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THE STUDY OF SELF-SYNCHRONIZATION

OF VIBROEXCITERS WITH INNER

DEGREE OF FREEDOM USING NU-

MERICAL METHODS

Abstract

The question about possibility of provision of synphase rotation of two un-
balanced rotors of vibration plant in selfsynchronizing regime is discussed. In
this case under consideration only the antiphase rotating is ”natural stable”.
The possibility of using for this aim the vibroexciters with additional degree
of freedom of rotors is studied.

Description Of The Plant

Consider a solid body fixed by means of springs with certain characteristics
and realizing plane oscillations. On the bearer two coaxed unbalanced masses
with one rotating degree of freedom are fixed. Within each of debalances a
definite additional mass which can oscillate along the debalance’s axis is
fixed.Fig.1

Figure 1: A vibrostand with two debalances having mobile centers of mass

Thereby the vibrostand has two translational degrees of freedom, x and
y, each i - debalance having one rotational ϕi and one translational degree
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of freedom, ρi defined by displacement of the additional mass from the axis
of rotor.

System of the equation for a plant with two vibroex-
citers, each having two inner degrees of freedom

Let us consider the equation of motion obtained in [1] for a plant with two
vibroexciters, each having two inner degrees of freedom:

[I +m0ε
2 +m(r + ρs)

2 +mσ2
s)]ϕ̈s +Ks(ϕ̇s−ω)+ 2m[(r + ρs)ρ̇s +σsσ̇s]ϕ̇s−

− [m0ε + m(r + ρs)](ẍ sin ϕs + ÿ cos ϕs)−mσs(ẍ cos ϕs − ÿ sin ϕs)+

+ m[(r + ρs)σ̈s − σsρ̈s] = 0 ( s = 1, 2 )

Mẍ =
2∑

i=1

[m0ε + m(r + ρi)](ϕ̈i sin ϕi + ϕ̇2
i cos ϕi)−

−m

2∑
i=1

[ρ̈i − σiϕ̈i − 2σ̇iϕ̇i] cos ϕi+

+ m

2∑
i=1

[(ρ̇i − σiϕ̇i)ϕ̇i + σ̈i + ρ̇iϕ̇i] sin ϕi − βxẋ− Cxx (1)

Mÿ =
2∑

i=1

[m0ε + m(r + ρi)](ϕ̈i cos ϕi − ϕ̇2
i sin ϕi)+

+ m

2∑
i=1

[ρ̈i − σiϕ̈i − 2σ̇iϕ̇i] sin ϕi+

+ m

2∑
i=1

[(ρ̇i − σiϕ̇i)ϕ̇i + σ̈i + ρ̇iϕ̇i] cos ϕi − βyẏ − Cyy (2)

ρ̈s + βρρ̇s + ω2
ρρs = σsϕ̈s + 2σ̇sϕ̇s + (r + ρs)ϕ̇

2
s − (ẍ cos ϕs − ÿ sin ϕs)

σ̈s + βσρ̇s + ω2
σσs = −(r + ρs)ϕ̈s − 2ρ̇sϕ̇s + σsϕ̇

2
s + (ẍ sin ϕs + ÿ cos ϕs) (3)

where βρ = hρ

m
; βσ = hσ

m
; ω2

ρ = Cρ

m
; M = M0 + 2m0 + 2m, ω2

σ = Cσ

m
.

Here mo is additional movable mass in the unbalanced mass;
m is the mass of the debalance;



3

M is the mass of the whole plant;
ε is the eccentricity or the value of displacement of the center of masses of
the unbalanced mass from its axis of rotation;
r is length of an unstressed spring inside the rotor;
ρ is the displacement of the movable mass from the rest or the movable mass
radius in the stabilized regime;
I is the central moment of inertia of the whole system;
x is the abscissa of the bearer or the horizontal displacement;
y is the ordinate of the bearer or the vertical displacement;
ωρ is angular velocity ( frequency of the mass’s intrinsic oscillations) of mobile
mass ;
ω is synchronizable (steady) angular velocity of the rotor;
ϕ is the angle of the rotation of rotor from the rest;
βx, βy are coefficients of the damping of oscillations of the bearer along
corresponding axes;
K is the coefficient of electric damping of the motor;
ωi is the intrinsic (angular) velocity of the unbalanced mass;
σs are numbers that equal 1 or -1; the first case corresponds to the debalance’s
rotation in positive direction and the second case corresponds to the clockwise
direction.

The Stationary Regime of Motion of the System

Now, investigate the case when the rotor has only one inner degree of freedom,
related with the possibility of displacement of an additional mass radially and
elastic and demping forces of all springs of the system are taken into account.

For the stationary synpfase regime of motion of equal vibroexciters, i.e.
ϕ1 = ϕ2 = ωt; ρ1 = ρ2 = ρ = const, the system of equations assumed the
form

[m0ε + m(r + ρs)](ẍ sin ωt + ÿ cos ωt) = K(ω − ωs)

Mẍ = 2[m0ε + m(r + ρ)]ω2 cos ωt− βxẋ− Cxx

Mÿ = 2[m0ε + m(r + ρ)](−ω2 sin ωt)− βyẏ − Cyy

ω2
ρρ = (r + ρ)ω2 − (ẍ cos ωt + ÿ sin ωt)

(4)

where ω2
ρ = Cρ

m
; M = M0 + 2m0 + 2m

For the stationary regime we receive from the second and third equations:

x =
2(m0ε + m(r + ρ))ω2(C −Mω2)

(Mω2 − C)2 + β2ω2
cos ωt+
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+
2(m0ε + m(r + ρ))ω3β

(Mω2 − C)2 + β2ω2
sin ωt (3)

y =
2(m0ε + m(r + ρ))ω3β

(Mω2 − C)2 + β2ω2
cos ωt +

2(m0ε + m(r + ρ))ω2(Mω2 − C)

(Mω2 − C)2 + β2ω2
sin ωt

Then

ẍ sin ωt + ÿ cos ωt = −2ω5β(m0ε + m(r + ρ))

(Mω2 − C)2 + β2ω2

ẍ cos ωt− ÿ sin ωt =
2ω4(m0ε + m(r + ρ))(Mω2 − C)

(Mω2 − C)2 + β2ω2

(5)

Then, substituting to the system (2) we obtain

[m0ε + m(r + ρ)](−2ω5β(m0ε + m(r + ρ))

(Mω2 − C)2 + β2ω2
) = K(ω − ωs)

ω2
ρρ = (r + ρ)ω2 +

2ω4(m0ε + m(r + ρ))(C −Mω2)

(Mω2 − C)2 + β2ω2

And we rewrite after identical transformations in the following form

Ks(ω − ωs)[(Mω2 − C)2 + β2ω2)] + 2ω5β(m0ε + m(r + ρ))2 = 0

[(r + ρ)ω2
s −ω2

ρρ][(Mω2−C)2 +β2ω2)]− 2ω4(m0ε+m(r + ρ))(Mω2−C) = 0

(6)

From the second equation for stationary regime we can express ρ :

ρ =
rω2[(Mω2 − C)2 + β2ω2]− 2ω4(m0ε + mr))(Mω2 − C)

(ω2
ρ − ω2)[(Mω2 − C)2 + β2ω2] + 2ω4m(Mω2 − C)

This equation is an analytical expression for the coordinate ρ of the ad-
ditional mass in the steady-state regime.



5

The Expression for The Displacement of The Movable
Mass

Changing the nominator and the denominator of the fraction and taking into
account that m0

M
and m

M
are small, where as C

ω2 and β
ω2 tend to zero, we receive

ρ ≈ r
1

ω2
ρ

ω2 − 1
, ωρ 6= ω (7)

From here one can see, that for ωρ < ω value of ρ is positive, i.e. the movable
mass move from the axe of rotation, but for ωρ > ω approach to it.

Figure 2: The behaviour of the plant without the movable masses

On the Fig. 2 the changing during the time difference of the phases of
rotating and displacement of center of the mass of bearer without additional
masses in debalances is shown. The curves correspond to these parameters:
M0 = 2 kg, m0 = 1 kg, r = 0.01m, ε = 0.035m, βx = 84, Cx = Cy = 12.6 H

m
,

ωs = 300 rad
c

.
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The Conditions of Temporary Stability by Blekchman-
Sperling

Let us return to the first equation (1) and transform it identically using
1

1+x
≈ 1− x. As a result we receive

ω ≈ ωs{1− 2β[m0ε + m(r + ρ)]2

M2K
} (8)

Combining (3) and (4) express ω

ω2 ≈ ρ

r + ρ
ω2

ρ{1−
2β[m0ε + m(r + ρ)]2

M2K
}2 (9)

Check if the 3rd condition of temporary stability [1]

ω2 [1 +
2(m0ε + m(r + ρ))2 − 4mM(r + ρ)2

MIO
] < ω2

ρ (10)

Then, after substituting

1 +
2(m0ε + m(r + ρ))2 − 4mM(r + ρ)2

MIO
<

<
r + ρ

ρ

M4K2

(M2K − 2β[m0ε + m(r + ρ)]2)2
(11)

Dividing the nominator and the denominator of each fraction, except the
last one, in the left part of the inequality by M and taking into account that
m
M

and m0

M
are infinitely small we receive

1− 4m(r + ρ)2

IO
<

r + ρ

ρ

M4K2

(M2K − 2β[m0ε + m(r + ρ)]2)2
(12)

Denote

a =
M4K2

(M2K − 2β[m0ε + m(r + ρ)]2)2

and suppose, that a < 1
Then the last inequality can be written as:

1− 4m(r + ρ)2

IO
<

r + ρ

ρ
(13)
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Figure 3: The behaviour of the plant with inner degrees of freedom in debal-
ances

which always fulfils, i.e. m, I0 > 0.

To satisfy the 1st and the 2nd conditions that

ω <
ωρ√
e
′∗

ω <
ωρ

√
M√

M − 2m

choose an appropriate ωρ and other initial data.

It is always possible to meet 1st condition: ω > ωρ and 2nd condition of
temporary stability by choosing an appropriate ωρ and other initial data.

On the Fig 3 the results on the modeling with same initial data as Fig.2
with additional movable masses m = 0.1; ε = 0.035 in the debalances.

Thus it is shown, that first two known conditions of temporary stability
can be satisfied by choosing initial data where as third condition is always
satisfied. In other words, it is proved that the solution of the steady-state
regime satisfies the conditions of the temporary stability from [1].
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Conclusion

The system of six non linear differential equation second order, describing
the behaviuor of two coaxed undebalanced vibroexciters with inner degree of
freedom, fixed on softlyisolated rigid body is researched by numerical meth-
ods. It is shown that the unstable synphase regime of selfsynchronizing with
two debalances transforms into temporary ( hyroscope) stability by means
of the introduce the inner degree of freedom in each of the debalances.
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