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Universitat Politècnica de Catalunya
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Abstract
Recent developments in materials and cost reduc-

tion have led the study of the vibrational stability of
pipelines conveying fluid to be an important issue.
Nowadays, this analysis is done both by means of sim-
ulation with specialized softwares and by laboratory
testing of the preferred materials. The former usually
requires of complex modelling of the pipeline and the
internal fluid to determine if the material will ensure vi-
brational stability; and in the latter case, each time there
is a mistake on the material selection is necessary to
restart all the process making this option expensive. In
this paper, the classical mathematical description of the
dynamic behavior of a clamped-pinned pipeline con-
veying fluid is presented. Then, they are approximated
to a Hamiltonian system through Garlekin’s method be-
ing modelled as a simple linear system. The system
stability has been studied by means of the eigenvalues
of the linear system. From this analysis, characteristic
expressions dependent on material constants has been
developed as inequalities, which ensures the stability
of the material if it matches all expressions. This new
model provides a simplified dynamical approximation
of the pipeline conveying fluid depending on material
and fluid constants that is useful to determine if it is
stable or not. It is worth to determine that the model
dynamics does not correspond with the real, but the
global behaviour is well represented. Finally, some
simulations of specific materials have been use to val-
idate the results obtained from the Hamiltonian model
and a more complex model done with finite element
software.
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1 Introduction
In the last decades, the dynamics and stability of pipes

conveying fluid has been studied thoroughly with var-
ious techniques of analysis, considering different end
conditions and different models of the fluid-conveying
pipeline (see for example [Gregory and Paı̈doussis,
1966; Kameswara and Simha, 2008; Kerboua and
Lakis, 2008; Kuiper and Metrikine, 2004; Mediano,
2011; Misra, Wong, Paı̈doussis, 2001; Paı̈doussis,
1998; Paı̈doussis and Issid, 1974; Paı̈doussis, Tian,
Misra, 1993; Stoicuta et al., 2010]. These authors an-
alyze stability of pinned-pinned, clamped-clamped and
cantilevered fluid-conveying pipes, even in the pres-
ence of a tensile force and a harmonically perturbed
flow field.
The Interest in the problem of vibrational stability not

only is in modeling pipes but in other fields as for
example analyzing the stability of fixed speed wind
turbine (see [Dominguez-Garcia]) or analyzing vibra-
tions of a thin stretched string, with an alternating elec-
tric current passing through, in a nonuniform magnetic
field, (see [López Reyes and Kurmyshev]).
It is well known that the dynamical behavior of pipes

of a finite length depends strongly on the type of bound-
ary. The type of supports considered (fixed, one end
fixed, etc.) and their position (horizontal, vertical) must
be distinguished.
The dynamics of the system can be described by a

partial differential equation [Seyranian and Mailybaev,
2003; Thompson, 1982]

a4
∂4y

∂x4
+ a3

∂2y

∂x2
+ a2

∂2y

∂x∂t
+ a1

∂2y

∂t2
= 0 (1)

with boundary conditions at ends of a clamped-pinned
pipe. We find approximate solution of this equation
using Galerkin’s method obtaining as a result a linear
gyroscopic system possessing the properties of linear
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Hamiltonian systems. Then, the eigenvalues of this lin-
ear Hamiltonian system gives information about stabil-
ity: a stable Hamiltonian system is characterized by
pure imaginary eigenvalues. It is known that the sta-
bility of a linear Hamiltonian system is not asymptotic,
nevertheless the study provides the necessary stability
condition for the original non-linear system.
Different qualitative analysis of multiparameter linear

systems as well bifurcation theory of eigenvalues can
be found in [Seyranian and Mailybaev, 2003; Galin,
1982; Garcia-Planas, 2008; Garcia-Planas and Tar-
ragona, 2012; Mediano, 2011; Mediano and Garcia-
Planas, 2011; Mediano and Garcia-Planas, 2014].
The aim of the paper is by means of linear Hamil-

tonian system to model the clamped-pinned pipeline
problem and to analyze the structural stability of the
proposed model. This paper refers to a one end fixed
horizontal pipeline.
The paper is structured as follows. Section 2 presents

a mathematical statement of the problem. Section 3
is devoted to analyze the stability of linear gyroscopic
system obtained in subsection 2.1. Section 4 presents
and a simulation of the dynamic system using ANSYS
for some different materials used in real cases, such as
PVC, Polyethylene and Concrete, in order to validate
the results obtained analytically.

2 Preliminaries
The system under consideration is a straight, tight and

of finite length pipeline, passing through it a fluid. The
following assumptions are taken into account in the
analysis of the system:

i) Are ignored the effects of gravity, the coefficient
damping material, the shear strain and rotational
inertia

ii) The pipeline is considered horizontal
iii) The pipe is inextensible
iv) The lateral movement of y(x, t) is small, and with

large length wave compared with the diameter of
the pipe, so that theory Euler-Bernoulli is applica-
ble for the description of vibration bending of the
pipe.

v) It ignores the velocity distribution in the cross sec-
tion of pipe.

Figure 1. Pipeline

The equation for a single span prestressed pipeline
where the fluid is transported is a function of the dis-

tance x and time t and is based on the beam theory,
[Abid-Al-Sahib, Jameel, Abdlateef, 2010; Morand and
Ohayon, 1995]:

EI
∂4y

∂x4
+mp

∂2y

∂t2
= fint(x, t) (2)

where EI is the bending stiffness of the pipe (Nm2),

mp is the pipe mass per unit length (
kg

m
) and fint is an

inside force acting on the pipe.

The internal fluid flow is approximated as a plug flow,
so all points of the fluid have the same velocity U rel-
ative to the pipe. This is a reasonable approximation
for a turbulent flow profile. Because of that the inside
force can be written as:

fint = −mf
d2y

dt2

∣∣∣∣
x=Ut

(3)

where mf is the fluid mass per unit length (
kg

m
) and U

is the fluid velocity (
m

s
).

Total acceleration can be decomposed into local ac-
celeration, Coriolis and centrifugal.

mf
d2y

dt2

∣∣∣∣
x=Ut

= mf

[
d

dt

(
∂y

∂t
+

∂y

∂x

dx

dt

)∣∣∣∣
x=Ut

]
=

= mf

[
d

dt

(
∂y

∂t
+ U

∂y

∂x

)∣∣∣∣
x=Ut

]
=

= mf

[
∂2y

∂t2
+ 2U

∂2y

∂x∂t
+ U2 ∂

2y

∂x2

]
(4)

The internal fluid causes an hydrostatic pressure on
the pipe wall.

T = −AiPi (5)

where Ai is the internal cross sectional area of the pipe
(measured in m2) and Pi is the hydrostatic pressure in-
side the pipe (measured in Pa).
Finally if by considering that the total acceleration is

equal to the composition of local, coriolis and centrifu-
gal acceleration. The resulting equation describing the
oscillations of the pipe ([Mediano, 2011]):

EI
∂4y

∂x4
+ (mfU

2 − T )
∂2y

∂x2
+ 2mfU

∂2y

∂x∂t
+

(mp +mf )
∂2y

∂t2
= 0

(6)
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2.1 Linear Hamiltonian System
This subsection is devoted to prove that equation (6)

can be written as a linear dynamic system.

Proposition 2.1. The equation

EI
∂4y

∂x4
+ (mfU

2 − T )
∂2y

∂x2
+ 2mfU

∂2y

∂x∂t
+

(mp +mf )
∂2y

∂t2
= 0

can be written as

Ẋ = AX

for some specific Hamiltonian matrix.

To find approximate solution to equation (6), the
method used is the Galerkin’s method with two coor-
dinate function, that is to say, taking n = 2 with re-

spect
{
sin

iπ

L
x

}
i=1,2,...

basis defined over a open set

Ω ⊂ Rn and the scalar product < f, g >=
∫ L

0
fg the

approximate solution is:

y(x, t) = q1(t)sen
π

L
x+ q2(t)sen

2π

L
x

Replacing the solution in the equation (6), it is ob-
tained that:

EIq1(t)

(
π4

L4
sen

π

L
x+ q2(t)

16π4

L4
sen

2π

L
x

)
+

(mfU
2 − T )

(
−q1(t)

π2

L2
sen

π

L
x− q2(t)

4π2

L2
sen

2π

L
x

)
+

2mfU

(
q̇1(t)

π

L
cos

π

L
x+ q̇2(t)

2π

L
cos

2π

L
x

)
+

(mp +mf )

(
q̈1(t)sen

π

L
x+ q̈2(t)sen

2π

L
x

)
= 0

(7)

Making the scalar product by sen
π

L
ξ and sen

2π

L
ξ, re-

spectively, it can be obtain:

L

2
(mp +mf )q̈1(t)−

8

3
mfUq̇2(t)+

(
EI

π4

2L3
− (mfU

2 − T )π2

2L

)
q1(t) = 0

L

2
(mp +mf )q̈2(t)−

8

3
mfUq̇1(t)+

(
EI

8π4

L3
− (mfU

2 − T )
4π2

L2

)
q2(t) = 0

(8)

The previous equation system can be written as matrix
form like:

Mq̈ +Bq̇ + Cq = 0

that corresponds to gyroscopic lineal system:

ẍ+Gẋ+Kx = 0 (9)

with M−1/2q = x (we write the variable as x if con-
fusion it is not possible),

G = M−1/2BM−1/2 =
16mf

L(mf +mp)

(
0 −1
1 0

)

K = M−1/2CM−1/2 =
2

L(mf +mp)

(
K1 0
0 K2

)

and

K1 = EI
π4

2L3
− (mfU

2 − T )π2

2L

K2 = EI
8π4

L3
− (mfU

2 − T )
4π2

L2

Introducing the vector:

(
x
y

)
=

(
x

ẋ+Gx/2

)
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and calculating the derivatives of x and y it can be
found ẋ = y − Gx/2, ẏ = ẍ + Gẋ/2 and consider-
ing that ẍ = −Gẋ − Kx and linearizing the system a
linear Hamiltonian equation is obtained:

(
ẋ
ẏ

)
=

(
−G/2 I2

G2/4−K −G/2

)(
x
y

)
= A

(
x
y

)
.

It is easy to prove that the matrix A is Hamiltonian
because QA is symmetrical, where Q is the antisym-
metrical matrix:

Q =

(
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

)
.

So, the linear gyroscopic system obtained in (9) pos-
sess the properties of linear Hamiltonian systems.

In order to simplify, the following parameters consid-
ered

Λ =
EIπ4

L3

δ = (mfU
2 − T )

π2

L

β =
1

L(mf +mp)
(10)

and the matrices G and K are written as:

G = 16mfβ

(
0 −1
1 0

)

K = 2β

1

2
Λ− 1

2
δ 0

0 8Λ− 4

L
δ

 (11)

Therefore, matrix A is:

A =


0 a 1 0
−a 0 0 1
b 0 0 a
0 c −a 0

 (12)

where:

a = 8mfβ

b = −64m2
fβ

2 − βΛ + βδ

c = −64m2
fβ

2 − 16βΛ +
8

L
βδ.

(13)

Removing the variable change it is known that:

a =
8mf

L(mf +mp)

b =
−64m2

f

L2(mf +mp)2
− EIπ4

L4(mf +mp)
+

(mfU
2 +AiPi)π

2

L2(mf +mp)

c =
−64m2

f

L2(mf +mp)2
− 16EIπ4

L4(mf +mp)
+

8(mfU
2 +AiPi)π

2

L3(mf +mp)
.

So, the pipeline is modeled as a Hamiltonian system.

3 Stability
In this section the stability properties of linear dy-

namic systems representing the pipeline is studied.
Also, a detailed explanation of the effect of the stabi-
lization in terms of the bifurcation theory of eigenval-
ues is presented.
Concretely, this section is devoted to prove that the

space of stability can be described in terms of param-
eters of the matrix A ([Mediano and Garcia-Planas,
2011; Mediano and Garcia-Planas, 2014]) and to prove
that it is an open set whose boundary consists of alge-
braic varieties of smaller dimension

Theorem 3.1. let (a, b, c) be the parameters of the ma-
trix A in the hamiltonian equation. The set of points
(a, b, c) of stability is determined by

2a2 − b− c > 0
(a2 + c)(a2 + b) > 0
(2a2 − b− c)2 > 4(a2 + c)(a2 + b)

 . (14)

A stable hamiltonian system is characterized by eigen-
values lying on the imaginary axis. The characteristic
equation of the matrix is:

λ4 + (2a2 − b− c)λ2 + (a2 + c)(a2 + b) = 0 (15)

and the eigenvalues

λ = ±
√

−2a2+b+c±
√
−8a2b−8a2c−2bc+b2+c2

2
(16)

that in terms of Λ, δ, β are

λ = ±

√
λ1 ± β

√
λ2

2
(17)

with
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λ1 = −256m2
fβ

2 − 17βΛ +

(
1 +

8

L

)
βδ

λ2 = 65536m4
fβ

2 + 8704m2
fβΛ−(

512 +
4096

L

)
m2

fβδ + 225Λ2+

(
1 +

64

L2
− 16

L

)
δ2 +

(
30− 240

L

)
Λδ

(18)

As we says, the system is stable in Lyapunov’s sense,
if the eigenvalues lie on the imaginary axe and they are
smple or semi-simple.
Taking into account that the values in the system are

know only approximately, the matrix A in the system
can be considered as a family of matrices depending on
parameters a, b, c in a neighborhood of a fixed point
p0, that permit us to study the stability border. The
point p0, in which correspond only simple pure imagi-
nary eigenvalues, is always an interior point of the sta-
bility domain, while the points on the boundary of the
stability domain are characterized by the existence of
multiple pure imaginary or zero eigenvalues, (when the
other eigenvalues are simple and pure imaginary).
Stability conditions requires that the roots obtained in

(17), λ2 =
λ1 ± β

√
λ2

2
are real and negative. Impos-

ing these conditions the stability zone in the parameter
space can be determined.
It can be observed that the points p = (a, b, c) such

that

2a2 − b− c = 0
(a2 + c)(a2 + b) = 0

}
, (19)

the characteristic polynomial is λ4,
The set (19) corresponds to the union of parame-

terized curves φ(α) = (α, 3α2,−α2) and φ(α) =
(α,−α2, 3α2). In the intersection can be found the
most degenerate case, with respect the algebraic struc-
ture of the system as it can be seen below.
If a ̸= 0 the Jordan form of A is


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0


A Jordan basis transforming the matrix in its reduced
form is

S1 =


1 0 b− a2 0
0 −a 0 −a(a2 + b)
0 b 0 c(a2 − b)
0 0 −a(b+ c) 0



if a2 + b ̸= 0, and

S2 =


0 a 0 a(a2 + c)
1 0 c− a2 0
0 0 a(b+ c) 0
0 c 0 −b(a2 + c)


if a2 + c ̸= 0. (Observe that a2 + b and a2 + c can not
be zero simultaneously because a ̸= 0).
If a = 0 the Jordan form of A is


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0


In this case, a Jordan basis is

S =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0


At the points (19) the system have singularities of the

type 04 and the more degenerate 0202 on the stability
boundary. In both cases eigenvalues lie in imaginary
axis but they are not semisimple.
Near of these singularities it is possible to find the lest

degenerate matrices, for example

A(ε) =


0 ε 1 0
−ε 0 0 1
0 0 0 ε
0 0 −ε 0


where the eigenvalues are ±εi, and the stable case:

Ã =


0 −0.1 1 0
0.1 0 0 1

−0.0001 0 0 −0.1
0 −0.0001 0.1 0


where the eigenvalues are 0 + 0.1100i, 0 − 0.1100i,
0 + 0.0900i, 0− 0.0900i.
Following the analysis of eigenvalues, also it is ob-

tained the eigenvalue 0 at the points such that (a, b, c)

(a2 + c)(a2 + b) = 0
2a2 − b− c ̸= 0

}
(20)

At the points (a, b,−a2) there are two possibilities de-
pending on b if it is equal or not to −a2
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For b ̸= −a2 the Jordan form is


0 1 0 0
0 0 0 0

0 0
√
−3a2 + b 0

0 0 0 −
√
−3a2 + b


For b = −a2 the Jordan form is

0 0 0 0
0 0 0 0
0 0 2ai 0
0 0 0 −2ai

 .

This case correspond to a stability point because of
all eigenvalues are semisimple and lie in the imagi-
nary axe. It is important to note that in this case the
reduced form is not structurally stable (a small pertur-
bation makes that the double eigenvalue bifurcates into
two distinct eigenvalues or into a double nonderogatory
eigenvalue of type 02.
By symmetry, at the points (a,−a2, c) there are two

cases depending on c be equal or not to −a2

For c ̸= −a2 the Jordan form is


0 1 0 0
0 0 0 0

0 0
√
−3a2 + c 0

0 0 0 −
√
−3a2 + c


For c = −a2 the Jordan form coincides with the case
b = −a2.
Analogously, the case c = a2 is out of the stability

space
For the case b ̸= −a2 and c ̸= −a2 the system have

singularities of the type 02 in the boundary of stability.
It remains to study the case that no eigenvalue is zero
The roots of µ2+(2a2−b−c)µ+(a2+c)(a2+b) = 0,

are real and negative when

2a2 − b− c > 0
(a2 + c)(a2 + b) > 0
(2a2 − b− c)2 ≥ 4(a2 + c)(a2 + b)

 (21)

In the case (2a2 − b − c)2 = 4(a2 + c)(a2 + b) the
eigenvalues are λ = ±i

√
2a2 − b− c = ±iω double.

It is easy to observe that rank (A − (±iω)I) = 3 so
the Jordan form is

iω 1 0 0
0 iω 0 0
0 0 −iω 1
0 0 0 −iω


At the points (a, b, c) with 2a2 − b − c > 0, (a2 +
c)(a2+ b) > 0 and (2a2− b− c)2 = 4(a2+ c)(a2+ b)
the system have singularities of the type ±iω2.

The last case

2a2 − b− c > 0
(a2 + c)(a2 + b) > 0
(2a2 − b− c)2 > 4(a2 + c)(a2 + b)

 (22)

determined the stability points (a, b, c) remaining
within the area bounded by the above singularities.

4 Stability of the Pipes: Case Study

Taking as a constant parameters L = 1000mm, I =
2, 185 · 106, Ai = 2500π due to the geometry of the

pipe and mf = 2, 5π · 10−6 Tn

mm
assuming the fluid is

water. It is also supposed that the study is applied to
the inside wall of the pipe so U at these points are zero.

Therefore the values a, b y c are:

a =
2π · 10−8

(2, 5π · 10−6 +mp)

b =
−4 · 10−16π2

(2, 5π · 10−6 +mp)2
− 2, 185 · 10−6Eπ4

(2, 5π · 10−6 +mp)
+

2, 5 · 10−3Piπ
3

(2, 5π · 10−6 +mp)

c =
−4 · 10−16π2

(2, 5π · 10−6 +mp)2
− 34, 96 · 10−6Eπ4

(2, 5π · 10−6 +mp)
+

2 · 10−5Piπ
3

(2, 5π · 10−6 +mp)

That permit to obtain the following relation depending
only on mp, E and Pi:

16 · 10−13

2.5 · 10−6π +mp
+ 37.145 · 10−3π2E − 2.52πPi > 0

15.27752 · 10−4π2E2 + P 2
i − 17.48874 · 10−1πEPi > 0(

16 · 10−13

2.5 · 10−6π +mp
+ 37.145 · 10−3πE − 2.52Pi

)2

>

4π2(76.3877 · 10−6π2E2 − 87.4437 · 10−3πEPi+

5 · 10−2P 2
i ).

(23)

This study is done to show the stability of pipes with
different materials assuming in all of them that the fluid
transported is water and causes a constant pressure on
its walls of 4 bar. The geometrical conditions of the
pipe are the inside diameter equal to 50 mm and the
thickness of the pipe which is 6 mm. The materials
chosen are PVC, Polyethylene and Concrete.
The values of E and mp of the PVC pipe are:

E = 30, 581
N

mm2
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mp = 2, 76 · 10−6 Tn

mm

Applying the inequalities (23) it is found that the so-
lution is unstable.
The values of E and mp of the PE pipe are:

E = 9, 174
N

mm2

mp = 1, 91 · 10−6 Tn

mm

Applying the inequalities (23) it is found that the so-
lution is unstable.
The values of E and mp of the Concrete pipe are:

E = 221, 203
N

mm2

mp = 4, 40 · 10−6 Tn

mm

Applying the inequalities (23) it is found that the so-
lution is stable.

So, the eigenvalues obtained for this materials are

Material Eigenvalues
PVC 48.042 48.042 98.936i 98.936i
PE −54.549 54.549 56.341i 56.341i

Concrete 0.362i 0.362i 2.479i 2.479i

Figure 2 shows the distribution of these values in the
complex plane.
Observe that the case of PVC pipe is the furthest away

from stability zone.
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Figure 2. Values of the different pipes
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To perform the analysis we have seen that we had to
find the Jordan reduced form of the matrix for each
particular case because as it is well known the obten-
tion of its continuous invariants is not stable when they
are not simple and that these values are inevitable for
small disturbances. One way to address these kind of
problems is analyzing families of elements dependent
on parameters, defined in a neighborhood of the given
element. In this approach versal deformations can be
constructed. A versal deformation represents the most
general family possessing (in some sense) the proper-
ties of all deformations of the element ([?]).
Let us consider the Lie algebra sp(2k,C) = {A ∈
M4(C) | QA + AtQ = 0} with Q =

(
0 I2

−I2 0

)
of the

Hamiltonian matrices under the action α of Lie group
G = {P ∈ Gl(n;C) | P tQP = Q} defined in the
form α(P,A) = P−1AP . A miniversal deformation
is given A + TAO(A)⊥ where O(A) is the orbit of A
with respect the action and ⊥ is the orthogonal with re-
spect the standard scalar product. It is easy to compute
TO(A)⊥ = {X | XtA−AXt = 0}.
Although the stability analysis for the Hamiltonian

matrix have been made without having a miniversal
deformation, this method can be used for higher-order
matrix symplectic dependent on an arbitrary number of
parameters.
In fact, if it is considered the miniversal deformation

in a neighborhood of a most degenerate case we ob-
tain the following four parameter familiy of Hamilto-
nian matrices

A(p) =


0 −p1 1 0
p1 0 0 1
p2 p3 0 −p1
p3 p4 p1 0


that restricted to the particular setup of systems describ-
ing the pipe, is p3 = 0 and A(p) coincides with the
matrix A in (12).

4.1 Simulation for Some Specific Materials
In this section the equation (6) is solved and the struc-

tural stabilities found in the previous section with the
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stability of the solution is compared. Moreover, vibra-
tion characteristics of a pipe conveying fluid is calcu-
lated using a Finite Element package called ANSYS.
To determinate the vibration characteristics modal

analysis have been used, with this analysis you find
natural frequencies and mode shapes which are impor-
tant parameters in the design of a structure for dynamic
studies.
The simulation of the problem varies depending on the

boundary conditions. On the left side of the pipe is a
rigid support, while the side right lateral displacement
can not but have a time proportional to the angle of
rotation of the pipe. So, the boundary conditions at
ends of a clamped-pinned pipe are given as:

y(0, t) = 0, y(L, t) = 0

∂2y(0, t)

∂t
= 0, EI

∂2y(L, t)

∂x2
= −Krs

∂y(L, t)

∂x
(24)

where Krs is the stiffness of the rotational spring at the
right end.

Figure 4. Boundary conditions

The following table lists the values of natural fre-
quency and displacement in both cases:

First shape Second shape
f dx f dx

Concrete 0 0.034258 0.023795 0.022697

PE 19.435 36.609 19.668 38.279

PVC 9.806 50.513 24.043 31.546

Remark that the frequencies obtained solving linear
Hamiltonian system does not coincides with frequen-
cies that can be obtained solving the second order dif-
ferential equation (6) with initial conditions (23), in
fact with Hamiltonian equation is studied structural sta-
bility giving information about the qualitative changes
that can be in the behavior of systems when the systems
are known only approximately.
In the following pictures it is shown the performance

of the first and the second shapes and the natural fre-
quencies of them.
As seen in picture 3, 4 and 5 the lowest natural fre-

quency is the concrete pipe (it is not write on the picture

Figure 5. First shape of PVC

Figure 6. First shape of Polyethylene

because is zero) and the biggest one is the Polyethylene
pipe (19, 435 Hz) but the greater displacement of x axis
is the PVC pipe. This combination result in instabil-
ity of Polyethylene and PVC pipe whereas in Concrete
pipe is stable.

As seen in picture 6, 7 and 8 the lowest natural fre-
quency is the concrete pipe (0,0238 Hz) and the biggest
one is the PVC pipe (24, 043 Hz) but the greater dis-
placement of x axis is the PE pipe. This combina-
tion result in instability of Polyethylene and PVC pipe
whereas in Concrete pipe is stable.

5 Conclusion
In this paper the classic non-linear dynamic model for

a pipe conveying fluid have presented. Moreover, a lin-
earization method have been done by approximation of
the non-linear system to the linear gyroscopic system
(Garlekin’s method) providing a Hamiltonian system.
From the linear system, the stability of the pipeline has
been analyzed in a general form by means of the first
Lyapunov’s methods. The stability generalization of
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Figure 7. First shape of Concrete

Figure 8. Second shape of PVC

the system have been done obtaining the stability lim-
its as function of the material and fluid parameters.
It have been shown that the dynamics and stability of

pipes conveying fluid not only depends on the boundary
conditions but it is also strongly important the material
of the pipe and the pressure produced by the fluid.
The proposed Hamiltonian model of a pipeline con-

veying fluid provides a simple case to evaluate if the
selected materials will remain stables.
In this paper the calculations of the proposed model

and the simulation of a complex model of typical ma-
terials for a pipe used in public works have been com-
pared to verify the results obtained.
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