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Abstract
In the paper the problem of feedback control of vibra-

tional fields in a vibration unit is analyzed taking into
account the influence of the elasticity of cardan shafts,
the drive dynamics, saturation for control torques. In ad-
dition, the synthesized rotor synchronization control al-
gorithm uses the estimates of a non-stationary observer,
which makes it possible to implement it practically on
a two-rotor vibration unit SV-2. The performance of the
closed loop mechatronic systems is examined by simula-
tion for the model of the two-rotor vibration unit SV-2.

1 Introduction
The use of computer technologies for control of tech-

nical systems allows for the implementation of more
complex control algorithms that ensure high quality pro-
cesses. One of the main conditions in the design of con-
trol systems for mechatronic vibration units (VU), in-
tended for screening bulk materials, is to ensure an ac-
ceptable shape and vibration parameters that ensure such
a course of the process in which tangible technological
advantages can be obtained. A feature of two-rotor vi-
brating screens is the complex shape of vibrations of the
working body (platform): different points of the work-
ing body of these machines move along different trajec-
tories, which creates opportunities for optimizing work
processes .

Recently, there has been an increased interest in the
development of control algorithms for VU, in which vi-
bration fields corresponding to inhomogeneous vibration
fields of a given type are realized [Gouskov et al., 2021;
Chen et al., 2021; Tomchina, 2018]. The field charac-
teristics are understood as the semi-axes of elliptical tra-
jectories at arbitrary points of the platform and the an-
gles of inclination of these axes. There are indications
that the use of such fields has a number of technolog-

ical advantages [el.al., 2001; Firsova, 2002]. In these
works, the type of the vibration field was determined
based on the model of the dynamics of the mechanical
part of the VU. It is shown in [el.al., 2001; Firsova,
2002] that in the synchronization mode with constant
mass-inertial parameters of vibration exciters of a two-
rotor unit and with fixed coordinates of their attachment
points on the platform, the type of vibration field is de-
termined by the phase shift of the unbalanced rotors. In
mechatronic VUs, a stable synchronization mode with a
constant specified phase shift can be realized through the
use of special control algorithms.

The control algorithms for the synchronization of the
rotating rotors of a two-rotor vibratory unit can be ef-
fectively synthesized on the basis of the speed gradient
method [Fradkov, 1980; Andrievsky and Fradkov, 2021],
which allows one to design control algorithms for sub-
stantially nonlinear systems. In this case, the goal func-
tional Q(p, q) is selected on the basis of the total energy
of the mechanical system without taking into account
friction losses, since in this case the total energy is invari-
ant for the mechanical system, which is what the speed
gradient method requires. However, the technical im-
plementation of such algorithms requires information on
the full state vector of the mechanical subsystem, which
is not always feasible. This problem can be solved by us-
ing a non-stationary (time-varying) observer [Tomchina,
2020].

The issues of studying the type of vibration fields for
models of two-rotor mechatronic vibration units, which
took into account not only the dynamics of the mechan-
ical part of the VU, but also the dynamics of the electric
drive system were considered in [Fradkov et al., 2021;
Tomchina, 2019; Tomchina et al., 2019].

However, an important factor in the analysis of the ef-
fectiveness of control algorithms for electromechanical
systems of a VU is to take into account in the model of



CYBERNETICS AND PHYSICS, VOL. 10, NO. 4, 2021 278

1

2 3

4 7

8 6

5

0

0

a

a

Figure 2. Schematics of two-rotor vibration unit:1 — motors; 2 —
motor supports; 3 — frame of the unit; 4 — unbalanced rotors; 6 — vi-
brating platform; 7 — springs, 8 — rotor bearings; 9 — cardan shafts.
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Figure 3. Two–rotor vibration unit with elastic cardan shafts.

the controlled plant not only the dynamics of drives, but
also other features of the system that are important for
practical implementation: the elasticity of the engine-
mechanism connection, which is expressed in the elastic-
ity of cardan shafts connecting motors with unbalanced
rotors, as well as the influence on the synchronization
process of the use of observer estimates.

2 Model of two-rotor vibration unit taking into ac-
count the drive dynamics and the elasticity of the
cardan shafts

In this section the mathematical model of the unit SV-2
(Fig. 1) is described following [Tomchina, 2019]. Unlike
[Tomchina, 2019], the elastic properties of the connec-
tion “executive motor–unbalanced rotor” are taken into
account.

Figure 1. Vibration unit SV-2.

The unit consists of two rotors 4 installed on the vi-
brating platform 6 elastically connected with fixed basis
2,3 by springs 7 (Fig. 2).

Since the motors are located on motionless supports
and the unbalanced rotors are mounted on the vibrating
platform (bearings), the links implemented via cardan
shafts should be considered as elastic ones.

The real mechanism is usually a system with dis-
tributed parameters. However in most cases it is afford-
able to consider the mechanism as a system with lumped
parameters, while the following assumptions are gener-
ally accepted:

1. elastic links are weightless and characterized by
constant rigidity, that is, a constant coefficient of
proportionality between the torque (force) and de-
formation;

2. the forces and torques acting on the system are
applied to point masses that are not deformed;

3. the distribution of deformation waves is not taken
into account.

The kinematic diagram of the VU with elastic shafts
between the motors and the rotors, schematically repre-
sented as springs connecting the motors M and the at-
tachment points of the rotors, is presented in Fig. 3. In
this paper only torsional elasticity will be taken into ac-
count. The block scheme representing the elastic links
of drive shafts with unbalanced rotors, may be presented
in the following form (Fig. 4). The following notations
are used in Fig. 3 and Fig. 4: Mmi

, i = 1, 2 are the
electromechanical torques of motors; ωi are the angu-
lar velocities of motors; Mri are the unbalanced rotor’s
own moments: Mri(t) = m%g cos(ϕ+ϕi); M̃si are the
moments, caused by the platform influence:

M̃si = −ẍcm% sin (ϕ+ ϕi) + ÿcm% cos (ϕ+ ϕi) +

ϕ̈
(
Ji + (−1)irm% cosϕi

)
+ (−1)iϕ̇2rm% sinϕi,
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cB .bB are the stiffness and damping coefficient of the
cardan shafts, ϕ,ϕi, i = 1, 2 are angle of the support and
rotation angles of the rotors, respectively, measured from
the horizontal position, xc, yc are the horizontal and ver-
tical displacements of the vibrating platform center O’
from its equilibrium position O, mi = m, i = 1, 2 and
mn are the masses of the rotors and supporting body,
J1 = J2 = J are the inertia moments of the rotors,
%i = %, i = 1, 2 are the rotor eccentricities, c01, c02

are the horizontal and vertical spring stiffness, g is the
gravity acceleration, m0 is the total mass of the unit,
m0 = 2m+mn, β is the damping coefficient, kr the fric-
tion coefficient in the bearings, the motor torques (con-
trolling variables) Mi = ui(t) are calculated with algo-
rithm (5), r is the distance from the centers of the rotors
to O’. It is assumed that the rotors are identical, rotor
shafts are orthogonal to the motion of the support.
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Figure 4. System engine — rotor taking into account the elasticity of
the propeller shaft.

The equations of the mechanical part of VU dynamics
have the following form [Tomchina, 2019]:

m0ẍc − ϕ̈m% [sin (ϕ+ ϕ1) + sin (ϕ+ ϕ2)]−
ϕ̈1m% sin (ϕ+ ϕ1)− ϕ̈2m% sin (ϕ+ ϕ2)−
ϕ̇2m% [cos (ϕ+ ϕ1) + cos (ϕ+ ϕ2)]−
ϕ̇2

1m% cos (ϕ+ ϕ1)− ϕ̇2
2m% cos (ϕ+ ϕ2)−

2ϕ̇ϕ̇1m% cos (ϕ+ ϕ1)−
2ϕ̇ϕ̇2m% cos (ϕ+ ϕ2) + 2c01xc + βẋc = 0;
m0ÿc + ϕ̈m% [cos (ϕ+ ϕ1) + cos (ϕ+ ϕ2)]−
ϕ̈1m% cos (ϕ+ ϕ1)− ϕ̈2m% cos (ϕ+ ϕ2)−
ϕ̇2m% [sin (ϕ+ ϕ1) + sin (ϕ+ ϕ2)]−
ϕ̇2

1m% sin (ϕ+ ϕ1)− ϕ̇2
2m% sin (ϕ+ ϕ2)−

2ϕ̇ϕ̇1m% sin (ϕ+ ϕ1)− 2ϕ̇ϕ̇2m% sin (ϕ+ ϕ2) +
m0g + 2c02yc + βẏc = 0;
−ẍcm% [sin (ϕ+ ϕ1) + sin (ϕ+ ϕ2)] +
ÿcm% [cos (ϕ+ ϕ1) + cos (ϕ+ ϕ2)] +
ϕ̈ [J + J1 + J2 − 2rm% (cosϕ1 − cosϕ2)] +
ϕ̈1 (J1 − rm% cosϕ1) + ϕ̈2 (J2 + rm% cosϕ2) +
ϕ̇2

1rm% sinϕ1 − ϕ̇2
2rm% sinϕ2 + 2rm%ϕ̇ϕ̇1 sinϕ1−

2rm%ϕ̇ϕ̇2 sinϕ2 +m%g [cos (ϕ+ ϕ1) +
cos (ϕ+ ϕ2)] + c03ϕ+ βϕ̇ = 0;
−ẍcm% sin (ϕ+ ϕ1) + ÿcm% cos (ϕ+ ϕ1) +
ϕ̈ (J1 − rm% cosϕ1) + ϕ̈1J1 − ϕ̇2rm% sinϕ1+
m%g cos (ϕ+ ϕ1) + kcϕ̇1 = Mu1;
−ẍcm% sin (ϕ+ ϕ2) + ÿcm% cos (ϕ+ ϕ2) +
ϕ̈ (J2 + rm% cosϕ1) + ϕ̈2J2 + ϕ̇2rm% sinϕ2+
m%g cos (ϕ+ ϕ2) + kcϕ̇2 = Mu2;

(1)
The “unbalanced rotor” structural diagram (Fig. 4) pre-

pared in accordance with the fourth equation of system
(1).

To convert the scheme into the state space equations,
accounting elasticity, let us substitute the state variables
z1i = ωi and z2i as the outputs of corresponding inte-
grators (i = 1, 2). Then the dynamics of the cardan shaft
taking into account torsional elasticity are described by
the differential equations:

ż1i = 1
Ji

(Mmi −Mui) =

= 1
Ji
Mmi − 1

Ji
(z2i + bB (z1i − ϕ̇i)) ,

ż2i = cB (z1i − ϕ̇i) Mui = z2i + bB (z1i − ϕ̇)

(2)

When taking into account the dynamics of the drive
in the simulation process the control torque Mm1 arriv-
ing at the input of the “elastic cardan shaft” is formed
in accordance with the structural diagram of the “elec-
tric drive”. Since the laboratory setup SV-2 used the
DC motors, the electric drive structure is selected as the
traditional single-circuit system with current loop and
proportional-integral (PI) current controller WCR(p) =
b(τp+ 1)/τp is configured to optimum modulo; b, τ are
dynamic gain and time constant of the regulator. The
following notation is used here: CR is the current reg-
ulator; TC is the power (thyristor type) converter; CS
is the current sensor; Ia is the armature current; ETC
and Em are converter and motor EMFs; kTC and kCS
are converter and current feedback gains; kF is the mo-
tor torque (EMF) coefficient; TTC and TCS are con-
verter and current sensor time constants; Ta is the arma-
ture time constant; Ra is the armature curcuit resistance;
UCR and UCS are current controller and current sensor
output voltages; Ui is the voltage corresponding to the
calculated torque Mi, obtained in accordance with the
equations (5), km = kF .

In accordance with the structure in Fig. 4 each
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motor torque Mmi determined by the value Mi, calcu-
lated in the algorithm and obeys a system of differential
and algebraic equations (index “i” is omitted for simplic-
ity):

İa =
1

Ta

(
−Ia +

1

Ra
(ETC − Em)

)
,

ĖTC =
1

TTC
(−ETC + kTCUCR) ,

U̇CS =
1

TCS
(−UCS + kCSIa) ,

U̇CS i =
b

τ
(Ui − UCS) ,

UCS = b (Ui − UCS) + UCS i,

Em = kF ϕ̇, Mm = kMIa

(3)

3 Speed-Gradient Control Algorithms with time-
varying observers for synchronization of two-
rotor vibration unit

The problem of maintaining a stable synchronous
mode of rotation of unbalanced rotors of a two-rotor VU
for a model that takes into account the dynamics of elec-
tric drives, using observer estimates in the control algo-
rithm, was considered in [Tomchina, 2020]. Algorithm
[Tomchina, 2020] can also be applied when solving the
problem of controlling the vibration field of a two–rotor
VU.

To provide a synchronous rotation mode of unbalanced
rotors for two-rotor VU, it is suggested to use speed–

gradient method with an objective functional in the fol-
lowing form:

Q(z) = 0.5
{

(1− α) (H −H∗)2
+ α (ϕ̇1 ± ϕ̇2)

2
}
,

(4)
where z = [xc, ẋc, yc, ẏc, ϕ, ϕ̇, ϕ1, ϕ̇1, ϕ2, ϕ̇2]T , 0 <
α < 1 is weight coefficient; H is total mechanical en-
ergy of a system (1), H∗ is the desired value of H .

Upon reaching the control goal (4) i.e. Q(z) = 0, we
get H = H∗ and equal rotor speeds ϕ̇1 = ϕ̇2. This ap-
proach, when choosing a target functional that uses in-
formation only about the energy of the mechanical part
of the VU, is based on the properties of the speed gradi-
ent method [Firsova, 2002]. In particular, the algorithms
synthesized using the velocity gradient method provide
dissipativity in the case of fast-flowing structural distur-
bances, which in this work include processes caused by
the dynamics of electric drives and elastic vibrations of
cardan shafts.

The proportional-integral (PI-) speed-gradient algo-
rithm in the finite form with the objective functional (4)
is as follows [Tomchina, 2019]:

M1 = −γ1 {(1− α) (H −H∗) ϕ̇1+
α
J1

(ϕ̇1 ± ϕ̇2) + α
J1

(ϕ1 ± ϕ2 + ∆ϕ∗1)
}

;

M2 = −γ2 {(1− α) (H −H∗) ϕ̇2±
α
J2

(ϕ̇1 ± ϕ̇2)± α
J2

(ϕ1 ± ϕ2 + ∆ϕ∗2)
}
.

(5)
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where ∆ϕ∗1, ∆ϕ∗2 are some constant phase shift values,
γi > 0.

As it was shown in [Tomchina, 2020; Fradkov et al.,
2013], it is the setting of certain values of the parame-
ters of the algorithm ∆ϕ∗1, ∆ϕ∗2 that makes it possible to
obtain a different type of VU vibration fields.

Total mechanical energy of a system (1) H = T +
Π, where kinetic and potential energies T and Π are as
follows:

T = 0.5m0

(
ẋ2
c + ẏ2

c

)
+ 0.5ϕ̇2 (J + J1 + J2−

2rm% (cosϕ1 − cosϕ2)) + 0.5J1ϕ̇
2
1 + 0.5J2ϕ̇

2
2+

ϕ̇ϕ̇1 (J1 − rm% cosϕ1) + ϕ̇ϕ̇2 (J2 + rm% cosϕ2)−
ẋcϕ̇m% (sin (ϕ+ ϕ1) + sin (ϕ+ ϕ2)) +
ẏcϕ̇m% (cos (ϕ+ ϕ1) + cos (ϕ+ ϕ2))−
ẋcϕ̇1m% sin (ϕ+ ϕ1) + ẏcϕ̇1m% cos (ϕ+ ϕ1)−
ẋcϕ̇2m% sin (ϕ+ ϕ2) + ẏcϕ̇2m% cos (ϕ+ ϕ2) ,
Π = m0gyc +m% (sin (ϕ+ ϕ1) + sin (ϕ+ ϕ2)) +

c01

(
x2
c + α2 cos2 ϕ

)2
+ c02

(
y2
c + α2 sin2 ϕ

)2
,

(6)
Also, taking into account the properties of the speed

gradient algorithms, we simplify the expression for the
total mechanical energy H in order to exclude the vari-
ables that cannot be measured by existing sensors and
are sufficiently small to be neglected. In [Fradkov et al.,
2013] the possibility of effective control in the absence
of information about the platform rotation angle ϕ was
shown. Therefore, it is possible to simplify the expres-
sion for the total energy by setting ϕ = 0. In addition the
horizontal movements of the platform xc are neglectable
too.

But even with such a simplification of the expres-
sion for the total mechanical energy, information is not
enough: only the phase and angular velocity of the ro-
tors, measured with an encoder, and the vertical posi-
tion of the platform y(t) are available for measurement.
However, the speed of vertical movements ẏc cannot be
ignored and will be restored by the observer. To justify
such a simplification a series of computer simulations
will be performed.

When synthesizing the observer in [Tomchina, 2020],
a simplified model of the VU dynamics was used which
did not take into account the displacement along the hor-
izontal axis xc and the angle ϕ of the platform rotation
in the vertical plane. As a basic equation for construct-
ing an observer, the second equation of system (1) with
the indicated simplifications was considered, which was
represented in the form

m0ÿc + βẏc + 2c0yc = F (t), (7)

where

F (t) = −m% sinϕ1ϕ̈1 −m% cosϕ1ϕ̇
2
1−

m% sinϕ2ϕ̈2 −m% cosϕ2ϕ̇
2
2 −m0g.

(8)

Further, from the indicated equations of the dynamics
of the VU, expressions for were found, which were sub-
stituted into expression (7), after which equation (7) was
presented in the form

m0ÿc + β1(t)ẏc + 2c0yc = F1(t),
β1(t) = β m0J1J2

m0J1J2−J1m2%2 sin2 ϕ2−J2m2%2 sin2 ϕ1
=

= βm0J1J2
∆(t) ,

(9)
where

F1(t) = F (t) +
(
J2m

2%2 sin2 ϕ1

∆(t) +

+ J1m
2%2 sin2 ϕ2

∆(t)

)
βẏc.

After that the following constraints were introduced

x1 = yc, x2 = ẏc

and equation (9) was converted into the equation in the
state space{

ẋ1(t) = x2;
ẋ2(t) = −β0(t)x2(t)− c′0x1(t) + F2(t),

(10)

where β0(t) = β1(t)/m0; c′0 = 2c0/m0; F2(t) =
F1(t)/m0.

Then the equations of the non-stationary observer of
full order are written in the form:

˙̂x1(t) = x̂2(t) + k1 (x1(t)− x̂1(t)) ;
˙̂x2(t) = −β0(t)x̂2(t)− c′0x̂1(t) + F2(t)+

+ k2 (x1(t)− x̂1(t)) ,

(11)

where x1(t) is measured by sensors.
The observer-based algorithm

M1 = −γ1

{
(1− α)

(
Ĥ −H∗

)
ϕ̇1+

α
J1

(ϕ̇1 ± ϕ̇2) + α
J1

(ϕ1 ± ϕ2 + ∆ϕ∗1)
}

;

M2 = −γ2

{
(1− α)

(
Ĥ −H∗

)
ϕ̇2±

α
J2

(ϕ̇1 ± ϕ̇2)± α
J2

(ϕ1 ± ϕ2 + ∆ϕ∗2)
}
.

(12)

where ˆ̇yc = x̂2 is obtained from observer (11),

Ĥ = 0.5m0
ˆ̇y2
c + 0.5J1ϕ̇

2
1 + 0.5J2ϕ̇

2
2+

+ˆ̇ycϕ̇1m% cosϕ1 + ˆ̇ycϕ̇2m% cosϕ2+
+m0gyc +m%g (sinϕ1 + sinϕ2) + c02y

2
c ,

The shape of vibration fields obtained when using the
synchronization algorithm with an observer (12) is in-
vestigated using simulation in the MATLAB environ-
ment.
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Table 1.

Observer Maximum value Maximum value

gains of observation of observation

errors (no errors (saturation

saturation) level 5 N·m)

k1 k2 e1, m e2, m/s e1, m e2, m/s

1 10 0.0068 0.187 0.0075 0.198

1 100 0.0062 0.170 0.0054 0.130

10 100 0.0038 0.146 0.0038 0.101

10 1000 0.0026 0.122 0.00178 0.079

10 10000 0.0015 0.177 0.0016 0.179

100 100 0.003 0.338 0.0026 0.286

100 1000 0.0017 0.210 0.0015 0.186

4 Simulation results
Earlier, the study of the shape of vibration fields for a

two-rotor VU was carried out for a model that takes into
account only the dynamics of the mechanical part of the
unit [Firsova, 2002] and for a model in which dynam-
ics of electric drives are taken into account [Tomchina,
2019].

In this paper we consider the influence of the following
three factors on the shape of vibration fields:

saturation restrictions for the controlling torquesMi

(12) of the engine;
the use of observer estimates when calculating con-
trol moments;
the influence of the elasticity of the universal joint
shafts connecting the motors and unbalanced rotors.

All three factors are essential in the practical implemen-
tation of control algorithms. First of all, the influence
of level constraints for the electromechanical moments
of the engine was investigated when using the observer’s
estimates when calculating the controlling torques (12).

Table 1 presents quantitative indicators for the maxi-
mum values of observation errors for the case of calcu-
lating the torques with and without saturation. The ob-
servation errors are denoted as e1, e2.

As can be seen from the table, the introduction of satu-
ration on the control torques (12) does not have a signif-
icant effect on the amplitude of observation errors, but
without deteriorating the quality of control it can signif-
icantly limit the value of start up currents and EMF of
thyristor convertor (Fig. 5, Fig. 6). In addition, as can
be seen from the table, the best results were obtained
with the values of the amplification factors k1 = 100,
k2 = 1000 (e1 = 1 · 10−4 m, e2 = 0.01 m/s). It should
be noted that in addition to the fact that good assessment

indicators are obtained with large coefficients k1 and k2,
the ratio between these coefficients is also important. So,
for k1 = 10, k2 = 10000, the processes are the worst in
terms of observation errors.
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Figure 5. Investigation of the dynamics of a model of a two-rotor
vibration plant with varying observer coefficients without taking into
account the constraint
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Figure 6. Investigation of the dynamics of a model of a two-rotor
vibration unit with varying observer coefficients for |Mi| ≤ 5 N·m.
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Since the steady-state phase shift determines the shape
of the vibration field (that is, the trajectories of steady-
state oscillations for different points of the bearing plat-
form), it is necessary to find out the dependence of the
steady-state phase shift ∆ϕ on ∆ϕ∗1 specified in the syn-
chronization algorithm (we assume that ∆ϕ∗2 = 0), and,
as shown by modeling, this dependence is different for
different desired values for total energy H∗.

The table of the dependence of the indicated skews
with varying the observer gains presented in Table 2, and
the corresponding nomograms of the dependence of the
steady-state phase shift ∆ϕ on ∆ϕ∗1 are shown in Fig. 7.

Figure 7. Nomograms of dependence ∆ϕ, rad on ∆ϕ∗1 , rad (yellow
line — with saturation, black line — no saturation)

As can be seen from the table and nomograms, the val-
ues of the observer’s coefficients do not affect the values
of the steady-state phase shifts ∆ϕ. Moreover, in the
absence of restrictions on the controlling torques, the in-
dicated values of ∆ϕ for a system with an observer and
a system without an observer coincide. This can be ex-
plained by the fact that the decay time of the observation
processes is higher than the synchronization time. How-
ever, as shown by modeling, the magnitude of the lim-
itation on the control torques affects the appearance of
the nomograms. On the other hand, in the main working
interval of the phase shift ∆ϕ∗1, that is, in the interval
(−π/2, π/2), the lines in the figure are close. It means
that the steady-state phase shift ∆ϕ, which determines
the slope of the trajectory axes of the platform points, in
the presence of constraints, is the same as in the case of
a system with unlimited control torques.

Further, the study of vibration fields for the model of
a two-rotor VU which took into account the dynamics

of the electric drive, the limitation of the control torques
and the elasticity of the universal joint shafts connecting
the motors and unbalanced rotors was carried out. In
the course of computer simulation, the parameters of the
elastic connection were varied: the stiffness coefficient
cB and the damping coefficient bB . The results are given
in Table 3. They were obtained for a given total energy
H∗ = 150 J and a constraint equal to |Mi| ≤ 5 N·m. The
table shows the following indicators of the efficiency of
synchronous mode control: tsyn, s — synchronization
time, ttr, s — transient process time, |y(t)max|, m —
maximum amplitude of platform oscillations, |Mumax

|,
Nm — maximum values elastic moment.

Nomograms of the dependence of the steady-state
phase shift ∆ϕ on ∆ϕ∗1, for various parameters of the
elastic shaft are shown in Fig. 8. Fig. 9 shows nomo-
grams reflecting the indicated dependence at a fixed
value of the stiffness coefficient cB = 1000 Nm/rad and
varying the parameter bB .

Figure 8. Nomograms of the dependence of the steady-state phase
shift ∆ϕ, rad, on ∆ϕ∗1 ,rad, for various parameters of the elastic shaft

As noted above, a feature of two-rotor VUs is the com-
plex nature of platform oscillations: different points of
the platform move along different trajectories, which
leads to the formation of different vibration fields. The
figures below show the projections of the trajectories of
various points of the platform onto the vertical plane
which form the vibration field.

In [Tomchina, 2018], the construction of a vibration
field for a VU with two vibration actuators was consid-
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Table 2.

k1 = 10, k2 = 10 k1 = 100, k2 = 1000 No observer

∆ϕ∗1, ∆ϕ, rad, for ∆ϕ, rad, no ∆ϕ, rad, for ∆ϕ, rad, no ∆ϕ, rad, for ∆ϕ, rad, no

rad |Mi| ≤ 5 N·m saturation |Mi| ≤ 5 N·m saturation |Mi| ≤ 5 N·m saturation

-4 0.6 1.06 0.6 1.06 0.6 1.06

-3 0.52 0.74 0.52 0.74 0.52 0.74

-2 0.41 0.47 0.41 0.47 0.41 0.47

-1 0.23 0.23 0.23 0.23 0.23 0.23

0 0.003 0.003 0.003 0.003 0.003 0.003

1 -0.225 -0.22 -0.225 -0.22 -0.225 -0.22

2 -0.445 -0.46 -0.445 -0.46 -0.445 -0.46

3 -0.535 -0.72 -0.535 -0.72 -0.535 -0.72

4 -0.885 -1.03 -0.885 -1.03 -0.885 -1.03

Figure 9. Nomograms of the dependence of the steady-state phase
shift ∆ϕ, rad, on ∆ϕ∗1 ,rad, for cB = 1000 Nm/rad and varyng the
parameter bB .

Table 3.

cB , Nm/rad
tsyn, s ttr, s

|y(t)max|, |Mumax
|,

bB , N·m·s m N·m

cB=500
1.288 0.73 0.057 9.8

bB=0.8

cB=500
1.722 0.729 0.057 10.32

bB=0.5

cB=1000
1.225 0.725 0.057 9.04

bB=0.4

cB=1000
2.593 0.727 0.057 8.95

bB=0.8

cB=2000
1.181 0.715 0.057 8.3

bB=0.7

cB=2500
1.179 0.726 0.057 8.1

bB=0.5

cB=3000
1.177 0.7 0.057 8.09

bB=0.9

cB=3000
2.591 0.723 0.057 8.06

bB=0.4

cB=5000
1.173 0.733 0.057 7.90

bB=0.6

cB=5000
2.429 0.723 0.057 7.94

bB=0.3

ered and a Universal Field Diagram) (UFD) was pre-
sented, which is most effective for vibration transport
and allows one to eliminate blockages at the unloading
end of the platform.

The shapes of vibration fields of the two-rotor unit SV-
2 with different parameters of elastic cardan shafts are
shown in Fig. 10–Fig. 12. In Fig. 11 the shape of the
VU vibration field for a given phase shift ∆ϕ∗1 = 0
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rad in algorithm (12) is shown. In accordance with the
nomograms (Fig. 8), the steady-state phase shift was
∆ϕ = 0.016 rad, which provided an almost uniform vi-
bration field.

The field diagram shown in Fig. 10 can be considered
as the best for vibration transportation of bulk materials,
if we consider the left end of the platform as the loading
end, and the right end as the unloading end. However, as
is seen in Fig. 12, the use of algorithm (12) to control the
type of the vibration field can provide any inclinations
of the axes of the corresponding elliptical trajectories.
Thus, the presented nomograms make it possible to se-
lect the parameters of the control algorithm that ensure
the optimization of work processes.

5 Conclusion
Based on the study of the proposed algorithm for con-

trolling the vibration field of a mechatronic double-rotor
unit for sieving bulk materials, the following conclusions
can be drawn.

The rotor synchronization control algorithm synthe-
sized for the model of a two-rotor VU, taking into ac-
count the elasticity of cardan shafts and the dynamics
of electric drives, using estimates of a non-stationary ob-
server, makes it possible to control the steady-state phase
shift of the rotors by varying the phase shift specified in
the algorithm and the given energy within wide limits.
The control algorithm provides both an approximate fre-
quency synchronization and an approximate coordinate
synchronization.

As shown by the simulation of the VU dynamics de-
scribed by equations (1–3), when using the observer-
based synchronization algorithm, taking into account the
saturation of the control torques, the transient time for
the rotor speeds is practically independent of the param-
eters of the elastic shafts, and the synchronization time
can increase with a decrease in the damping coefficient.

The use of observer estimates in the control algorithm
(12) does not distort the form of vibration fields. The
nomograms constructed under control using algorithms
(5) and (12) at coincide.

Since the type of the vibration field at fixed coordi-
nates of the attachment points of the rotors and at con-
stant mass-inertial parameters of the unbalances is de-
termined by the phase shift of the rotors ∆ϕ, then ac-
cording to the nomograms of the dependence of ∆ϕ on
∆ϕ∗1 constructed in the work, it is possible to provide
the desired form of the vibration field, depending on the
level of limitation on the control torques and the values
of the stiffness coefficient and the damping coefficient of
propeller shafts.

Future research may be aimed at the employing adap-
tive observers allowing one to improve control perfor-
mance under conditions of strong uncertainty [Efinov
and Fradkov, 2015] and implementing of the ideas of
control of actuators with internal degrees of freedom
[Fradkov et al., 2005].
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Figure 10. The shape of the VU vibration field at cB = 500 Nm/rad, bB = 0.5 N·m·s, ∆ϕ∗1 = −3.7 rad; ∆ϕ = 0.56 rad.
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Figure 11. The type of the VU vibration field at cB = 500 Nm/rad, bB = 0.5 N·m·s, ∆ϕ∗1 = 0 rad; ∆ϕ = 0.016 rad.

shift control of mechatronic vibrational setup. IFAC- PapersOnLine, 52 (15), pp. 436–441.



CYBERNETICS AND PHYSICS, VOL. 10, NO. 4, 2021 287

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

X , m

-0.02

-0.01

0

Y
 ,
 m

y
ci

(x
ci

), i=0,1,2,3,4

Figure 12. The type of the VU vibration field at cB = 5000 Nm/rad, bB = 0.6 N·m·s, ∆ϕ∗1 = 5.7 rad; ∆ϕ = −5.4 rad.


