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eherrera@ciatej.mx

R. Femat
Biodinámica y Sistemas Alineales

IPICYT
San Luis Potosı́, México.
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Abstract
In fed-batch cultures the desired metabolite produc-

tion is achieved often following a predefined nutri-
ent/inducer feeding profile. Controlling a fed-batch
fermentation is not an easy task to achieve due to the
nonlinearities and uncertainities present in the kinetic
terms. In this paper a control strategy is designed to
track a trajectory in a nonlinear fed-batch culture pro-
ducing the protein luciferase through a recombinant
bacterium. The proposed control scheme has three
components: i) a nominal model, ii) a dynamic reduced
observer, and iii) a SISO nonlinear feedback controller.
A linearizing control law provides the nonlinear system
with a closed loop linear behavior. Uncertain terms re-
lated with the fermentation kinetics are gathered in a
function that is estimated with an observer. From the
control theory point of view, the problem of estimat-
ing the uncertain kinetic terms is addressed as a com-
bination of Model matching and Tracking problems.
The proposed scheme is robust against modeling errors.
The observer based controller had satisfactory perfo-
mance tracking the desired trajectories.
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1 Introduction
Fed-batch systems are used to produce elevated con-

centrations of metabolites achieving high productivi-
ties and yields. In this culture, one or more nutrients
are supplied to the bioreactor; however, nutrient over-
feeding or underfeeding is detrimental to cell growth
and product formation. Therefore, control strategies
are necessary to satisfactory achieve the operational
objectives of the bioprocess. Unlike the continuous
culture where a steady state is sought, in a fed-batch
system a transient behavior is always present. Fed-
batch cultures have been analyzed as a control prob-
lem where it is desired to find an optimal control trajec-

tory u(t) such it takes the process from an initial state
to a final state minimizing a cost function. An early
approach into finding an optimal feeding profile was
sought through the Pontryagin’s minimum principle;
however, the feeding rate was independent of the con-
trol law resulting in a singular problem failing to find a
solution [Modak et al., 1986]. To solve this problem the
Hamiltonian related to the feed rate is successively dif-
ferentiated respect to time until an explicit relationship
for the optimal flow rate is obtained for the singular arc,
which can be used for control [San and Stephanopou-
los, 1986]. However, these approaches were based in
open loop controllers sensitive to model uncertainties
deviating the process from the desired results. Later
the singular control problem was transformed to non-
singular using as the controlled variable the substrate,
the volume of the fermenter, or the specific growth rate.
The advances in control theory has allowed apply-

ing conventional, linear, and nonlinear controllers to
fed-batch cultures, i.e. pH-Stat, DO-Stat, PID [Lee et
al., 1999], linear [Dewasme et al., 2009] and nonlinear
[Jayadeva et al., 1991; Mohsenia, et al., 2009]. Spe-
cially, geometric control has emerged as an alterna-
tive tool to deal with nonlinear systems [Isidori, 1989].
This approach is based in the nonlinear transforma-
tion of the states, and using a linearizing control input
[Kravaris and Chung, 1987; Femat et al., 1999]. How-
ever, particularly in bioprocesses the lack of confident
sensors has hampered the design of robust controllers
[Bastin and Dochain, 1990]. Therefore, software or vir-
tual sensors have been used in bioprocesses to estimate:
i) unavailable sensor measurements like the biomass,
the substrate and products in the culture, and ii) un-
known kinetic terms [Bastin and Dochain, 1990]. The
aim of this contribution is to design a nonlinear con-
troller to track a signal in a biological reactor, the prob-
lem of estimating the uncertain/unknown kinetic terms
is addressed as a combination of Model matching and
Tracking problems. In the model matching approach
a compensating control law is designed for a plant, in
such way that the response of the closed-loop system



match a predefined driven model, so the closed-loop
system is internally stable [Di Benedetto and Grizzle,
1994]. If the output and a reference function of a dy-
namical systems is given by y(t), and yr(t), respec-
tively, then the tracking problem consists in finding a
control law which asymptotically decrease the tracking
error ET = y(t) − yr(t) to zero as t → ∞ [Isidori,
1989]. Unknown kinetic terms are gathered in a func-
tion that is then estimated with an observer. The study
case is a biological reactor operating in a fed-batch
mode producing the enzyme luciferase. The fed-batch
model has seven states and diverse nonlinear uncertain
kinetic terms. The document has been organized as
follows: after introduction, section 2 describes the lu-
ciferase fed-batch kinetic model. The model matching
and tracking problem is described in section 3. Brief
background in nonlinear control is given in section 4.
Simulation results are given in section 5. Finally the
conclusions are given.

2 The Fed-batch dynamic model
Definition: A fed-batch culture is a process operating

for a finite interval of time, τ = t ∈ R|0 ≤ t ≤ tmax,
and only can be fed during this operation time τ .

The dynamic fed-batch model used as a case of study
was propounded by [Lee and Ramirez, 1992]. In this
culture it is desired to grow an E .coli cloned microor-
ganism and induce the production of the luciferase
protein by Isopropylthiogalactoside (IPTG). The mass
balance equations describing the fed-batch model are
given by:

ẋ1 = u1 + u2
ẋ2 = µ(x3, x5, x6, x7)x2 − T1x2
ẋ3 = T2C

f
n − T1x3 − Y −1µ(x3, x5, x6, x7)x2

ẋ4 = Rfp(x3, x5)x2 − T1x4
ẋ5 = T3C

f
i − T1x5

ẋ6 = −k1(x5)x6
ẋ7 = −k2(x5)(1− x7)

(1)

where x ∈ R7 is the state vector, x1 describes the
bioreactor volume (L), x2 is the cell density (g/L), x3
stands for the substrate concentration (g/L), x4 is the
luciferase protein concentration (g/L), x5 is the protein
inducer IPTG in (g/L), x6 and x7 are the shock factor
on cell growth rate and the inducer recovery factor on
cell growth rate, respectively. T1 = (u1 + u2)/x1,
T2 = u1/x1 and T3 = u2/x1, where u1 and u2 are the
substrate and inducer feeding rates (L/h). The terms
Cf

n and Cf
i are the nutrient and inducer concentrations

in the feed. Y −1 is the relationship between the cellular
mass produced and the nutrient consumed. The specific
growth rate is given by

µ =
µmaxx3
KCN + x3

(x6 + x7RR) (2)

where µmax and KCN are Monod constant parameters
and RR is the ratio of µ at an inducer concentration to
µmax.

Rfp =
fmaxx3

KCN + x3 +
x2
3

Ks

fI0 + x5
KI + x5

(3)

More details of the kinetic model can be found in [Lee
and Ramirez, 1992].

3 Problem description
The problem of designing a controller for tracking the

protein luciferase (1) is solved as a combination of the
Tracking and Model matching problem. In order to
make clear the problem statement, the following sys-
tems are defined, which we called respectively the real
model (RM) and nominal model (NM), see Figure 1.
The RM is given by the dynamical system described
by (1). The NM is a system containing all the dynamic
information of the RM (i .e., their dynamics are equiv-
alent), since it is the result of a nonlinear transforma-
tion of the RM based in Lie derivatives. It is assumed
that systems NM and RM have different initial condi-
tions. In addition the NM unknows the kinetic func-
tions (i .e., uncertain kinetics). In this way, from the
Tracking point of view it is desired that the tracking er-
ror between the NM outputs (z1, z2) and the RM avail-
able measurements states (x3, x4) asymptotically de-
cays to zero as t→∞. This, in spite of either the NM
uncertainties respect to RM or the differences in they
initial conditions. In order to solve the tracking prob-
lem, a SISO control scheme with dynamic estimation
based in geometric control is proposed. This control
scheme consisted of two parts: i) a feedback linearizing
control law and ii) Luenberger type dynamic estima-
tor, which has as objective compensate the differences
of NM with respect to RM. On the other hand, from
the Model matching point of view, once the tracking is
achieved, the vector fields of NM are modified in such
way that at closed-loop the dynamical behavior of NM
equals RM. In this way, we can say that the observer
problem consist in a control scheme based in geomet-
ric control and a nominal model.

4 Controller design
The input-output linearization method is a control law

based in state feedback which provides the nonlin-
ear system with a closed loop linear dynamic [Isidori,
1989]. This method does not require linearization of
the whole nonlinear system; however, it only can be ap-
plied to minimum phase systems [Kravaris and Chung,
1987]. Consider the following class of nonlinear sys-
tem

ẋ(t) = f(x(t)) + g(x(t))u(t)
y(t) = h(x(t))

(4)



.

Figure 1. Diagram representing the model matching and tracking
problem. NM, RM, C, and e stands for nominal model, real model,
controller and error, respectively.

where x(t) ∈ Rn is the state vector, u ∈ R is a scalar
input, y ∈ R is the system output h(x(t)), which is a
smooth function. For convenience the time dependency
is omitted from now on. Differentiating the output y
with respect to time it is obtained that ẏ = Lfh(x) +
Lgh(x)u, where Lfh(x) =

∑n
i=1 fi(x)∂h(x)/∂xi is

the Lie derivative of h(x) through f(x). If Lgh(x) = 0
for any x(t) ∈ Rn it is neccessary to differenciate
again to obtain ÿ = L2

fh(x) + LgLfh(x)u. Gen-
erally, if r is the smallest positive integer, such that:
(i) LgL

i
fh(x) = 0 for i = 1, 2, ..., r − 2, and (ii)

LgL
r−1
f h(x) 6= 0, to x = x0, then the system has

relative degree r at the point x0. Therefore, it is pos-
sible to write the first r output derivatives y with re-
spect to time as y(i) = Li

fh(x), for i = 1, 2, ..., r − 2

and yr = Lr
fh(x) + LgL

r−1h(x)u, where Li
fh(x) =

Lf (Li−1
f h(x)) and LgL

i
fh(x) = Lg(Li

fh(x)). The
relative degree is defined as the times that is neccessary
to differentiate the output y before the input u explicit
appears [Isidori, 1989]. Once defined the relative de-
gree r, it is possible through a change of coordinates
given by Zi+1 = Li

fh(x), 1 ≤ i ≤ r, rewrite (4) in
its canonical form propoused by [Isidori and Byrnes,
1990]; which is also known as the normal form, and
may be expressed as:

żi = zi+1,
żr = α(z, ν) + γ(z, ν)u
ν̇ = ζ(z, ν)
y = z1

(5)

where y = z1 is the system output, α(z, ν) =
Lr
fh(x) and γ(z, ν) = LgL

r−1
f h(x) are the nonlin-

ear part of the observable z-states of the system (5),
while the ν-states represents the non-observable states.
From żr in (5) it can be seen that if LgL

r−1
f h(x)

remains bounded away from zero, it is possible to

propound a control law u = [−Lr
fh(x) + x

(r)
R −

V (x)]/LgL
r−1
f h(x), which induce the linear dynamic

V (x, t) =
∑r

i=1Ki−1(Li−1
f h(x) − xi−1

R ) on the sub-
system (5); such is able to track a desired trajectory
XR(t). This control law is known as linearization
by static state feedback (LSSF). On the other hand,
if the coefficients Ki(i = 1, 2, ..., r) of V (x, t) =
Kr(Lr−1

f h(x)) + ... + K1(y), are such that the poly-
nomial Pr(s) = sr = Krs

r−1 + ... + K2s + K = 0
is Hurwitz, then the LSSF allows the asymptotic sta-
bilization of system (5). In addition, the LSSF can
be expressed as: u(z, ν) = (1/γ(z, ν))[α(z, ν) +∑r

i=1Ki−1(z(i−1) − x(i−1)
R )] where x(i−1)

R represents
the vector of the derivatives used as reference.
Consequently the closed loop dynamic of system (5)

can be rewriten as ż = Az. ν̇ = ζ(z, ν) where A is a
matrix r-dimensional composed by the Ki coefficients
of the characteristic equation given by the polynomial
Pr(s). Since the matrix A is Hurwitz, the closed loop
system is stable if and only if the ν-states non ob-
servables (which corresponds to the zero dynamic) are
bounded for every t ≥ 0 and the dynamic of the system
ν̇ = ζ(z, ν) is stable for a constant value of ż, namely,
the dynamic of the ν-states is non-minimum phase.

4.1 An equivalent dynamic representation
If the z-states observable are not available for feed-

back, the LSSF cannot be implemented directly. Con-
sequently, it is required to estimate these non observ-
able states. Let δ(z, ν) = γ(z, ν) − γ̂(z), then, it is
possible to express the system (5) as:

żi = zi+1,
żr = η + γ̂(z)u
η̇ = Ξ(z, η, ν, u)
ν̇ = ζ(z, ν)

(6)

where γ̂(z) is the estimated function of γ(z, ν), η =
Θ(z, η, u), is the function that gathers the uncertain
terms, Θ(z, ν, u) = α(z, ν) + δ(z, ν)u and Ξ =∑r−1

k=1 zk+1∂kΘ(z, ν, u, t) + [η+ γ̂(z)u]∂rΘ(z, ν, t) +
∂vΘ(z, ν, t)ζ(z, ν), ∂kΘ(z, ν, u) = ∂Θ(z, u)/∂xk. To
estimate the uncertain terms we propound a high gain
Luenberger type observer, which provides the esti-
mated values of the z-states. This approach has de-
mostrated to have satisfactory performance in estimat-
ing uncertain terms related with chemical processes
[Femat et al., 1999]. The design of Luenberger filters
can be carried as follows:

˙̂zi = ẑi+1 + Liβi(z1 − ẑ1)
˙̂zr = η̂ − γ̂(ẑ)u+ Lrβr(z1 − ẑ1)
˙̂η = Lr+1βr+1(z1 − ẑ1)

(7)

where η̂ and ẑ stands for the estimated values of the
function that gathers the uncertainity of the z-states, re-



spectively; while γ̂(ẑ) is the estimated function of the
z-states. The βi-values are chosen in such way that the
polynomial sr+1 + βr+1s

r + ... + β1 = 0 is Hurwitz,
while L is a positive parameter used for tuning. There-
fore, the linearizing control law can be expressed as:

u(ẑ) =
1

γ̂(ẑ)
[−η̂ +

r∑
i=1

Ki−1(ẑi − x(i−1)
R )] (8)

5 Luciferase protein tracking approach
In this section the system described by (1) will be

analyzed with the tools described in the former section.
We made the following assumptions:
1.- The system is SISO, and there is only one input
given by u1.
2.- The state xr4 is known and available for feedback.
3.- The nominal model NM does not know the kinetic
terms defined in the real model RM related with µ and
Rfp.

Lets rewrite NM in the form given by (4) where the
state vector x = (x1, ..., x7) belongs to a open and
compact set U ∈ R7, while the output and the input
are given by the scalars x4, u1 ∈ R1. Once rewritten
NM, a change in coordinates is made in order to reach
the system to the form of (5) . Since L0

fh(x) = x4 and
LgL

0
fh(x) = −x4/x1, the relative degree of system

(1) is one and it is well defined for every set U , since
x1 > 0 for all x1 in U ⊂ R7 and t > 0. Consequently,
the trajectories of the states of NM in the normal form
will evolve in the space W ⊂ R1 for all z ∈ W . Since
the relative degree (r = 1) resulted to be less than
the system order (n = 7), then it is neccesary to pro-
pound n− r = 6 complementary functions to generate
a diffeomorfism that maps z = Φ(x). The complemen-
tary functions must fullfil with the condition given by
Lgνi(x) = 0. Then the complementary functions are
ν1 = x6, ν2 = x7, ν3 = x1x2, ν4 = x1x4, ν5 = x1x5
and ν6 = x1x3 − x1Cf

n . Once completed the diffeo-
morfic mapping z = Φ(x), NM can be written as in (5)
as follows:

ż1 = Rfp(z1, ν4, ν5, ν6)(z1ν3/ν4)
−(u1 + u2)z21/ν4

(9)

ν̇1 = −k1(z1, ν4, ν5)ν1
ν̇2 = k2(z1.ν4, ν5)(1− ν2)
ν̇3 = µ(z1, ν1, ν4, ν5, ν6)ν3
ν̇4 = Rfp(z1, ν4, ν5, ν6)ν3
ν̇5 = Cf

i u2
ν̇6 = −Y −1µ(z1, ν1ν4, ν5, ν6)− Cf

nu2

(10)

where the systems (9) and (10) represent the observ-
able and non observable states of system (1) in the nor-
mal form. In systems where r < n, it is neccessary

that the zero dynamics described by the complemen-
tary functions be of minimum phase. Assumption 3
limits NM from the knowledge of the kinetic terms µ
and Rfp. Defining η = Rfp(xr3, x

r
5)xr2 − (xr4/x

r
1)ur2,

it is possible rewrite the subsystem (1) as:

ż1 = ẋn4 = η − xn4
xn1
un4

η̇ = Γ(η, t)
(11)

where Γ(η, t) =
∑7

i=1[∂Rfp(xr3, x
r
5)ẋ1/∂x1]xr2 +

Rfp(xr3, x
r
5)ẋr2 − (xr1, ẋ

r
4 − xr4, ẋr1)ur2/x

r2
3 + u̇r2x

r
4/x

r
1.

Designing a Luenberger filter for system (6) it is ob-
tained that

˙̂z1 = η̂ − x4
x1
u1 + Lβ1(z1 − ẑ1)

˙̂η = L2β2(z1 − ẑ1)
(12)

where it can be seen that it is possible design a con-
trol law with a similar effect to the LSSF, that can be
expressed as:

un1 = [−η̂ +Kc(x
n
4 − xr4)](−x

n
1

xn4
) (13)

5.1 Numeric simulation results
In order to evaluate the performance of the feed-

back control law (12) and (13), numerical simula-
tions were carried out over the NM. The following nu-
merical values were considered for the designed con-
troller L = 5.0,Kc = −5.0, obtained from tun-
ning the controller, while β1 = 2.0 and β2 = 1.0
were chosen searching that the eigenvalues of the
characteristic polynomial of the matrix of coefficients
A(β) were located in −1. The initial condition used
were xr(0) = [1.0, 0.1, 40.0, 0.001, 0.0, 1.0, 0.0] and
xn(0) = [0.5, 0.2, 20.0, 0.01, 0.01, 0.9, 0.01]. As can
be seen in the upper part of Figure 2, the feedback given
by (12) and (13), achieved the control goal, since the
state xn4 (dashed line) tracked closely the trajectory de-
scribed by the state xr4 (continuous line), in spite of the
differences of NM regarding RM, even under different
initial conditions. The feedback law given by (12) and
(13), performed similar to the LSFF, this can be seen in
the lower part of Figure 2 where the values of η̂ (dashed
line) estimated by the Luenberger filter tracked satis-
factory the real value of η̂ (continuous line), which is
the function that gathers the uncertain kinetic terms.

6 Conclusion
The main contributions of the propounded control

scheme is the robustness in spite of the possible er-
rors in the mathematical model, external disturbances,
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Figure 2. Upper figure: Controller performance (dashed line) dur-
ing the tracking of the protein luciferase (continuous line). Lower
figure: Behavior of the η state (dashed line) during the estimation of
the unknown kinetic terms.

and the total or partially unknown kinetic terms. This
was achieved creating a new state gathering the un-
known terms, which is estimated by an observer. Sim-
ulations results show that the control system had sat-
isfactory performance tracking the protein production
xr4. Therefore experimental implementation of the
observer-controller is promissory.
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