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Abstract
Image denoising is one of the fundamental problems

in image processing. Digital images are often contami-
nated by noise due to the image acquisition process un-
der poor conditions. In this paper, we propose an effec-
tive approach to remove mixed Poisson-Gaussian noise
in digital images. Particularly, we propose to use a spa-
tially adaptive total variation regularization term in order
to enhance the ability of edge preservation. We also pro-
pose an instance of the alternating direction algorithm to
solve the proposed denoising model as an optimization
problem. The experiments on popular natural images
demonstrate that our approach achieves superior accu-
racy than other recent state-of-the-art techniques.

Key words
Image denoising, total variation, adaptive regulariza-

tion.

1 Introduction
Image degradation is the result of defects of the imag-

ing system and noise coming from the formation, trans-
mission and recording processes. Let Ω ⊂ R2 be a
bounded open set, and let u(x) : Ω → R be a true im-
age describing a real scene, and let f(x) be the observed
image of the same scene ( x = (x1, x2) ∈ Ω), which is
a degraded image of u. In general, image restoration is
often formulated as the problem of reconstructing a true
image u with the size of (M ×N) corrupted by random
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noise η, from an observed image f . The sought-for im-
age u is a solution of the corresponding inverse problem
[Pham, 2015; Pham, 2018].

A number of algorithms, some of which are based on
total variation (TV) regularization, have been proposed
for solving the denoising problem. One of successful
edge preserving image denoising models is the well-
known ROF model [Rudin, 1992]. The ROF model is de-
fined by the following unconstrained discrete minimiza-
tion problem:

min
u

(
‖u‖TV +

λ

2
‖u− f‖22

)
(1)

where the first term stands for the total variation of u cor-
responding to the image prior, and the second term is the
data fidelity term measuring the error between the true
and observed images; λ is a positive regularization pa-
rameter, ‖.‖TV is the total variation regularization term
given later, cf. Eq. (8).

Recently, the authors in [Huang, 2008] introduced a
auxiliary variable z and proposed a fast total variation
minimization method to solve problem (1) as follows:

min
u,z

(
‖z‖TV +

γ

2
‖u− z‖22 +

λ

2
‖u− f‖22

)
(2)

The ROF models (1) and (2) are appropriate to remove
additive Gaussian noise. However, many imaging de-
vices, such as digital cameras, TEP and SPECT tomog-
raphy, measure scene irradiance by counting the number
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of photons incoming on the sensor. Each photon detec-
tion can be considered as an independent event, leading
to the photon noise. The uncertainty of photon count-
ing can be modeled using a Poisson noise distribution,
for which the variance of noise that corrupts the signal
depends on the value of that signal. To remove Poisson
noise, Le et al. [Le, 2007] proposed a denoising model
as follows:

min
u

(
‖u‖TV + β〈1, u− f log u〉

)
, (3)

where β is a regularization parameter; umust be positive
almost everywhere over Ω.

Compared to the ROF model, the regularization pa-
rameter of the functional described in (3) depends on
the reconstructed image u, that better suits for Poisson
noise, which increases with image intensity. To better
improve the edge-preserving removal of Poisson noise,
the authors in [Zhou, 2012 ] proposed an adaptive model
of (3) described as follows (M1):

min
u

(
α(x)‖u‖TV + β〈1, u− f log u〉

)
, (4)

where α(x) is an edge-detection function given later, cf.
Eq. (7).

As suggested in [Calatroni, 2017; Reyes, 2013], Eq.
(1) and (3) can be combined to denoise an image cor-
rupted by mixed Poisson-Gaussian noise (M2):

min
u

(
‖u‖TV ‖+

λ1

2
‖u− f‖22

+ λ2〈1, u− f log u〉
)
.

(5)

where λ1 and λ2 are positive regularization parameters;
u must be positive almost everywhere over Ω

Inspired by models (2), (4) and (5), we propose the fol-
lowing unconstrained minimization problem to denoise
an image corrupted by mixed Poisson-Gaussian noise
(M3) :

min
u

(
α(x)‖z‖TV +

γ

2
‖u− z‖22 +

λ1

2
‖u− f‖22

+ λ2〈1, u− f log u〉
)
.

(6)

where u must be positive almost everywhere over Ω; λ1

and λ2 are positive regularization parameters, α(x) is an
edge detection function defined in (7).

Overall the years, many efficient methods have been
proposed, for instance, gradient descent method [Rudin,
1992; Wang, 2011], Chambolle’s projection algorithm
[Chambolle, 2004], Split Bregman method [Goldstein,
2009], alternating direction algorithms[Huang, 2008;
He, 2014], which can be used to obtain the solution of
the resulting convex optimization problem (6).

In this paper, we study an effective method for image
restoration corrupted by mixed Poisson-Gaussian noise.

We propose to use a spatially adaptive total variation reg-
ularization term in order to enhance the ability of edge
preservation. To solve the energy minimization problem
(6), we employ an alternating direction algorithm which
is highly efficient in terms of computational time.

The remaining of the paper is organized as follows:
in Section (2), which is the main of our contributions,
we discuss the proposed model and numerical method
to solve the minimization problem. Section (3) consists
of experiments and discussions. Finally, conclusions are
made in Section (4).

2 The Proposed Approach
In this paper, our objective is to solve the optimization

problem (6):

min
u,z

(
α(x)‖z‖TV +

γ

2
‖u− z‖22 +

λ1

2
‖u− f‖22

+ λ2〈1, u− f log u〉
)
.

The function α(x) can be chosen typically as follows
[Catte, 1992]:

α(x) =
1

1 + |v(x)|
K

, (7)

where v(x) = (|∇Gσ(x) ∗ f |)2, K is a threshold value,
operator ∗ denotes the convolution,
Gσ(x) = 1

2πσ2 exp
(
− x2

2σ2

)
- stands for the Gaussian

filter with standard deviation σ.
We can write ui,j for the pixel at coordinates (i, j)

in image u (i = 1, ..,M ; j = 1, .., N ). The operator
‖∇u‖TV is defined as follows:

∇ui,j = (∇1u(i, j),∇2u(i, j)),

∇1u(i, j) = u(i+ 1, j)− u(i− 1, j),

∇2u(i, j) = u(i, j + 1)− u(i, j − 1),

‖u‖TV =
∑
j,k

‖∇u(i, j)‖2

=
√
|∇1u(i, j)|2 + |∇2u(i, j)|2 + ε2.

(8)

where ε is a small positive quantity, added for consider-
ations of numerical stability.

We have two decoupled variables u, z in (6). The alter-
nating minimization method to solve problem (6) can be
expressed as follows. Given initial values u(0) and z(0),
solving the unconstrained problem (6) is performed via
the following iterative scheme:

u(k+1) = arg min
u

(
γ

2
‖u− z(k)‖2+

λ1

2
‖u− f‖2 + λ2〈1, u− f log u〉

)
,
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z(k+1) = arg min
z

(
α(x)‖z‖TV

+
γ

2
‖u(k) − z‖2

)
.

In fact, the problem (6) is constructed by making the
substitutions u by z in (5). Here, we add an auxiliary
variable b on the update of variables u and z. The aux-
iliary variable b controls the residual between u and z,
improving the convergence and stability of the solution.
This yields a new scheme described as follows:

u(k+1) = arg min
u

(
γ

2
‖u− z(k) − b(k)‖2+

λ1

2
‖u− f‖2 + λ2〈1, u− f log u〉

)
,

(9)

z(k+1) = arg min
z

(
α(x)‖z‖TV

+
γ

2
‖u(k) − z − b(k)‖2

)
,

(10)

b(k+1) = b(k) +
(
z(k+1) − u(k+1)

)
, (11)

where k = 0, 1, 2, ... is iteration number.
The u subproblem (9) is a quadratic optimization prob-

lem. Therefore, we have the following optimality condi-
tion:

γ(u− z(k) − b(k)) + λ1(u− f) + λ2(1− f

u
) = 0.

Multiplying both sides of this equation by u, we get:

(γ + λ1)u2

− (γz(k) + γb(k) + λ1f − λ2)u− λ2f = 0.
(12)

The solution u of the equation (9) is a positive solution
of Eq. (12) given by:

u(k+1) = q(k) +

√
(q(k))2 +

λ2f

λ1 + γ
, (13)

where

q(k) =
γz(k) + γb(k) + λ1f − λ2

2(λ1 + γ)
.

Clearly, the problem (10) can be solved by different TV
denoising methods. In this work, we employ the Cham-
bolles projection algorithm [Chambolle, 2004] to solve
the z subproblem (see Algorithm 1).

Algorithm 1: Adaptive Chambolles projection algo-
rithm for solving Eq. (10)

1. Initialize: u(k+1), b(k), k = 0, p(0) = 0
2. while (‖p(k+1) − p(k)‖2 > ς) do
3. for all values at coordinates (i, j) do
4.

p
(k+1)
(i,j) =

p
(k)

(i,j)
+∆t(∇(div(α(x)p(k))−γ(u(k+1)+b(k))))(i,j)

1+∆t|∇(div(α(x)p(k))−γ(u(k+1)+b(k)))(i,j)|
5. end for
6. k = k + 1
7. end while
8. return z(k+1) = u(k+1) + b(k) − 1

γ div(p(k+1))

The operator div(p(k+1)) in Algorithm 1 is defined as
follows [Chambolle, 2004]:

div(p)i,j = p1(i, j)−p1(i−1, j)+p2(i, j)−p2(i, j−1),

where p1(i, j), p2(i, j) is the dual variable at the (i, j)
pixel location, p1(0, j), p2(i, 0) = 0.

Finally, we update the auxiliary variable b by (11) :

b(k+1) = b(k) +
(
z(k+1) − u(k+1)

)
. (14)

The resulting image denoising algorithm is described
in Algorithm 2.

Algorithm 2: Adaptive Algorithm for solving the pro-
posed model (6)

1. Initialize: u(0) = z(0) = f ; b(0) = 0; k = 0
2. while‖u(k+1) − u(k)‖2 > ς) do
3. Compute u(k+1) according to (13)
4. Compute z(k+1) according to Algorithm 1
5. Update b(k+1) according to (14)
6. k = k + 1
7. end while
8. return u∗ = u(k+1)
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(a) Boat (b) Parrot (c) Man (d) Brain

Figure 1. Standard test images

3 Experimental results
In this section, we show some numerical reconstruc-

tions obtained by applying our proposed method to
mixed Poisson-Gaussian noise. For illustrations, we use
the gray level images with size 256 × 256: Boat, Parrot,
Man, Brain. The original images are presented in Fig.
(1).

The Peak Signal-to-Noise Ratio (PSNR) and Structure
Similarity Index (SSIM) [Bovik, 2006] used in compar-
ison are defined as:

PSNR = 10 log10

(
MNI2

max

‖u∗ − u‖22

)
,

SSIM(u, u∗) =
(2µuµu∗ + c1)(2σu,u∗ + c2)

(µ2
u + µ2

u∗ + c1)(σ2
u + σ2

u∗ + c2)

where u, u∗ are the original image, the reconstructed or
noisy image accordingly; Imax is the maximum inten-
sity of the original image; M and N are the number of
image pixels in rows and columns; µu, µu∗ - means of
images; σu, σu∗ - standard deviations (the square root of
variance) of images; σu,u∗ - covariance of two images
u and u∗; c1 = (K1L)2, c2 = (K2L)2, L is the dy-
namic range of the pixel values (255 for 8-bit grayscale
images), and K1 � 1 , K2 � 1 are small constants.

We show the performance of our proposed method
for restoring images contaminated with mixed Poisson-
Gaussian noise. Noisy observations are generated by
Poisson noise with some fixed peak Imax, and by Gaus-
sian noise with standard deviation σG to the test images
(see [Pham, 2018] for more details).

We compare reconstructions using our model with
other results using model M1 [Zhou, 2012 ] and model
M2 [Calatroni, 2017; Pham, 2018]. For our model, we
perform experiments with two cases: the model (6) with
constant function α(x) = 1 and the model (6) with func-
tion α(x) given by (7). For simplicity, we name (6) with
α(x) = 1: model M3; and we name (6) with α(x) given
by (7): model α-M3.

Meanwhile, all algorithms are implemented using
MATLAB on a HP laptop with Intel(R) Core(TM) i7-
CPU 2.0 GHz and 8 GB of RAM, Windows 10 (64
bit). For our experiments, we set tolerance ς = 10−5.

For a fair comparison, we set the regularization param-
eters of compared methods with their optimal values:
λ = 0.2, λ2 = β = 0.8. We set the threshold value
in (7) K = 10.

In Fig. (2), we show the denoising results using our
models M3 and α-M3 for noise level Imax = 120 and
σG = 10. In Fig. (3), we show the denoising results
noise level Imax = 60 and σG = 5. As shown in Fig.(2)
and Fig. (3), our model α-M3 is highly effective for
restoring piecewise constant images. This shows that us-
ing the proposed model (6) with α function yields better
denoising results.

In Fig. (4), we show the denoising results using the
compared models for the noise level Imax = 90 and
σG = 10. Particularly, the first row represents the noisy
image, in the others we show respectively the reconstruc-
tions using model M1, model M2, our models: M3 and
α-M3.

An important factor to measure the effectiveness of
the denoising methods is run time. Table (1) shows the
computational time (in seconds) in case of mixed noise
Imax = 90, σG = 10 (Fig. 4). It can be observed from
the table that the computation time of the restored im-
ages using our models and model M1 is about the same.
The cost time of the restored images using our models
is shorter than those of the model M2. Fig. (5) shows
that the restored pixel intensity curves from the proposed
models actually provide a better approximation to the
smooth fragments of original pixel intensity curves than
those from the other models.

Table 1. Computational time (in seconds) results of the compared
methods on test images with Imax = 90, σG = 10

Image Model M1 Model M2 Model M3 Model α-M3

Boat 0.5063 1.9605 0.4820 0.4967

Parrot 0.5084 2.1860 0.4932 0.5138

Man 0.5032 2.0943 0.4879 0.4835

Brain 0.5490 2.0544 0.5720 0.5284

For the comparison of the performance quantitatively,
in Table (2) and Table (3), we report the values of the
PSNR, SSIM for the noisy and recovered images.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 2. Recovered results. First row (a - d): Noisy image f with Imax = 120, σ = 10; Second row (e - h): restored images using model
M3 (γ = 12); Third row (i - l): f − u with our model M3; Fourth row (m-p): restored images using model α-M3 (γ = 12); Fifth row (q -
t): f − u with our model α-M3
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3. Recovered results. First row (a - d): Noisy image f with Imax = 60, σ = 5; Second row (e - h): restored images with model M1
(γ = 8); Third column (i - l): restored images using our model α-M3 (γ = 8)

As shown in Table (2) and Table (3), The PSNR and
SSIM results using our model M3 are better than the re-
sults of the model M1. The PSNR and SSIM results us-
ing our model M3 and the model M2 are about the same.
However, the PSNR and SSIM results using our model
α-M3 are better than the other methods. Thus, we can
clearly see that our method outperforms the other relative
methods for mixed Poisson-Gaussian noise removal.

4 Conclusion
This paper proposes an instance of the alternating min-

imization method to solve the image denoising problem
which is formulated as an unconstrained optimization
task with an adaptive total variation smoothing term. Our
approach automatically reduces the weight of total vari-
ation term near an edge so that it makes the edges less
affected by the smoothing term, and, hence, better pre-
served. The experiments show that our methods yields
better results in mixed Poison-Gaussian removal in com-
parison to other relative methods.
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