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Abstract— The state estimation problem for statistically un-
certain systems with observation is investigated. A system
is called statistically uncertain one if it contains random
perturbations with incompletely known distributions, or it
contains both random and nonrandom uncertain perturbations.
Confidence estimates for the system states are studied. It is
shown that linear estimates are not optimal even for linear
systems depended on Gaussian random perturbations with
uncertain mean values. The nonlinear confidence estimates for
the system state are constructed using a notion of a random
information set. The properties of the estimates are studied.

I. PROBLEM STATEMENT

The state estimation problems for statistically uncertain
systems were studied by many authors. Kats and Kurzhanski
[1] formulated the state estimation problem for multistage
statistically uncertain systems and obtained the recurrent
equations for the sets of the possible mean values. Verdu and
Poor [2] suggested the minimax approach to the statistically
uncertain estimation problem. Milanese, Vicino [3], Matasov
[4] investigated different approaches to the estimation prob-
lem in condition of incomplete information.

In the paper [5] a new method for confidence estimation
in statistically uncertain system was suggested.

Let consider an ordinary statistically uncertain problem

x = x0 + Q1ξ1,
y = Gx + v + Q2ξ2.

(1)

Herex is unknownn-vector,y ∈ Rm is known observation.
Perturbationsξ1, ξ2 are independent random vectors with
normal distributions and

Eξ1 = 0, Eξ2 = 0, Eξ1ξ
T
1 = I(n), Eξ2ξ

T
2 = I(m), (2)

whereI(n) is identity n×n matrix, Q1, Q2 are nonsingular
n× n andm×m matrixes.

The vectorsx0 ∈ Rn, v ∈ Rm are nonrandom and
uncertain. It is supposed that information about them is given
by the membership:

x0 ∈ X0, v ∈ V, (3)

whereX0 ⊂ Rn, V ⊂ Rm are given convex compact sets.
As a rule the linear estimates are used for estimation and

for confidence estimation in problem (1)–(3).
Statement 1: Let Λ is an arbitrary matrixn×m andBα

is a confidence set for the random vector

e = e(ξ1, ξ2) = (I − ΛG)Q1ξ1 − ΛQ2ξ2.
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Then
X̂α = X̂(Λ) + Bα

is a confidence set for vectorx of probability not less then
α, i.e. P{x ∈ X̂α} ≥ α. Here

X̂ = X̂(Λ) = (I − ΛG)X0 + Λ(y − V ), (4)

Λ is an arbitraryn×m matrix.
Statement 1 follows immediately from (1)–(3).
Example 1:Let us consider a simple example of the linear

estimation inR1:

x = x0 + σξ1,
y = x + v + σξ2.

(5)

Hereξ1, ξ2 are independent Gaussian random values and

Eξ1 = Eξ2 = 0, Eξ2
1 = Eξ2

2 = 1. (6)

It is known that

x0 ∈ X0 = [−∆;∆], v ∈ V = [−∆;∆]. (7)

Let ∆ = 1, σ = 0.1, and the observationy = 2.
The linear confidence estimate has a form

X̂α = X̂ + Bα, Bα =[−tασ/
√

2; tασ/
√

2],

X̂ = 0.5X0 + 0.5(y − V ) = [0; 2],

wheretα is the normal distribution two-sided quantile:

P{|ξ| < tα} = α.

For α = 0.9 we have tα = 1.65 and X̂α =
[−0.165; 2.165].

If σ = 0.01 then X̂α = [−0.0165; 2.0165] ⊃ X̂ = [0; 2].
But if σ = 0, i.e. there are not any random perturbation

in the system, then the estimation of unknown vectorx is
an information set:

Xdet = X0 ∩ (y − V ) = {1}.
And it is obvious that linear confidence estimatesX̂α do

not approach to the information set ifσ tends to 0.
Let us obtain confidence estimate forx using intersection

of the confidence regions.
For β =

√
α the confidence sets forξ1 and ξ2 are

[−tβ ; tβ ]. Then we have an estimate in caseα = 0.9,
σ = 0.1:

X̆α = (X0 +[−0.195; 0.195])∩ (y−V − [−0.195; 0.195]) =

= [0.805; 1.195].

But y = 2.4, we obtain an empty confidence estimate:
X̆α = [−1.195; 1.195] ∩ [1.205; 3.595] = ∅. It means that
the approach should be modified.



II. RANDOM INFORMATION SETS AND PERMISSIBLE

SETS FORRANDOM PERTURBATION

Along system (1)–(3) let us consider a system with differ-
ent nonrandom perturbations

x = x0 + Q1d1,
y = Gx + v + Q2d2.

(8)

Herex0, v andd1, d2 are given by (3) and by the relation

d = {d1, d2} ∈ D, (9)

D is a given set inRn+m.
Definition 1. [6] The setX̃(D) = X̃(y, X0, V, D) ⊂ Rn

is called the information setfor system (8)–(9), (3) if for
every x ∈ X̃(D) there are exist vectorsx0 ∈ X0, v ∈ V ,
d = {d1, d2} ∈ D such that equations (8) hold for the given
observationy.

Definition 2. [7] The setX̃(ξ∗) = X̃(y, X0, V, ξ∗) of all
states of system (1)–(3) consistent with the observationy for
a given valueξ∗ of the random perturbationξ = {ξ1, ξ2} is
calleda random information set.

It is obvious that

X̃(ξ∗) = (X0 + Q1ξ
∗
1) ∩G+(y − V −Q2ξ

∗
2),

here and furtherG+ is the inverse operator

G+z = {u ∈ Rn : z = Gu}.
From the Definitions it follows that the random informa-

tion set is the information set for system (8)–(9), (3) with
D = {ξ∗}.

Definition 3. A set D0 = D0(y, X0, V ) ⊂ Rn+m of
values of the random vectorsξ consistent with an observation
y in system (1)–(3) is calleda permissible setfor the random
parametersξ corresponding to the given observation:

D0(y,X0, V ) =

= {d = {d1, d2} ∈ Rn+m : X̃(y,X0, V, {d}) 6= ∅}. (10)

Lemma 1: If y is an observation for system (1)–(3), then
the permissible set for the random parameters is nonempty,
i.e. D0(y, X0, V ) 6= ∅.

Lemma 1 follows from the Definition of theD0(y, X0, V ).
Let us take a measurable setX ⊂ Rn and consider the

following random events:

A−(X) = {X̃(y, X0, V, ξ) ⊂ X},
A+(X) = {X̃(y, X0, V, ξ) ∩X 6= ∅}.

Definition 4. Let X be a measurable set inRn. A set

D−(X) = D−(X; y,X0, V ) ⊂ Rn+m

of all values of the random parameterξ consistent with the
observationy for system (1)–(3) and such that the vectorx
belongs toX for any possiblex0 ∈ X0, v ∈ V , is called
the minimal permissible setfor the random parametersξ
corresponding to the setX:

D−(X) = {d ∈ Rn+m : ∅ 6= X̃(y,X0, V, {d}) ⊂ X}.
(11)

Definition 5. Let X be a measurable set inRn. A set

D+(X) = D+(X; y, X0, V ) ⊂ Rn+m

of all values of random perturbationsξ consistent with a
given observationy for system (1)–(3) with somex0 ∈ X0,
v ∈ V andx ∈ X is calledthe maximal setfor the random
parametersξ corresponding to the setX:

D+(X) = {d ∈ Rm+n : X̃(y,X0, V, {d})∩X 6= ∅}. (12)

Lemma 2:For any measurable setX ∈ Rn and any
observationy the following relations hold

D−(X; y, X0, V ) ⊂ D+(X; y, X0, V ) ⊂
⊂ D0(y, X0, V ).

Lemma 3: Let X̆ be the complement of the setX to Rn,
i.e. X̆ = Rn\X. Then

D−(X̆; y, X0, V ) = D0(y, X0, V )\D+(X; y, X0, V ),

D+(X̆; y,X0, V ) = D0(y, X0, V )\D−(X; y, X0, V ).
The lemmas follow from Definitions 3–5.

III. N ONLINEAR CONFIDENCEREGIONS

Definition 6. The measurable setXα is calleda confidence
region of a level α for system (1)–(3), if the conditional
probability

P{x ∈ Xα | y, x0 ∈ X0, v ∈ V } 4=
= P{X̃(y,X0, V, ξ) ⊂ Xα | X̃(y, X0, V, ξ) 6= ∅} = α.

It should be noted that the conditional probability cannot
be substituted by unconditional one in the considered prob-
lem.

The Definition of the confidence region results in

P{x ∈ X̃α | y, x0 ∈ X0, v ∈ V } =

=
P{ξ ∈ D−(Xα; y, X0, V )}

P{ξ ∈ D0(y,X0, V )} . (13)

Lemma 4: Let X̃ = X̃(y,X0, V,D) be the information
set for system (8)–(9). Then

D ∩D0(y,X0, V ) ⊆ D−(X̃; y,X0, V ). (14)
Proof: From the Definition of the information set it

follows that
X̃(y, X0, V, {d}) ⊂ X̃

for any d ∈ D . From the Definition of the minimal
permissible setD−(X̃, y, X0, V ) we get (14).

Theorem 1. Let a setDβ ⊂ Rn be a confidence set
of a levelβ for the random valueξ, then an information set
X̃(Dβ) = X̃(y, X0, V, Dβ) for system (8)–(9) withD = Dβ

is a confidence region forx of a level not less thanα.
Here

α = 1− (α1)−1(1− β),

α1 = P{X̃(y,X0, V, ξ) 6= ∅} = P{ξ ∈ D0(y,X0, V )}.
Proof: Lemma 4 results in

Dβ ∩D0(y, X0, V ) ⊆ D−(X̃(Dβ); y,X0, V ).



From equality (13) it follows that

P{x ∈ X̃(Dβ) | y} =
P{ξ ∈ D−(X̃(Dβ); y,X0, V )}

P{ξ ∈ D0(y,X0, V )} .

Therefore

P{x ∈ X̃(Dβ) | y} ≥ P{ξ ∈ Dβ ∩D0(y, X0, V )}
P{ξ ∈ D0(y, X0, V )} =

= P{ξ ∈ Dβ | ξ ∈ D0(y, X0, V )}.
Denote byD̆β the compliment of the setDβ to the space
Rn+m:

D̆β = Rn+m \Dβ .

Since

P{ξ ∈ D̆β ∩D0(y,X0, V )} ≥ P{ξ ∈ D̆β} = 1− β,

then
P{ξ ∈ Dβ | ξ ∈ D0(y, X0, V )} =

= 1− P{ξ ∈ D̆β | ξ ∈ D0(y,X0, V )} =

= 1− P{ξ ∈ D̆β ∩D0(y, X0, V )}
P{ξ ∈ D0(y, X0, V )} ≤ 1− (α1)−1(1− β).

Lemma 5:

P{X̃(y, X0, V, ξ) 6= ∅} = P{H2ξ ∈ y − V −GX0},
where

H2ξ = GQ1ξ1 + Q2ξ2. (15)
Proof: Show that

{X̃(y,X0, V, ξ) 6= ∅} ⇔ {GQ1ξ1 +Q2ξ2 ∈ y−V −GX0}.
Indeed, let forξ = d = {d1, d2} ∈ Rn+m the information

set is nonempty:X̃(y,X0, V, d) 6= ∅. Then there arex∗0 ∈
X0, v∗ ∈ V such thatx∗0 + Q1d1 = G+(y − v∗ − Q2d2),
thus

G(x∗0 + Q1d1) = y − v∗ −Q2d2,

and
G(X0 + Q1d1) ∩ (y − V −Q2d2) 6= ∅.

It results inGQ1d1 + Q2d2 = y − v∗ −Gx∗0, i. e.

GQ1d1 + Q2d2 ∈ y − V −GX0. (16)

Conversely, let forξ = d = {d1, d2} inclusion (16) holds.
Then there isx∗0 ∈ X0, v∗ ∈ V for which

GQ1d1 + Q2d2 = y − v∗ −Gx∗0,

i.e.
G(x∗0 + Q1d1) = y − v∗ −Q2d2.

Moreover x∗0 + Q1d1 = G+(y − v∗ − Q2d2) implies an
inequality

(X0 + Q1d1) ∩G+(y − V −Q2d2) 6= ∅
and X̃(y, X0, V, d) 6= ∅.

The confidence regions̃Xα approximate to the information
setXdet if variances of the random perturbations in system
(1)–(3) tend to zero.

Theorem 2.Let matrices of the coefficients in (1)–(3) tend
to 0: Q1(ε) = εQ1, Q2(ε) = εQ2 andε → 0. If the setsX0

andV have interior points and for a given observationy the
information set is not empty:

Xdet = X0 ∩G+(y − V ) 6= ∅,
then for any probabilityα ∈ (0.5; 1) there are confidence
setsX̃ε

α such that:
1) X̃ε1

α ⊇ X̃ε2
α ⊇ Xdet if ε1 > ε2;

2) X̃ε
α → Xdet if ε → 0, i.e. lim

ε→0
ρ(X̃ε

α, Xdet) = 0,

whereρ(X̃ε
α, Xdet) is the Hausdorff distance between

two sets

ρ(X, Y )
4
= max{sup

x∈X
inf
y∈Y

||x−y||, sup
y∈Y

inf
x∈X

||x−y||}.

Proof: Denote byX̃ε(y,X0, V, ξ) a random confidence
set for system (1)–(3) withQi(ε) = εQi, ε ∈ (0; 1).

A probability

α
(ε)
1 = P{X̃ε(y, X0, V, ξ) 6= ∅} =

= P{εH2ξ ∈ y − V −GX0} > 0

since the setV contains exterior points.
Let show that0 ∈ y − V −GX0.
From equalityXdet = X0 ∩ G+(y − V ) 6= ∅ it follows

that there arex∗ ∈ X0, v∗ ∈ V such thaty − v∗ = Gx∗,
thereforey − v∗ −Gx∗ = 0, i.e. 0 ∈ y − V −GX0.

The convexity of the sety − V −GX0 and the condition
0 ∈ y − V −GX0 imply that

ε−1
1 (y − V −GX0) ⊂ ε−1

2 (y − V −GX0) if ε1 > ε2.

Thereforeα
(1)
1 ≤ α

(ε1)
1 ≤ α

(ε2)
1 if 1 > ε1 > ε2 > 0.

Let Dβ = B1β × B2β ⊂ Rn+m be a compact convex
confidence set forξ and the following conditions hold:

0 ∈ Dβ and P{ξ1 ∈ B1β , ξ2 ∈ B2β} = β.

Hereβ = 1− (1− α)α1 and

α1 = P{H2ξ ∈ y − V −GX0}.
Let us construct sets

X̃ε(Dβ) = (X0 + εQ1B1β) ∩G+(y − V − εQ2B2β).

From Theorem 1 the set̃Xε(Dβ) is a confidence region of

level not less thanβε = 1− (α(ε)
1 )

−1
(1− β).

For anyε ∈ (0; 1) an inequalityα(1)
1 ≤ α

(ε)
1 holds, hence

βε = 1− 1

α
(ε)
1

(1− β) ≥ 1− 1

α
(1)
1

(1− β) = α.

Thus the setX̃ε
α = X̃ε(Dβ) is a confidence region of level

not less thanα for system (1)-(3) ifQi(ε) = εQi

If 1 > ε1 > ε2 > 0 then X̃ε2
α ⊃ X̃ε1

α ⊃ Xdet.
Indeed,

Xdet =
⋂

ε∈(0,1)

X̃ε
α.

SinceX̃ε
α are embedded compact sets thenX̃ε

α → Xdet in
Hausdorff metric ifε → 0.



IV. SIMULATION

Let us illustrate Theorem 2 by the estimation problem in
R1 (Example 1). Let consider model (5)–(7) with∆ = 1,
x0 = 0 andy = 1.

We construct the standard linear confidence estimatesX̂α

of level α = 0.95 for different valuesσ = 0.5; 0.45; ...; 0.05:

X̂α = X̂ +
σ√
2
[−tα; tα], (17)

whereX̂ = 0.5[0; 2] + 0.5[−1; 1] = [−0.5; 1.5] is the set of
possible mean values.

We find nonlinear confidence regions̃Xα for the same
values ofσ using Theorem 1.

The information set in this case has a form:Xdet = [0; 1].
On Fig.1 it is shown how different kinds of estimates

depend on variances of the random perturbation: the linear
standard estimateŝXα – dash lines, the nonlinear confidence
regionsX̃α – solid lines, the values ofσ are marked on the
horizontal axe.

The dotted lines is the information setsXdet. The infor-
mation set is not a confidence estimate, it is an estimate in
case ofσ = 0.

One can see that the nonlinear confidence regionsX̃α

approximate toXdet = [0; 1] if σ → 0 unlike to the linear
estimates which tend tôX = [−0.5; 1.5].

Fig.1. Dependence of confidence regions onσ.

A main peculiarity of the constructed confidence region is
their dependence ony.

On Fig.2 it is shown how radiuses of the confidence
regions for system (5)–(7) depend on|y−x0|. The dash line
is a radius of the optimal linear estimate for the system, the
curve with markers is a radius of the nonlinear confidence
region, values of|y − x0| are marked on the horizontal axe.
Hereα = 0.95, σ = 0.1, ∆ = 1.

The solid line is a radius of a confidence region in case
without uncertainty, i.e. if∆ = 0 andX0 = {x0}, V = {0}.

One can see that in casey = x0 the proposed approach
do not improve the linear estimate, but if|y − x0| increases
the nonlinear estimates̃Xα becomes more precise.

Fig.2. Dependence on|y − x0|.

V. DEPENDENCE OFCONFIDENCEREGIONS ON

UNCERTAINTY SETS

Let us consider the how the confidence regions change if
the radiuses of the sets of uncertain parameters tens to zero.

Lemma 6: Let

1) 0 ∈ V , x0 ∈ X0;
2) Bα is a confidence set of the levelα for a random

vector
e = (I − ΛG)Q1ξ1 − ΛQ2ξ2; (18)

3) the following condition holds:

P{e ∈ Bα + b} ≤ P{e ∈ Bα} = α for all b ∈ Rn.
(19)

Then a set̂x + Bα is a confidence region of the level not
greater thenα for system state (1)–(3), i.e.

P{X̃(y, X0, V, ξ) ⊂ x̂ + Bα | X̃(y, X0, V, ξ) 6= ∅} ≤ α.

Here and further

x̂ = (I − ΛG)x0 + Λy, (20)

a matrix Λ is defined as for the standard stochastic linear
estimate:

Λ = P1G
T R−1,

P1 = ((Q1Q
T
1 )−1 + GT (Q2Q

T
2 )−1G)−1.

(21)

Lemma 7: [8] Let Xα = X̂ + Bα, where Bα is a
confidence set of the levelα for a random vectore, X̂ is the
set of a posteriori mean values defined by (4), (21).

ThenXα is a confidence region of the level not less then
α in sense of Definition 6, i.e.

P{X̃(y, X0, V, ξ) ⊂ Xα | X̃(y, X0, V, ξ) 6= ∅} ≥ α.
Theorem 3.Let the following conditions hold:

1) X0 = x0 + U , where U ⊂ Rn is a given convex
compact set;

2) 0 ∈ V , 0 ∈ V ;
3) Bα is a confidence set of the levelα for the random

vectore defined (18),(21);
4) condition (19) holds.



Then there is a confidence set̃Xα of level not less thanα
in sense Definition 6 such that

x̂ + Bα ⊆ X̃α ⊆ X̂ + Bα. (22)

Here x̂ and X̂ are defined by (20) and (4) respectively.
If the setsX0, V of possible values of uncertain perturba-

tion in (1)–(3) are reduced to a point then the confidence
regions tend to the standard confidence estimates for a
stochastic linear system.

Corollary 1. Let for the system (1)–(3) the following
conditions hold

1) V (γ) = γV , X0(γ) = x0 + γU ;
2) V andU are given compact convex sets containing 0,
3) Bα is a confidence set of the levelα for the random

vectore;
4) condition (19) holds.

Then there are confidence regions̃Xα(γ) of level not less
thenα for system (1)–(3) such that

X̃α(γ) → x̂ + Bα if γ → 0,

i.e. lim
γ→0

ρ(X̃α(γ), x̂ + Bα) = 0, here x̂ is defined by (20),

ρ(X, Y ) is the Hausdorff distance between two sets.
Difference between of confidence regions of probability

α = 0.95 for linear and nonlinear estimates in system
(5)–(7) is shown on the Fig.3. Here the solid line is the
standard linear confidence estimates (17) , the dash line is
the nonlinear confidence regions, the values of∆ are marked
on the horizontal axe. Hereσ = 0.1, x0 = 0, y = 2.

The dotted line is confidence sets for the system without
uncertainty, i.e. in case∆ = 0.

Fig.3. Dependence on∆.

VI. CONCLUSION

In this paper different approaches to the confidence estima-
tion for statistically uncertain problem with observation are
analyzed. It is shown that the optimal confidence estimate
is not linear. The calculation algorithm for the confidence
estimates is more complicated than the linear procedure. But
it allows to improve significantly the confidence estimate in
the case of small dispersions of the random perturbations.
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