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Abstract— The state estimation problem for statistically un- Then
certain systems with observation is investigated. A system X, = X(A) + B,
is called statistically uncertain one if it contains random
perturbations with incompletely known distributions, or it  is a confidence set for vectar of probability not less then
contains both random and nonrandom uncertain perturbations. ¢, i.e. P{J; c XQ} > «. Here
Confidence estimates for the system states are studied. It is N N
shown that linear estimates are not optimal even for linear X=XAN)=I-AGXo+Aly—V), 4
systems depended on Gaussian random perturbations with . . .
uncertain mean values. The nonlinear confidence estimates for A'is an arbitraryn x m _matrlx._
the system state are constructed using a notion of a random  Statement 1 follows immediately from (1)—(3).
information set. The properties of the estimates are studied. Example 1:Let us consider a simple example of the linear

estimation inR!:
|. PROBLEM STATEMENT

The state estimation problems for statistically uncertain x__ To + 081, (5)
systems were studied by many authors. Kats and Kurzhanski y=atvtob.
[1] formulated the state estimation problem for multistag&iereéi, &2 are independent Gaussian random values and
statistically uncertain systems and obtained the recurrent E¢ = FEé&, =0, B =EE =1. (6)
equations for the sets of the possible mean values. Verdu and
Poor [2] suggested the minimax approach to the statistically IS known that
uncertain estimation problem. Milanese, Vicino [3], Matasov o € Xo = [-A;4], veV =[-A;A]L (7)
[4] investigated different approaches to the estimation prob-
lem in condition of incomplete information.

In the paper [5] a new method for confidence estimation
in statistically uncertain system was suggested. Xo =X+ Ba, Ba=[-tao/V2; tao/V2],

Let consider an ordinary statistically uncertain problem X = 05X, + 0.5(y — V) = [0:2],

Let A =1, 0 = 0.1, and the observation = 2.
The linear confidence estimate has a form

r= zo+ Qi . o . .
1 - :
J= Gzt O, (1) wheret, is the normal distribution two-sided quantile
Herex is unknownn-vector,y € R™ is known observation. Plel <ta} =
Perturbationss;, & are independent random vectors with For « = 09 we havet, = 165 and X, =
normal distributions and [—0.165;2.165].

T T If 0 =0.01 then X, = [-0.0165;2.0165] > X = [0;2].
E§ =0, ES =0, EGS =Ly, E&E = Imy, (2) But if 0 =0, i.e. there[ are not any ra]ndom pe[rtur]bation
where [, is identity n x n matrix, Q1, Q2 are nonsingular in the system, then the estimation of unknown vectois
n X n andm X m matrixes. an information set:

The vectorszg € R", v € R™ are nonrandom and det
uncertain. It is supposed that information about them is given X =Xon(y-V)={1}
by the membership: And it is obvious that linear confidence estimaf€s do

not approach to the information setdftends to 0.
o € Xo, vEV, ®) Let us obtain confidence estimate fousing intersection

where X, C R", V. C R™ are given convex compact sets. of the confidence regions.

As a rule the linear estimates are used for estimation andFor 5 = +/a the confidence sets fof; and & are

for confidence estimation in problem (1)—(3). [~ts;tg]. Then we have an estimate in case = 0.9,
Statement 1: Let A is an arbitrary matrixx x m andB, o =0.1:
is a confidence set for the random vector X = (Xo+[~0.195;0.195)) N (y — V — [—0.195; 0.195]) —
e=e(&1,62) = (I = AG)Q1&1 — AQ28s. = [0.805;1.195].
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I[I. RANDOM INFORMATION SETS AND PERMISSIBLE Definition 5. Let X be a measurable set R™. A set
SETS FORRANDOM PERTURBATION
: L D (X) = D" (X;y, Xo,V) CR"™™
Along system (1)—(3) let us consider a system with differ- _ _ _
ent nonrandom perturbations of all values of random perturbatiors consistent with a
given observatiory for system (1)—(3) with somey € X,
(8) wveV andx € X is calledthe maximal sefor the random
parameterg corresponding to the set:

D*(X) ={d e R™"": X(y, X0, V. {d}) N X # 0}. (12)

Lemma 2:For any measurable se&Y € R"™ and any
D is a given set ilR" ™. 3 observationy the following relations hold

Definition 1.[6] The setX (D) = X(y, Xo,V,D) C R" P i
is calledthe information sefor system (8)—(9), (3) if for D™(X5y, Xo,V) € DT (X9, Xo,V) €

x = T + Q1dy,
y= Gz+v+Qads.

Herexy,v andd,, d, are given by (3) and by the relation
d={dy,d2} € D, 9)

every z € X(D) there are exist vectors, € X,,v € V, c D°(y, Xo, V).
d = {dy,d2} € D such that equations (8) hold for the given Lemma 3: Let X be the complement of the s&t to R",
observationy. i.e. X = R™"\X. Then

Definition 2. [7] The setX (¢*) = X (y, Xo, V, &%) of all iy o .
states of system (1)—(3) consistent with the observajitor D™ (X3y, X0, V) = D™(y, Xo, V)\D™ (X3 9, Xo, V),
a given valueg* of the random perturbatiof = {£1, &} is DT (X;y,Xo,V) = Dy, Xo, V)\D ™ (X;y, X0, V).
calleda random information set The lemmas follow from Definitions 3-5.

It is obvious that
I11. NONLINEAR CONFIDENCEREGIONS

v *\ * + *
X(€7) = (Xo+ Q&) NG (y =V = @a83), Definition 6. The measurable séf,, is calleda confidence
here and furtheta* is the inverse operator region of a level a for system (1)—(3), if the conditional
probability

GTz={ueR": 2= Gu}.

A

From the Definitions it follows that the random informa- Plz € Xo |y, w0 € Xo,v €V} =
tion set is the information set for system (8)—(9), (3) with = P{X(y, X,,V,&) C X, | X(y, X0, V,€) # 0} = ov.
D ={¢}.

Definition 3. A set D° = D%y, X,,V) c R*™ of
values of the random vectofsconsistent with an observation
y in system (1)—(3) is called permissible sefor the random
parameterg corresponding to the given observation:

Do(anOa V) =
={d={d,d2} e R"™™ : X(y, Xo,V,{d}) # 0}. (10)

Lemma 1:If y is an observation for system (1)—(3), then
the permissible set for the random parameters is nonemp
i.e. Dy, Xo,V) # 0.

It should be noted that the conditional probability cannot
be substituted by unconditional one in the considered prob-
lem

The Definition of the confidence region results in

Plz € Xo | y.m0 € Xog,v €V} =
_ P{€e D™ (Xa3y, X0, V)}
P{¢ € D(y,Xo,V)}

o Lemma 4: Let X = X(y, Xo,V, D) be the information
syét for system (8)—(9). Then

(13)

Lemma 1 follows from the Definition of th®° (y, X,, V). DN D%y, X,,V)C D™ (X;y, X, V). (14)
Let us take a measurable s& Cc R™ and consider the Proof: From the Definition of the information set it
following random events: follows that

X(y,Xo,V,{d}) C X

Ai(X) = {X(y7X0a‘/7§) - X}7
> for any d € D . From the Definition of the minimal
AT(X) ={X(y, X X . L2 -
(X) = {X(y, Xo, V) N X # 0} permissible seD~ (X, y, Xo, V) we get (14). [ ]
Definition 4. Let X be a measurable set R". A set Theorem 1. Let a setDg C R"™ be a confidence set
- M=y, ntm of a level g for the random valug, then an information set
D™(X) = D™ (X;y, Xo,V) C R X(Dy) = X(y, Xo,V, Dy) for system (8)—(9) withD — D,
of all values of the random parametgiconsistent with the is a confidence region for of a level not less than.
observationy for system (1)—(3) and such that the vecior Here
belongs toX for any possibler, € Xy, v € V, is called a=1-(a)) 1 (1-0),
the minimal permissible sdbr the random parameters _ 5 _ 0
Corresponding to the sext: a1 = P{X(y7X07 ‘/75) # @} - P{g €D (vaOa V)}
Proof: Lemma 4 results in

D™ (X)={de R"™™ .0 # X(y, Xo,V, {d}) C X}. )
(12) DN D°(y, Xo,V) € D™ (X(Dp);y, Xo, V).



From equality (13) it follows that

P{g € D= (X(Dg)sy, Xo,V)}
P{¢ € D°(y, Xo,V)}

Pl € X(Dg) |y} =

Therefore

P{¢ e Dgn Do(y,XO7V)} _
P{¢e D%y, Xo,V)}

= P{¢ € Dy | &€ Dy, Xo,V)}.

Denote byf)ﬁ the compliment of the seDg to the space
Rn+m:

P{z € X(Dg) |y} >

Dg=R"""\ Dg.
Since
P{€€ DN D°(y, Xo,V)} > P{¢ € Dg} =13,

then

P{f S DﬂmDO(va()?V)}

. _ — -1 —
=1 PlEc D(y. Xo. V)] <1—(ay)~'(1-7).
]
Lemma 5:
P{X(y,Xo,V,&) # 0} = P{Hs¢ € y — V — GXo},
where
Hy§ = G161 + Q260. (15)

Proof: Show that

{X(y, X0, V,€) # 0} & {GQ1€1 + Qa2 € y— V — G Xy}

Indeed, let fort = d = {d;,d>} € R""™ the information
set is nonemptyX (y, Xo, V,d) # (. Then there arej; €

Xo, v* € V such thatiEa + Qldl = G+(y —v* = dig),
thus

G(zg+ Qudr) =y —v" — Qada,
and

G(Xo+Q1d1) N (y =V — Qada) # 0.
It results iINGQ1d; + Q2de =y — v* — Gz, i. €.
GQldl + deg cy— V - GX,. (16)

Conversely, let fo€ = d = {d;,d>} inclusion (16) holds.
Then there ise§ € Xy, v* € V for which

GQ1dy + Q2dy = y — v* — Gy,

G(zy+ Qrdr) =y — v" — Qads.

Moreover 2§ + Qidy = Gt (y — v* —
inequality

(Xo+Qud1) NGH(y—V — Qada) #0
andX(y7X07‘/7d) 7& (Z) u

Q2ds) implies an

The confidence regionk, approximate to the information

Theorem 2Let matrices of the coefficients in (1)—(3) tend
to 0: Q1(e) = eQ1, Q2(e) = eQ2 ande — 0. If the setsX|
andV have interior points and for a given observatipthe
information set is not empty:

X4 =XonGH(y—V) #0,
then for any probabilityn € (0.5;1) there are confidence
sets X such that:
1) X2 D X2 DX if ey >ep;
2) X: — X% if ¢ — 0, ie. lir%p(Xg,Xdet) =0,
~ £—
wherep(X¢g, X4°t) is the Hausdorff distance between
two sets

p(X,Y) = max{bup 1nf llz—yll, bup 1nf llz—yl|}-

Proof: Denote byX*(y, Xy, V, ) a random confidence
set for system (1)—(3) witl)); () = eQ;, € € (0;1).
A probability
o) = P{X%(y, Xo,V,€) # 0} =
:P{EHQny—V—GXo} >0
since the se¥’ contains exterior points.

Let show thatd € y — V — G X,.

From equality Xt = X, N Gt (y — V) # 0 it follows
that there arec* € X, v* € V such thaty — v* = Ga*,
thereforey — v* — Gz* =0, i.e.0 € y — V — GX,.

The convexity of the sey — V' — GX, and the condition
0€y—V —GXgy imply that

Efl(y—V—GXo) CE{l(y—V—GXo) if g1 > es.

Thereforeal” < ol <o) if 1> ¢ > &5 > 0.
Let Dg = Big x Bag C R™™ be a compact convex
confidence set fo€ and the following conditions hold:

0€ Ds and P{& € Big, & € Bag} = 0.
Hereg=1- (1 — a)a; and
= P{Hyt € y—V —GX,}.
Let us construct sets
X¢(Dg) = (Xo +eQ1B1s) NGH(y — V — £Q2Bap).
From Theorem 1 the set(Dj) is a confidence region of

level not less tham. = 1 — (« (5)) (1-0).
For anye € (0;1) an |nequalltya§ ) < a§€> holds, hence

1 1
«Q o

1

Thus the setX? = X¢(Dg) is a confidence region of level
not less thany for system (1)-(3) ifQ;(e) = €Q;
If 1>51>52>0thenX52 DXEI o Xdet,

Indeed,
N X:
e€(0,1)

Xdet _

set X% if variances of the random perturbations in systenSinceXg are embedded compact sets thii@ — Xdet jn

(1)—(3) tend to zero.

Hausdorff metric ife — 0. [ |



IV. SIMULATION

Let us illustrate Theorem 2 by the estimation problem in 57
R! (Example 1). Let consider model (5)—(7) with = 1, 14
zo=0andy = 1.

We construct the standard linear confidence estimates 01
of level o = 0.95 for different valuess = 0.5;0.45; ...; 0.05: -
A ~ o o
Xo =X+ —=[~ta;tal, 17
Jltaita an

where X = 0.5[0;2] 4 0.5[—1; 1] = [0.5; 1.5] is the set of 0
possible mean values.

We find nonlinear confidence region%a for the same
values ofo using Theorem 1. 0 0,3 15 2 25 3

]
L

[

The information set in this case has a foridet = [0; 1].
On Fig.1 it is shown how different kinds of estimates Fig.2. Dependence ofy — x|

depend on variances of the random perturbation: the linear
standard estimateX,, — dash lines, the nonlinear confidence V. DEPENDENCE OFCONFIDENCEREGIONS ON
regionsX,, — solid lines, the values af are marked on the UNCERTAINTY SETS

horizontal axe. Let us consider the how the confidence regions change if

The dotted lines is the information set&’*". The infor- the radiuses of the sets of uncertain parameters tens to zero.
mation set is not a confidence estimate, it is an estimate in| amma 6: Let

case ofs = 0. 1) 0eV, € Xo;
. . i y L0 0
One can see that the nonlinear confidence regi&ps 2) B, is a confidence set of the level for a random

approximate taXd¢t = [0;1] if o — 0 unlike to the linear
vector

estimates which tend t& = [—0.5;1.5). (I — AC)OrEr — AQuE 18)
e={ = 161 — 2G62;

3) the following condition holds:

L

Ple€ B, +b} < P{ec B,} =« forall becR".
e (29)
S Then a sett + B, is a confidence region of the level not
o greater therw for system state (1)—(3), i.e.

P{X(y,X0,V,€) C &+ B, | X(y, X0, V,€) # 0} < a

S Here and further
L ::'fffiiijtfjf‘—* —— =1 —-AG)xo+ Ay, (20)
7 a matrix A is defined as for the standard stochastic linear
o | | estimate:
“p [TR1 02 03 D4
A:P1GTR71, 1)
_ Ty—1 T TY—1,7—1
Fig.1. Dependence of confidence regionscon Pr=((@1Q1)" + 67 (Q2Q2)7G) ™

Lemma 7:[8] Let X, = X + B., Where B, is a

A main peculiarity of the constructed confidence region igonfidence set of the level for a random vectoe, X is the
their dependence on. set of a posteriori mean values defined by (4), (21).

On Fig.2 it is shown how radiuses of the confidence Then X, is a confidence region of the level not less then
regions for system (5)—(7) depend n-zo|. The dash line « in sense of Definition 6, i.e.
is a radius of the optimal linear estimate for the system, the
curve with markers is a radius of the nonlinear confidence P{X(y, Xo0,V,&) C Xo | X(y, Xo,V,€) # 0} > .
region, values ofy — | are marked on the horizontal axe. Theorem 3Let the following conditions hold:

Herea =0.95, 0 = 0.1, A = 1. 1) Xo = x9 + U, whereU C R™ is a given convex
The solid line is a radius of a confidence region in case compact set;
without uncertainty, i.e. ifA =0 and Xy = {z}, V = {0}. 2) 0eV,0eV,;
One can see that in cage= z( the proposed approach 3) B, is a confidence set of the level for the random
do not improve the linear estimate, but|if — x| increases vectore defined (18),(21);

the nonlinear estimate¥, becomes more precise. 4) condition (19) holds.



Then there is a confidence s&t, of level not less than

in sense Definition 6 such that 1]

&+ By C Xo C X + B, (22)

. [2
Herez and X are defined by (20) and (4) respectively.

If the setsX,, V' of possible values of uncertain perturba-
tion in (1)—(3) are reduced to a point then the confidence
regions tend to the standard confidence estimates for a
stochastic linear system. [

Corollary 1. Let for the system (1)—(3) the following 5]
conditions hold

1) V(v) =V, Xo(v) =20 +7U;

2) V andU are given compact convex sets containing 0[]

3) B, is a confidence set of the level for the random

vectore;

4) condition (19) holds.

Then there are confidence regioifs, () of level not less 8]
thena for system (1)—(3) such that

(71

Xo(y) = &4 By if v —0,

ie. lin%p(Xa(v),:E + B,) = 0, herez is defined by (20),
"y—)

p(X,Y) is the Hausdorff distance between two sets.
Difference between of confidence regions of probability
e 0.95 for linear and nonlinear estimates in system
(5)—(7) is shown on the Fig.3. Here the solid line is the
standard linear confidence estimates (17) , the dash line is
the nonlinear confidence regions, the valuedadre marked
on the horizontal axe. Here = 0.1, 2o = 0, y = 2.
The dotted line is confidence sets for the system without
uncertainty, i.e. in casé& = 0.

L5

=
i

@
Wi

03

Fig.3. Dependence oA.

VI. CONCLUSION

In this paper different approaches to the confidence estima-
tion for statistically uncertain problem with observation are
analyzed. It is shown that the optimal confidence estimate
is not linear. The calculation algorithm for the confidence
estimates is more complicated than the linear procedure. But
it allows to improve significantly the confidence estimate in
the case of small dispersions of the random perturbations.
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