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Abstract
The classical form of Hamilton’s principle holds for

conservative systems with perfect bilateral constraints.
In this paper we derive Hamilton’s principle for per-
fect unilateral constraints (involving impulsive motion)
using weak variations. The resulting principle has the
form of a variational inequality in Hilbert space.
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1 Introduction
Classical Analytical Mechanics is concerned with me-

chanical systems with perfect bilateral (mostly holo-
nomic) constraints (Papastavridis, 2002) and is closely
related with the calculus of variations as many princi-
ples of statics and dynamics are formulated in terms of
variational problems, e.g. the principle of virtual work
and Hamilton’s principle (see for instance (Lanczos,
1962)). Unilateral constraints, which are basically in-
equality constraints, are completely ignored in classi-
cal Analytical Mechanics because inequalities are not
discussed by the classical calculus of variations and,
also, because unilateral constraints in dynamics lead to
shocks with discontinuities in the velocity. The math-
ematical tools to handle unilateral problems in stat-
ics, and later also in dynamics, have only been devel-
oped since the last four decades. The field of Non-
smooth Dynamics is now rapidly developing. We re-
fer the reader to the textbooks (Leine and Nijmei-
jer, 2004; Glocker, 2001; Brogliato, 1999).
Variational problems involving convex inequality

constraints are described by variational inequali-
ties and where first introduced by Hartman and
Stampacchia (Hartman and Stampacchia, 1966) to
study partial differential equations. The applicabil-

ity of the theory has since been expanded to in-
clude problems from mechanics, finance, optimisa-
tion and game theory. References on variational
inequalities can be found in the standard refer-
ence (Kinderlehrer and Stampacchia, 1980) or in
the more recent books (Goelevenet al., 2003a;
Goelevenet al., 2003b). Variational problems with
non-convex inequality constraints are described by
hemi-variational inequalities and are discussed in the
seminal work of Panagiotopoulos (Panagiotopoulos,
1993). Moreover, (hemi-)variational inequalities are
related to (non-)convex superpotentials through the
subderivative known from Nonsmooth Analysis, see
the work of Moreau (Moreau, 1968) and Panagiotopou-
los (Panagiotopoulos, 1981).

The extension of classical Analytical Mechanics to
perfect unilateral constraints asks for a reformula-
tion of the variational principles of mechanics in
terms of variational inequalities. The principle of
d’Alembert-Lagrange in inequality form has been dis-
cussed in (Panagiotopoulos and Glocker, 1998; Pana-
giotopoulos and Glocker, 2000; Goelevenet al., 1997;
Goelevenet al., 1999; May, 1984a; May, 1984b).
Various forms of the principle of Hamilton as vari-
ational inequality form can be derived from the
principle of d’Alembert-Lagrange as variational in-
equality (Panagiotopoulos and Glocker, 1998; Pana-
giotopoulos and Glocker, 2000).

The current paper puts one existing form of the prin-
ciple of Hamilton as variational inequality, which has
already been derived in (Panagiotopoulos and Glocker,
1998; Panagiotopoulos and Glocker, 2000), within the
context of weak and strong extrema (Cesar, 1984;
Troutman, 1996). It therefore becomes much more
clear how these different forms of Hamilton’s princi-
ple have to be understood. Furthermore, the weak form
does not impose any requirements on the energy dissi-
pation (or conservation).



2 Principle of d’Alembert-Lagrange as varia-
tional inequality

In this section we discuss the principle of d’Alembert-
Lagrange in inequality form (Goelevenet al., 1997;
Panagiotopoulos and Glocker, 1998). Consider a point-
massm with positionr ∈ R

3 which is subjected to a
constraint forceR and an external forceF . The princi-
ple of virtual work states that the virtual work vanishes
for all virtual displacementsδr, i.e.

δW = (mr̈ − F − R)Tδr = 0 ∀δr. (1)

The virtual displacementsδr = r∗ − r are infinitely
small differences of arbitraryvirtual positionsr∗ and
the actual positionr, such that time is kept constant.
We first consider the case where the constraint is a

bilateral holonomic scleronomic constraintg(r) = 0
with g ∈ C1(R3, R), in other words the position of the
point-mass is constrained to the manifoldK = {r ∈
R

3 | g(r) = 0} (see Figure 1). Virtual displace-
mentsδr are admissible with respect to the constraint
if they belong to the tangent spaceTK(r) = {z ∈ R

3 |
∂g
∂r

z = 0}. If the virtual work of the constraint force
vanishes for all virtual displacements which are admis-
sible with respect to the constraint, i.e.

RTδr = 0 ∀δr ∈ TK(r), (2)

then we speak of aperfectbilateral constraint. A per-
fect constraint force is therefore normal to the con-
straint manifold in the sense that

−R ∈ NK(r), (3)

whereNK(r) is the set of all vectors which are normal
to the tangent spaceTK(r). Equations (2) and (3) are
equivalent ifK is a manifold. Instead of taking (2)
as definition of a perfect constraint, we therefore could
also have chosen to take the normality condition (2) of
the constraint force as definition. The assumption of
perfect bilateral constraints in classical mechanics, and
therefore the normality of the constraint force to the
constraint manifold, excludes phenomena as friction.
Combining (2) and (1) gives the variational equality

(mr̈ − F )Tδr = 0 ∀δr ∈ TK(r), (4)

which is usually referred to as the classical principle of
d’Alembert-Lagrange.
We now replace the bilateral constraint by unilat-

eral holonomic (geometric) scleronomic constraints
gi(r) ≥ 0, i = 1 . . . m, see Figure 2. The position
of the point-mass is in this case constrained to the set
K = {r ∈ R

3 | gi(r) ≥ 0, i = 1 . . . m}. In the fol-
lowing, we will confine ourselves to the case thatK is
a convex set. Virtual displacementsδr are admissible

Figure 1. Point mass in contact with a bilateral constraint.

with respect to the unilateral constraint ifδr ∈ TK(r),
whereTK(r) is now the tangentcone. We define a
unilateral constraint asperfect if the constraint force
satisfies the normality condition (3)

−R ∈ NK(r), (5)

whereNK(r) is the normal cone to the convex setK.
The tangent coneTK(r) and normal coneNK(r) are
polar in the sense that for allR andδr satisfying

−R ∈ NK(r), δr ∈ TK(r) (6)

it holds that

−RTδr ≤ 0. (7)

Hence, for perfect unilateral constraints it holds that the
virtual work of the constraint force is nonnegative for
admissible virtual displacements, i.e.

RTδr ≥ 0 ∀δr ∈ TK(r). (8)

Combining (2) and (1) gives the variational inequality

(mr̈ − F )Tδr ≥ 0 ∀δr ∈ TK(r), (9)

which we will refer to as the principle of d’Alembert-
Lagrange in inequality form.

3 The Principle of Hamilton for Non-Impulsive
Motion

Consider a systemS of which we can address each
mass-element dm by its position vectorξ ∈ R

3. The
mass-element dm is subjected to external and internal
forces dF , which consist of elastic forces, gravitational
forces and bilateral holonomic scleronomic constraint
forces. Furthermore, the mass-element dm is subjected
to unilateral constraint forces dR which impose the
unilateral holonomic scleronomic constraintg ≥ 0.
The gap functiong depends on the state of the system
S and therefore on the position vectorξ ∈ R

3 of all



Figure 2. Point mass in contact with a unilateral constraint.

mass-elements ofS. The unilateral constraintg ≥ 0
therefore constrains each mass-element addressed byξ

to a setKξ. The principle of virtual work states that if
the virtual work

δW =

∫

S

δξT(ξ̈dm − dF − dR) (10)

vanishes for all virtual variationsδξ, i.e.

δW = 0 ∀δξ, (11)

then the system is in dynamic equilibrium. The contact
forces dR are assumed to be perfect and it therefore
holds that

dRTδξ ≥ 0 ∀δξ ∈ TKξ
(ξ), (12)

whereδξ ∈ TKξ
(ξ) denotes a virtual displacement ofξ

which is admissible with respect to the unilateral con-
straintg ≥ 0. The principle of d’Alembert-Lagrange
in inequality form (9) for the systemS therefore reads
as

∫

S

δξT(ξ̈dm − dF ) ≥ 0 ∀δξ ∈ TKξ
(ξ). (13)

We now choose a set of generalised coordinatesq ∈
R

n which uniquely describes the state of the system
and which is a minimal set of coordinates with respect
to all bilateral constraints. Each particle coordinate
ξ(q) is therefore completely determined byq. An arbi-
trary variationδq causes a variationδξ = ∂ξ

∂q
δq which

is admissible with respect to all bilateral constraints.
The unilateral constraintg ≥ 0 constrains the gener-
alised coordinatesq to a setK = {q ∈ R

n | g ≥ 0}
which we assume to be convex. A virtual displacement
δq ∈ TK(q) induces a virtual displacement of the par-
ticle δξ = ∂ξ

∂q
δq ∈ TKξ

(ξ) which is admissible with
respect to the unilateral constraintg ≥ 0.

The virtual work of the inertia forces can be rewritten
as

∫

S

δξTξ̈dm =
d
dt

(
∫

S

δξTξ̇dm

)

−

∫

S

δξ̇Tξ̇dm,

(14)
or, by using the generalised coordinatesq, as

∫

S

δξTξ̈dm =
d
dt

(

δqTp
)

− δT (15)

where

p =

∫

S

(

∂ξ

∂q

)T

ξ̇dm (16)

is the generalised momentum andδT is the variation of
the kinetic energy

T =

∫

S

1

2
ξ̇Tdmξ̇ =

1

2
q̇TM(q)q̇, (17)

with the mass matrix

M(q) =

∫

S

(

∂ξ

∂q

)T

dm

(

∂ξ

∂q

)

. (18)

Moreover, we introduce

f =

∫

S

(

∂ξ

∂q

)T

dF (19)

as the generalised force. Substitution of (15) and (19)
in the principle of d’Alembert-Lagrange (13) gives

d
dt

(

δqTp
)

− δT − δqTf ≥ 0 ∀δq ∈ TK(q), (20)

which is the inequality form of the well known La-
grange central equation (Hamel, 1912; Papastavridis,
2002). The Lagrange central equation (20) holds at
each non-impulsive time instancet for which the gen-
eralised velocitiesq̇ exist. Hence, we can integrate
the central equation (20) over a non-impulsive time-
intervalI = [t0, tf ] which gives

[

δqTp
]tf

t0
−

∫

I

δT + δqTfdt ≥ 0 ∀δq ∈ TK(q).

(21)
Moreover, we assume the generalised forcef to be a
potential force−f = ∇V (q) whereV (q) is the po-
tential energy andδV = −δqTf . Hence, by defining
the Lagrange functionL = T − V we arrive at

[

δqTp
]tf

t0
−

∫

I

δLdt ≥ 0 ∀δq ∈ TK(q). (22)



If the boundary conditions are fixed, then the variation
δq(t) vanishes att = t0 andt = tf and we are allowed
to interchanging the order of integration and variation
such that

−δ

∫

I

Ldt ≥ 0 ∀δq ∈ TK(q), (23)

with the boundary conditionsq(t0) = q0, q(tf ) = qf ,
which is the principle of Hamilton in inequality form
for a non-impulsive time-intervalI = [t0, tf ]. From
the principle of Hamilton we can derive the Euler-
Lagrange equations in inequality form by evaluating
the variation in (23) as

−

∫

I

(

∂L

∂q
−

d
dt

∂L

∂q̇

)

δqdt ≥ 0 ∀δq ∈ TK(q).

(24)
Hence, for each time-instancet ∈ I the variational in-
equality

−

(

∂L

∂q
−

d
dt

∂L

∂q̇

)

δq ≥ 0 ∀δq ∈ TK(q) (25)

should hold, which can be cast into the differential in-
clusion

M(q)q̈−h(q, q̇)−fR = 0, −fR ∈ NK(q), (26)

where the mass matrixM(q) is defined by (17) and the
vector

h = −

(

d
dt

M(q)

)

q̇ +

(

∂T

∂q
−

∂V

∂q

)T

(27)

contains all smooth forces.

4 A Weak Principle of Hamilton
In this section we derive a weak principle of Hamil-

ton in inequality form for impulsive motion by directly
incorporating the impulsive dynamics in the principle
of virtual work. Concepts of measure and integration
theory appear to be very useful in this respect.
We assume that the positionξ(t) is an absolutely con-

tinuous function in time and that the velocityν(t) of
the mass element is a function of locally bounded varia-
tion without singular terms (which is sometimes called
a function of ‘special bounded variation’). This implies
the following:

1. At each time-instancet we can define a left and
right velocity

ν+(t) = lim
τ↓0

ξ(t + τ) − ξ(t)

τ
,

ν−(t) = lim
τ↑0

ξ(t + τ) − ξ(t)

τ
.

(28)

2. The differential measure dξ of the positionξ(t)
contains only a densityν with respect to the
Lebesgue measure dt

dξ = νdt. (29)

For almost allt we can define a velocityν(t) =
ξ̇(t).

3. The differential measure dν of the velocityν(t)
contains a density with respect to the Lebesgue
measure dt and with respect to the atomic measure
dη, i.e.

dν = ν̇dt + (ν+ − ν−)dη. (30)

Let as before dR be the unilateral contact force, as-
sociated with a unilateral holonomic scleronomic con-
straint, and dF be the external force on a mass element
dm with positionξ. The non-impulsive dynamics of
this mass element is therefore described by the equa-
tion of motion

dmξ̈ − dF − dR = 0. (31)

The impulsive dynamics is described by the impact
equation

dm(ν+ − ν−) − dP = 0, (32)

where dP is the unilateral impulsive force on the mass
element dm. The introduction of the differential mea-
sure dν allows us to combine the equation of mo-
tion (31) and the impact equation (32) in a single for-
mula

dm dν − dF dt − dR dt − dP dη = 0, (33)

which is an equality of measures and which should be
understood in the sense of integration. The measure
dν, which has a density with respect to the atomic
measure, is by definition a mapping on the space of
continuous functions, i.e.

∫

I
fTdν only makes sense

if f ∈ C0(I, R3). The equality of measures immedi-
ately leads to a principle of virtual work in differential
measures

∫

S

δξT(dm dν − dF dt− dR dt− dP dη) = 0 (34)

for all δξ ∈ D1(I, R3). The classD1(Ω, R) = {y ∈
AC(Ω, R), y′ ∈ BV (Ω, R)} comprises all functions
on the domainΩ which are absolutely continuous and
piecewiseC1 as well as absolutely continuous func-
tions with an accumulation point. We put̂ξ(ε, t) =



ξ(t) + εω(t) with ω ∈ D1(I, R3). Often, we will sup-
press the explicit notation of the time-dependence and
simply write ξ̂(ε) = ξ + εω. For this family of test
functions it holds thatδξ = ξ̂ε(0)δε = ωδε is contin-
uous in time wherasδν = ω̇δε is not. Moreover, note
that ξ̂(ε) converges forε → 0 to ξ in the weak norm
‖ · ‖1, with

‖y‖1 = max
x∈Ω

|y(x)| + ess sup
x∈Ω

|y′(x)|. (35)

We now make the assumption that both the contact
force dR and the contact impulse dP are perfect uni-
lateral constraint forces/impulses, i.e.

−dR ∈ NKξ
(ξ), −dP ∈ NKξ

(ξ). (36)

The virtual work of the contact force dR and the con-
tact impulse dP is therefore non-negative for admissi-
ble virtual displacements

δξTdR ≥ 0, δξTdP ≥ 0 ∀δξ ∈ TKξ
(ξ). (37)

This bring us to the principle of d’Alembert-Lagrange
in inequality form for differential measures

∫

S

δξT(dm dν − dF dt) ≥ 0 ∀δξ = ωδε ∈ TKξ
(ξ)

(38)
in which we explicitly write that the virtual displace-
mentsδξ are of the formωδε. A mass element has a
constant mass dm. Taking the differential measure-in-
time of the termδξTdmν and applying the chain rule
gives

d(δξTdmν) = δνTdm
1

2
(ν+ + ν−)dt + δξTdm dν,

(39)
in which we used the equality d(δξ) = dωδε =
ω̇dtδε = δν dt. Moreover, becauseν(t) = 1

2
(ν+(t) +

ν−(t)) for almost allt, it holds that1
2
(ν+ + ν−)dt =

νdt for Lebesgue integration. We therefore arrive at
the variational inequality

d

(
∫

S

δξTdmν

)

−

∫

S

δνTdmνdt−

∫

S

δξTdF dt ≥ 0

(40)
∀δξ = ωδε ∈ TKξ

(ξ). We recognise the second term

δT =

∫

S

δνTdmν, T =

∫

S

1

2
νTdmν (41)

as being the variation of the kinetic energyT . How-
ever, the variationsδν are not arbitrary aŝν(t) =
ν(t) + δν(t) is of the formν̂(t) = ν(t) + εω̇(t). The

variationδT therefore reduces to the Gâteaux deriva-
tive dT (ν; δν) = ∇Tδν. Similar as before, we choose
generalised coordinatesq(t) which form a minimal set
of coordinates with respect to the bilateral constraints
and with which we can uniquely describe the position
ξ(q) of each mass element dm. Moreover, we intro-
duce generalised velocitiesu(t), which are assumed to
be of locally bounded variation, and which are such
that dq = udt. The kinetic energyT is a function
of ν(q,u) and we can therefore writeT as a function
T (q,u). Hence, it holds thatδT = Tqδq +Tuδu. The
variationsδq and δu are not totally arbitrary as they
are of the formδq(t) = q(t) + εw(t) and δu(t) =
u(t) + εẇ(t), whereω = ∂ξ/∂q w. Using the gener-
alised momentum

p =

∫

S

(

∂ξ

∂q

)T

νdm (42)

and the generalised force (19) we transform the princi-
ple of d’Alembert-Lagrange into

d
(

δqTp
)

−δTdt−δqTfdt ≥ 0 ∀δq = wδε ∈ TK(q),
(43)

which is the Lagrange central equation in differential
measures. As before, we integrate over a time-interval
I = [t0, tf ] and consider the generalised forcef =
−∇V (q) to be a potential force, which yields

[

δqTp
]tf

t0
−

∫

I

δLdt ≥ 0 ∀δq = wδε ∈ TK(q),

(44)
whereL = T − V . Finally, taking fixed boundary
conditions att0 andtf we obtain

−δ

∫

I

Ldt ≥ 0 ∀δq = wδε ∈ TK(q). (45)

As mentioned before, the variationsδq are not totally
arbitrary and the variationδs of the action in (45) re-
duces to the Ĝateaux derivativeds(q; δq). Conse-
quently, we arrive at a weak form of the principle of
Hamilton in inequality form

−ds(q; δq) ≥ 0 ∀δq = wδε ∈ TK(q), (46)

with the action integral

s(q) =

∫

I

Ldt. (47)

This form of the principle of Hamilton is the condition
of a weak local extremal of the actions(q) with the
weak norm‖ · ‖1.



5 Conclusions
In this paper we derived a weak form of Hamilton’s

principle as a variational inequality. There are two
interesting things to remark at this derivation. First
of all, by making use of differential measures we are
able to treat the impulsive and non-impulsive dynam-
ics simultaneously. This means that we do not need to
use the usual Weierstrass-Erdmann corner conditions
for broken extremals (see (Troutman, 1996)) to treat
an impact as has been done in (Panagiotopoulos and
Glocker, 1998; Panagiotopoulos and Glocker, 2000).
Secondly, as we want to use the principle of virtual
work for differential measures (34) we are forced to
consider test functionŝξ(ε, t) = ξ(t)+εω(t) of which
the variationδξ = ωδε is time-continuous. A test
function of this form can have kinks (and therefore im-
pacts), but this class of test functions does not include
a family of curves which only varies the impact time,
i.e. it is weak. Accordingly, for this weak form of the
principle of Hamilton we only have to satisfy the first
Weierstrass-Erdmann corner condition. Hence, we are
able to prove the validity of (46) by only assuming that
the unilateral holonomic constraint is perfect which is
expressed by (36). The assumption of energy conser-
vation during the impact, i.e.T+ = T−, is therefore
not a necessary condition for the validity of (46).
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