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Abstract 
A detailed analytical study of irreversible energy 

transfer in an oscillatory system with time-dependent 
parameters has not been addressed thus far in the 
literature. This paper demonstrates a closed-form 
asymptotic solution of this problem for a system of 
two weakly coupled linear oscillators; the first 
oscillator with constant parameters is excited by an 
initial impulse, whereas the coupled oscillator with a 
time-dependent frequency is initially at rest but then 
acts as an energy trap. It is shown that in physically 
meaningful limiting cases the problem of irreversible 
energy transfer from the excited oscillator to the trap 
is reduced to a first-order equation with the solution 
in the form of the Fresnel integrals. In view of a 
mathematical analogy between energy transfer in a 
classical oscillatory system with variable parameters 
and non-adiabatic quantum Landau-Zener transition, 
the results of this paper, in addition to providing an 
analytical framework for understanding the transient 
dynamics of coupled oscillators, suggest an 
approximate procedure for solving the linear Landau-
Zener problem with arbitrary initial conditions over a 
finite time-interval. A correctness of approximations 
is confirmed by numerical simulations. 
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1. Introduction 
The problem of energy transfer is currently a topic 

of intense research with a broad spectrum of 
applications, from multi-body systems and waves in 
fluids and plasmas, to semiconductors, and nano-
crystals with graphene layers, among other novel 
applications; a rich variety of examples in diverse 
fields of applied mathematics, natural sciences, and 
engineering can be found in [Vakakis et al., 2008]. 
However, most of the results reported in the literature 
are related to energy exchange in systems with 

constant parameters. This work develops an 
analytical framework to investigate the dynamics of 
two weakly-coupled oscillators with time-varying 
frequencies, with special attention to an analogy 
between the energy transfer in this classical 
oscillatory system and quantum Landau-Zener 
tunneling. 
The classic linear Landau-Zener problem [Landau, 

1932; Zener, 1932] deals with a two-level system 
described by a Hamiltonian depending linearly on 
time. Due to its generality, the Landau-Zener 
scenario has been applied to numerous problems in 
various contexts, such as, e.g., laser physics 
[Sahakyan et al, 2010], semiconductor superlattices 
[Rosam et al, 2003], tunneling of optical [Trompeter 
et al, 2006] or acoustic [Sanchis-Alepuz et al., 2007; 
de Lima et al, 2010] waves and quantum information 
processing [Saito, 2006], to name just a few 
examples.  
Although a passage between two energy levels is an 

intrinsic feature of all above-mentioned processes, 
the demonstration of a direct connection between 
energy transfer in a classical oscillatory system with 
time-dependent parameters and non-adiabatic 
quantum Landau-Zener tunneling is a recent 
development. It has been shown that the equations of 
the slow passage through resonance in a system of 
two weakly coupled pendulums with a time-
dependent frequency are asymptotically identical to 
the equations of the Landau-Zener tunneling 
problem, i.e., there exists a profound analogy 
between irreversible energy transfer in the oscillatory 
system and non-adiabatic quantum tunneling 
[Manevitch et al., 2010; Kosevich, Manevitch and 
Manevitch, 2010; Kovaleva, Manevitch and 
Kosevitch, 2011]. This phenomenon may be treated 
as an extension of the previously found analogy 
between adiabatic quantum tunneling and energy 
exchange in a chain of weakly coupled oscillators 
with constant parameters [Kosevich, Manevitch, and 
Savin, 2007, 2008]. 
While an exact solution to the Landau-Zener 



equation is well-known [Zener, 1932], this equation 
is actually too complicated for any straightforward 
inferences about the system dynamics. After the 
seminal Landau paper [Landau, 1932], attention has 
focused on quasi-stationary solutions at infinitely 
large times (see, e.g., [Nakamura, 2002]). Recently, 
transient non-adiabatic tunneling has been studied 
asymptotically assuming quasi-stationary behavior of 
the system [Wittig, 2005; Berns, 2008].  
In this paper, we describe a model of two weakly 

coupled oscillators with the time-dependent 
frequency detuning. We transform the system of two 
differential equations into a single integro-differential 
equation for the coupled oscillator (the energy trap) 
and derive the evolutionary equations describing the 
slowly-varying envelopes of near-resonance motion 
for both oscillators. We demonstrate that the second-
order equation for the slow envelope of the trap 
oscillations is identical to that of the Landau-Zener 
problem. Then we show that the latter equation can 
be reduced to the first-order equation in two special 
cases; in the first case, the mass of the excited 
oscillator far exceeds the mass of the coupled trap; in 
the second case, the coefficients of weak coupling are 
lesser than the detuning rate. In both cases, we find 
an explicit asymptotic solution in the form of the 
Fresnel integrals. The theory is illustrated by 
numerical simulations. 

2. Equations of motion 
For brevity, we investigate resonant energy transfer 

in a system of two weakly coupled linear oscillators. 
We suppose that the first oscillator with mass m1 and 
stiffness c1 is excited by an initial impulse V; the 
coupled oscillator with mass m2 and time-dependent 
stiffness C2(t) = c2 − (k1 − k2t), k1,2 > 0 is initially at 
rest; the oscillators are connected by linear coupling 
of stiffness c12. The displacements and velocities of 
the oscillators are denoted by ui and Vi = dui/dt, i = 1, 
2. We will prove that the second oscillator with a 
time-dependent frequency acts as an energy trap and 
ensures a visible reduction of oscillations of the 
excited mass. 
The quasi-resonance interaction between the 

oscillators implies that (c1/m1)1/2 = (c2/m2)1/2
 = ω; a 

likely small detuning may be included in the 
coefficient k1. Assuming weak coupling, we define 
the small parameter of the problem as c12/c2 = 2ε << 
1. Then we introduce the dimensionless parameters 
c12/cr = 2ελr, r = 1,2; λ2 = 1; k1/c2 = 2εσ, k2/(c2ω) = 
2ε2β2 and the dimensionless time-scales τ0 = ωt, τ1 = 
ετ0. Using these notations, the equations of motion 
can be written in the dimensionless form 
 

      2
0

1
2

τd
ud  + u1 + 2ελ1(u1 − u2) = 0,                        (1)                                                         

2
0

2
2

τd
ud  + u2 + 2ελ2(u2 − u1) − 2εζ(τ1)u2 = 0, 

 

with the initial conditionsτ0 = 0, u1 = u2 = 0; v1 = V/ω 
= V0, v2 = 0, vi = dui/dτ0. Here and below the 
coefficient ζ(τ1) = σ − 2β2τ1 defines the detuning 
modulation.  
  In order to develop an effective asymptotic 
procedure, we express the solution u1 of the first 
equation in (2.3) as 
 

u1(τ0) = ωε
-1[V0sinωετ0 +                  (2) 

+ 2ελ1 ∫
0

0

τ

u2(s)sinωε(τ0 − s)ds], 

 
where ωε

 = (1 + 2ελ1)½. The substitution of (2) 
transforms the second equation of (1) into the 
integro-differential equation   
 

 2
0

2
2

τd
ud + (1 + 2ελ2)u2 − 2εζ(τ1)u2 =           (3) 

 = 2εωε
-1λ2[V0sinωετ0 + 2ελ1 ∫

0

0

τ

u2(s)sinωε(τ0 − s)ds], 

 
with the initial conditions τ0 = 0: u1 = u2 = 0; v1 = V0, 
v2 = 0. Hence, instead of two coupled second-order 
equations (1), we consider a single integro-
differential equation (3) for u2. The process u1 is then 
found from Eq. (1). 

3. Complex envelope 
The asymptotic analysis of Eqs (1) and (3) is 

performed with help of the so-called 
complexification-averaging technique, based on the 
complexification of the dynamics and the separation 
of the fast and slow time-scales (Manevich and 
Manevitch, 2005).  
We introduce a pair of the complex-valued variables 
ψ and ψ* by the following formulas 
 

ψ  = v2 + iu2, ψ* = v2 −iu2                  (4) 
 

From (3), (4), we derive the equation for ψ(τ0, ε) 
 

0τ
ψ

d
d

− iψ − iε(λ2 − ζ(τ1))(ψ − ψ*) =        (5) 

= 2ελ2ωε
-1[V0sinωετ0 − 

- iελ1 ∫
0

0

τ

(ψ(s,ε) − ψ*(s,ε))sinωε(τ0 − s)ds], ψ(0) = 0. 

In order to separate resonance harmonics, the 
solution of Eq. (5) is written as  
 

ψ(τ0, ε) = ϕ(τ0, ε) 0τεωie ,               (6) 
 

where the slow envelope ϕ(τ0,ε) is constructed in the 
form of the multiple-scales expansion [Nayfeh, 2000] 
  



ϕ(τ0,ε) = ϕ0(τ1) + εϕ1(τ0, τ1) +….           (7) 
 
A series of standard transformations [Kovaleva, 

Manevitch and Kosevich, 2011] yields the following 
equation for the leading-order term ϕ0(τ1): 
 

1

0

τ
ϕ

d
d

− i(ρ  + 2β2τ1)ϕ0 = −iλ2V0 − λ1λ2∫
1

0

τ

ϕ0(r)dr, 

     ϕ0(0) = 0,                                                            (8) 
 

where ρ  = λ2 − λ1 − σ. Equation (8) is equivalent to 
the second-order differential equation 
 

2
1

0
2

τ
ϕ

d
d

− i(ρ + 2β2τ1)
1

0

τ
ϕ

d
d  + (λ1λ2 − iβ2)ϕ0 = 0.  (9) 

 
with the initial conditions τ1 = 0: ϕ0 = 0,  dϕ0/dτ1 = 
−iλ2V0. The equivalence of Eq. (9) and the equation 
of the Landau-Zener transient tunneling problem has 
been demonstrated in [Kovaleva, Manevitch and 
Kosevich, 2011]. 
Once the slow envelope ϕ0(τ1) is found, the leading-

order approximations for u2 and v2 can be derived 
from (6), (7). We obtain 
 

 u20(τ0, τ1) = |ϕ0(τ1)|sin(ωετ0 + α(τ1)),          (10) 
           v20(τ0, τ1) = |ϕ0(τ1)|cos(ωετ0  + α(τ1)), 
           α(τ1) = argϕ0(τ1). 
 
Partial energy of the oscillator is calculated as 

     
e20(τ1) = ½(<u20

2> + <v20
2>) = ½|ϕ0(τ1)|2,    (11) 

 
<·> denotes is the averaging over the “fast” period T 
= 2π/ωε . 

3. Calculation of u1 
Once u20 is determined, u1 can be directly found 

from (1). However, in order to demonstrate an 
analogy between the classical model (1) and the 
Landau-Zener equations, we approximately calculate 
u1 using the following representation 
 

y = v1 + iu1, y* = v1 − iu1,                         (12) 
            

in which  
 

              y(τ0, ε) = η(τ0, ε) 0τεωie ,                     (13) 
η(τ0,ε) = η0(τ1) + εη1(τ0,τ1) +… . 

 
After a series of transformations [Kovaleva, 

Manevitch, and Kosevich, 2011], we obtain the 
resulting system for the leading-order approximations 
ϕ0(τ1), η0(τ1) 
 

     
1

0
τ
η

d
d = −iλ1ϕ0(τ1), η0(0) = V0,             (14) 

1

0

τ
ϕ

d
d

− i(ρ  + 2β2τ1)ϕ0 = −λ2[iV0 + λ1∫
1

0

τ

ϕ0(r)dr],  

      ϕ0(0) = 0. 
 
It is easy to obtain the main approximation of the 

solution u1, v1 in the following form 
 
            u10(τ0, τ1) = |η0(τ1)|sin(ωετ0 + δ(τ1)) 

v10(τ0, τ1) = |η0(τ1)|cos(ωετ0 + δ(τ1)),       (15) 
            δ(τ1) = arg(η0(τ1)). 
 
The partial energy of the oscillator is calculated as 
 

e10(τ1) =  ½(<u10
2> + <v10

2>) =  ½|η0(τ1)|2.   (16) 

4. Approximate analysis of energy transfer 
The analysis of the full system (14) can be 

significantly simplified if the integral terms in the 
second equation can be omitted. It is easy to prove 
that this term may be ignored in two cases, 2β2 >> 
λ1λ2 or/and m1 >> m2. 
If 2β2 >> λ1λ2, then the truncated equation for the 

slowly-varying envelope ϕ0(τ1) is written as 
 

1

0

τ
ϕ

d
d

− i(- σ  + 2β2τ1)ϕ0 = −iλV0, ϕ0(0) = 0.    (17) 

Equation (17) possesses the precise solution 
 

ϕ0(τ1) = − i β
λ 0V F(τ1,θ0)

2
01 )( θβτ +ie ,       (18) 

where θ0 = − σ/2β and 
 

      F(τ1,θ0) = ∫
+

−
01

0

2
θβτ

θ

dhe ih  =  

= [C(βτ1 +θ0) − C(θ0)] − i[S(βτ1 +θ0) − S(θ0)],  (19) 
 

C(x) and S(x) are the cos- and sin-Fresnel integrals.  
 The amplitude of oscillations can be easily evaluated 
in two limiting cases: 
 1. If βτ1 << 2 , then ϕ0(τ1)| ≈ λV0τ1.                                                     
 2. If βτ1 >> 2 , then the following asymptotic 
representations holds [Gradshteyn and Ryzhik, 2000] 
 

ϕ0(τ1) →⎯ϕ0 = − i β
λ 0V {[ 8

π  − C(θ0)] − 

            − i[ 8
π − S(θ0)]}, as τ → ∞.                      (20) 

 
The energy of quasi-stationary oscillations is 

calculated as ē20 = ½|⎯ϕ0|2; the energy ē10 can be 
found from (14) − (16). Note that an analysis of the 
approximate solution as τ1 → ∞ is formally incorrect 
but expression (20) can be considered as an 
illustration of a transition from the initial rest state to 
quasi-stationary oscillations.  



Figure 1 illustrates the occurrence of targeted 
energy transfer in the system with the parameters ε  = 
0.136; V0 = 0.368; εσ = 0.1125; (εβ)2 = 0.025; λ = 1.          
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Figure 1. Energy of the oscillator (blue) and the trap (red) 

 
If m1 >> m2, then the truncated equation for the 

slowly-varying envelope ϕ0(τ1) takes the form 
 

1

0
τ
ϕ

d
d

− i(ρ1 + 2β2τ1)ϕ0 = −iλ2V0, ϕ0(0) = 0,   (21) 

where ρ1 = λ2  − σ. It is obvious that the solution of 
Eq. (21) is similar to (18), namely, 
 

ϕ0(τ1) = − i β
λ 0V F(τ1,θ1)

2
11 )( θβτ +ie ,         (22) 

 
where θ1 = ρ1/σ. The asymptotic behaviour of the 
complex envelope ϕ0(τ1) is akin to (20).  
Figure 2 demonstrates irreversible energy transfer 

from the first oscillator to the trap in the system with 
the parameters m1 = 5m2, ε = 0.05; V0 = 1, εσ = 
0.1125, εβ = 0.1, λ = 1. 
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Figure 1. Energy of the oscillator (blue) and the trap (red) 

5. Conclusion 
This paper demonstrates that in significant limiting 

cases the problem of irreversible energy transfer in 
an oscillatory system with time-dependent 
parameters can be efficiently solved in terms of the 
Fresnel integrals. It is shown that the evolution 
equations of the slow passage through resonance are 
identical to the equations of the Landau-Zener 
tunneling problem, and, therefore, the suggested 
asymptotic solution of the classical problem provides 
a simple analytic description of the quantum Landau-
Zener tunneling with arbitrary initial conditions over 
a finite time-interval. A correctness of 
approximations is confirmed by numerical 
simulations.  
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