1
Introduction

For a wide variety of continuous processes different problems of dynamical optimization can be expressed as the problem of minimization of mathematical expectation of average losses for a long period of operating time.
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Usually models of technological process are given by a vector of the output parameters y(t) as the function of controlling parameters u(() and controlled random disturbances r(() in previous moments, distorted by uncontrolled random disturbances n(t):
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Processes are characterized by multivariability, inertial elements along with time delays in control channels and constraints for controlling signals and output signals 
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. All these features make the optimal control problem (1), (2) impossible to solve analytically even for simple cases. Heuristic methods for approximate solutions may be applied in these situations. The present report reviews and develops them.
2
Two level hierarchical systems; linear and semi-linear algorithms of controlling
Let the goal function be additive:
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and the constraints be described as intervals:
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If the disturbances are relatively small (hypothesis of slightly disturbed system or weak disturbances), it would be reasonable to ignore them and consider undisturbed static optimization problem 
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where static model of process  
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 corresponds steady state response of the object (2) with zero disturbances r(t) and n(t) and constant controlling input 
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Then, “revealing” disturbances and retaining second order Taylor expansion approximation of (1) in the vicinity of chosen process, linearizing the dynamic model of the process (2) in the same vicinity (hypothesis of slightly non-linear system), we arrive at additional minimization problem in respect of root-mean-square deviations from solutions of problem (5):
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where 2Q1 and 2R1  are matrixes of second order derivatives of functions 
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, which are positively defined when the functions are convex.

This decomposition procedure provides an approximate solution for the complex problem (1) using two level hierarchical control, where the higher (slow) level defines optimal sets of process control variables 
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 and 
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, and the lower (fast) level stabilizes the process in the vicinity of the higher level control solution. If the static model of process 
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is known well, the problem of the higher level (5) could be solved a method of mathematical programming. If the model is not completely known or varies in time it has to be controlled using some searching procedures with the feedback y. The lower level control problem could be solved for the linearized model (a system of linear differential equations) by well-known methods mean-square optimization. So we can obtain linear combined disturbance control with feedback on deviations of output variables from desired values. When the disturbances are stationary random processes with known probability characteristics, the parameters of the obtained control are constant and may be estimated beforehand.

Unfortunately, there could be some principal obstacles while using this scheme for complicated process systems. For instance, difficulties arise, when the approximate solution for original problem (1) 
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 does not satisfy the system of inequalities (4). Such situation could be observed when the intervals (4) are tight and the disturbances are significant, even in case when the solution of (5) belongs the permitted set (what is typical for extreme control systems). If the deviations are not frequent and only refers to u(t), then so called semi-linear algorithms of control could be applied, when we use boundary values for the variables that have left the prescribed set. However, the optimizing with economical indexes generally makes the goal function of losses (3) almost linear and the solution of the problem of defining the most efficient control (5) belongs to the boundaries of some inequalities (4). In this case the variables corresponding the active constraints will leave the permitted area in 50% cases average, that is, of cause, unacceptable. In order to foresee these practically important situations we can replace the task (5) by more complicated task [Yakovis, 2006 a], 
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where 
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are vectors of mean-square deviations of u(t) and y(t) from their average desired values 
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, diagonal matrixes of weights 
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defines acceptable risks of restriction (4) violation.

As it could be seen, the modified problem (7) differs from the problem (5) formulated before by more rigorous restrictions only. They guarantee the limitations (4) with the certain risk in the presence of random disturbances. The difficulty, however, is that the appearing in restrictions mean-square values do depend on desired control parameters that we look for as well as they depend on control law Δu(t), that has not yet been found by the time when we approach the problem (7).

To break the circle, it is possible to use the first order approximation of  
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 and 
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in (7). In turn, they could be obtained as the result of zero-approximation stabilization problem solving, obtained from “unperturbed” problem set up (5). In this case, however, the criterion (6) has to be modified with the following rules. According to the perturbation theory in mathematical programming problems the additional losses in respect to (5) due to contraction of allowable variables set in (7) could be found to be (in the first order approximation)
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where 
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are vectors of so called objective-causal restrictions estimations of interval type, that appear in problem (5) /objective-causal estimations could be calculated along with the solving of problem (5)/. Therefore, while solving desired process stabilization problem it is necessary to minimize not ΔJ1, but more complex index, containing the functional (8) as elements. It means that the objective criterion, that reflects the initial goal function (1) for majority of process stabilization problems, is to something different to standard for control theory mean-square index (6), namely, an index containing second as well as first orders of mean-square deviations of output and control variables. Moreover, for many optimization problems where the index (1) consists of linear goal functions the matrixes Q1 and R1 turn to zero, therefore the stabilization criterion contains “non standard” part (8) only. 

However, this problem could be circumvented by reducing the desired process stabilization problem to the standard one where approximate mean-square values of output and control variables are used. Let these approximations 
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be know from, for example, the operation experience. Then the index ΔJ2  could be substituted by approximation 
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where 
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are dispersion vectors of variables y(t) and u(t), and diagonal matrixes of weights 
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in which  l and m stand for the dimension of vectors y and u correspondingly.
Since the goal function (9) could be represented in the following form also
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where the diagonal matrixes of weights 
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than the desired process stabilization problem is reduced (in the first approximation) to the standard mean-square optimization problem with the index ΔJ, containing corresponding matrix coefficients of square forms of Q and R. Then we could approach this problem with standard methods and obtain linear control algorithm with constant coefficients. This algorithm ensures, along with static optimization problem (7) solution, approximate optimization of process control with the initial criterion (1).

3 Typical controls

New serious problems could be encountered when the method presented above is used. State space analysis methods are known to solve mean-square optimization problems but they are helpless for time delay process models. Moreover, they generally lead to algorithms, requiring high order variable derivations. The latter makes them hard to apply in process control reality where variable estimation is difficult due to signal noise. Standard, so called typical control schemes, based on PID control combination have been found to be more applicable. However, control parameter optimization, particularly, for PID control of MIMO systems is one of them most difficult challenges for control theory [Yakovis, 2007]. We can involve some heuristics here again. 

Let the describing equations of closed loop system be given in matrix form as following

y = H(p) u + n,     u = W(p) ( y* - y).      (13)

Let us assume that the dynamics of control input channels is described by the most popular in process control model of time delay
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where 
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 are stable real-rational transfer functions, and reference  y* error control is realized by PID controllers
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It is suggested to use the following method to adjust the control parameters. The control variables vector is calculated in time as a linear combination of two components. Each of them is the output of a «basic» (that means, corresponding to in some sense simplified object structure) multivariable PID controller. 
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where 
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are transfer matrixes of auxiliary controllers of the same structure with transfer matrixes (9), and ( ([0,1] is a weight to be defined [Yakovis, 2007].
The diagonal transfer matrix 
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is composed of transfer functions of autonomous controllers, while their parameters could be, in general, defined by any known method [Pervozvansky , 1986]. 

The structure of the transfer matrix 
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 (18)
is chosen in respect to an object, that has the same with initial object (14) static gain matrix, but the uniform dynamics in all control channels. Three parameters of this auxiliary MIMO PID-controller could be defined either analytically by dynamical compensation method or by a stabilization index minimization search with closed loop system simulation (13), (18) [Pervozvansky , 1986; Yakovis, 2006 b].

The scalar ρ defines the contribution of every auxiliary controller to the combined structure. It is possible to calculate is either analytically by interconnection Bristol matrix [Ray,. 1981], or by closed loop process control simulation with a goal function minimization [Yakovis, 2007]. Such a construction allows having an optimal combination of fast reaction of autonomous first type controller and the possibility to take into account the interconnection by more careful second type controller. It is possible to show that with reasonably weak parameters of controller (12) and reasonably small ρ the combiner controller ensures closed loop stability of (13). Matlab simulation experiments under time delay inertial objects for l = 2 [Andrievsky and Fradkov, 2001], reveal good performance of combined multivariable controller [Yakovis, 2007]. 
4 Causal forecast control scheme
The two level control scheme with linear control algorithms at the low level has certain advantages and drawbacks. It is simple to implement since we obtain constant gain (time-invariant) control and it is relatively robust to process model uncertainties. At the same time, we need strong control input magnitudes to ensure fast transient processes, while they belong the allowed boundaries. It is not typical for linear dynamic systems. Moreover, it is not often easy to derive the description of complex process control plant in the form of linear differential equations, which are necessary to involve control theory. 

Another general approach for initial problem (1) that avoids mentioned above disadvantages is so called conditional forecast scheme [Perelman, 1978]. The idea of the method is to use a controller with internal feedback including object simulation model. At every moment of time the controller determines and calculates the forecast of the random disturbances. This forecast enters simulation model that provides various control process scenario and produces the multi-stage control program. This program is to optimize the criterion (1) subject to restrictions. Then the first step of the calculated program is realized. Thus, the control scheme uses the imitation model of process control twice: once this model works on line (in real time) and is used to separate the disturbances from the output, and once it works off-line (fast time) calculating the best control program.

According to conditional forecast method the filtering of measurement errors 
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 along with forecast of disturbances r(t) and n(t) is performed by the disturbance forecast block. That could be done by any of known stochastic process prediction methods. Then the unknown disturbance values are substituted by predicted ones and the stochastic problem is reduced to deterministic. We are to find a program u(τ) for 
[image: image53.wmf],

)

,

[

¥

Î

t

τ

 minimizing the goal function



[image: image54.wmf] 

))

(

),

(

(

1

lim

 

t

t

t

j

ò

¥

-

®

T

t

d

t

T

T

u

y


(19)
subject to restrictions
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where 
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 with taking into account of disturbance forecast inaccuracy for the period (τ – t).

To solve this complex problem some approximate methods could be applied. It possible to use the following heuristic procedure based on the theory of weak dynamic object control [Pervozvansky , 1986; Yakovis, 2006 a] as well. Let we search a constant control input u, that could move the object to a state corresponding to the optimum of integrated function in (19) in transient process time range Tп. To find one it is sufficient to solve static optimization problem
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where 
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 defines steady state response to constant control input u and predicted disturbances.

Having found this problem solution uopt by a linear or nonlinear programming method (depending on the type of index function φ, static model 
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 and restrictions Gu and Gy), we are able to derive the desired control input at the current moment of time t, laying u(t)= uopt. This control approach turned out to provide nice results in simulation experiments for two-variable interconnected process control models with inertial objects and different time delays in control input channels. It was applied for multicomponent mixture process control in cement manufacturing industry [Yakovis, 1988].

5 Conclusion
The presented methods are to reduce the gap between the theory and practice of industrial process control. Combination of analytical methods and computer simulation promises excellent tools to cope with the difficulties of real plants (uncertainties, nonlinearities, restrictions, stochastic disturbances) and to optimize the control parameters in respect to various quality indexes, that are popular in design engineering practice. 
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