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Abstract: At the First IFAC Workshop on Periodic Systems (Como, Italy, 2001),
a state of the art survey of computational methods for periodic systems has been
presented (Varga and Van Dooren, 2001). This contribution continues this survey
by presenting the main achievements in this field since 2001. Besides many foreseen
developments mentioned in 2001 as open problems, important new developments
took place as general algorithms for analysis of periodic descriptor systems,
solution of periodic Riccati equations, or computational methods for continuous-
time periodic systems.
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1. INTRODUCTION

The theory of linear discrete-time periodic sys-
tems has received a lot of attention in the last
30 years (Bittanti and Colaneri, 1996; Bittanti
and Colaneri, 2000) and many applications of this
theory have been reported. Practically all results
for constant discrete-time systems have been ex-
tended to standard periodic systems of the form

x(k + 1) = Akx(k) + Bku(k)
y(k) = Ckx(k) + Dku(k)

(1)

where Ak ∈ Rnk+1×nk , Bk ∈ Rnk+1×m, Ck ∈

Rp×nk , Dk ∈ Rp×m are periodic matrices with
period N ≥ 1.

We also noticed an increased interest to address
periodic control problems for continuous-time pe-
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riodic systems of the form

ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t) + D(t)u(t)

(2)

where A(t) ∈ IRn×n, B(t) ∈ IRn×m, C(t) ∈

IRp×n, and D(t) ∈ IRp×m are periodic matrices of
period T . For a recent survey of main theoretical
developments see (Colaneri, 2005) and papers
cited therein.

Several algorithms for standard discrete-time pe-
riodic systems have been extended to the more
general periodic descriptor systems of the form

Ekx(k + 1) = Akx(k) + Bku(k)
y(k) = Ckx(k) + Dku(k)

(3)

where Ek ∈ Rµk+1×nk+1 , Ak ∈ Rµk+1×nk , Bk ∈

Rµk+1×m, Ck ∈ Rp×nk , Dk ∈ Rp×m are N -
periodic matrices. Periodic descriptor systems
have been considered in many papers (Conte et

al., 1990; Sreedhar and Van Dooren, 1997; Sreed-
har et al., 1999; Sreedhar and Van Dooren, 1999;
Coll et al., 2004; Chu et al., 2005; Varga, 2007b).



A comprehensive account of the situation until
2001 in developing algorithms for periodic systems
is given in the survey (Varga and Van Dooren,
2001). In this paper we report on new devel-
opments in this field since 2001. Besides many
foreseen developments mentioned in 2001 as still
open problems, important new developments took
also place in algorithms for analysis of periodic
descriptor systems, solution of Riccati equations,
and computational methods for continuous-time
periodic systems. A notable development emerg-
ing from the sustained algorithmic progress is
a comprehensive Periodic Systems toolbox for
Matlab (Varga, 2005c).

2. LIFTED REPRESENTATIONS

Lifted representations of discrete-time periodic
systems play an important role in studying pe-
riodic systems (Bittanti and Colaneri, 1996; Bit-
tanti and Colaneri, 2000). To define some basic
concepts used in this paper, which correspond
to those for standard systems (e.g., transfer-
function, poles, zeros, etc.), we will use the lift-
ing introduced in (Grasselli and Longhi, 1991) to
build an equivalent time-invariant descriptor sys-
tem with the input, state and output vectors de-
fined over time intervals of length N , rather than
1. For a given sampling time k, the corresponding
mN -dimensional input vector, pN -dimensional
output vector and (

∑N
k=1

nk)-dimensional state
vector are

uS
k (h) = [uT (k + hN) · · ·uT (k + hN + N − 1)]T ,

yS
k (h) = [yT (k + hN) · · · yT (k + hN + N − 1)]T ,

xS
k (h) = [xT (k + hN) · · ·xT (k + hN + N − 1)]T .

The corresponding time-invariant descriptor sys-
tem has the form

LkxS
k (h + 1) = FkxS

k (h) + GkuS
k (h)

yS
k (h) = HkxS

k (h) + JkuS
k (h)

(4)

where
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and

Gk = diag(Bk, Bk+1, ..., Bk+N−1),
Hk = diag(Ck, Ck+1, ..., Ck+N−1),
Jk = diag(Dk, Dk+1, ..., Dk+N−1).

Assuming the pencil Fk − zLk is regular (i.e.,
square and det(Fk − zLk) 6≡ 0), the transfer-

function matrix (TFM) of the lifted system at
time k is

Wk(z) := Hk(zLk − Fk)−1Gk + Jk. (5)

For minimal periodic systems (1) or (3) (i.e.,
completely reachable and completely observable),
the poles are defined as the zeros of the pencil
Fk − zLk, while the system zeros are the zeros of
the associated system pencil

Sk(z) :=

[

Fk − zLk Gk

Hk Jk

]

(6)

3. ALGORITHMS FOR PERIODIC SYSTEMS

We consider two main categories of algorithms for
periodic systems. The so-called ”fast” algorithms
are structure exploiting methods which work on
lifted representations. These methods are highly
efficient, because completely avoid explicitly form-
ing of lifted representations like (4). A typical
algorithm in this category is the algorithm to
compute zeros of periodic systems by exploiting
the structure of the lifted system matrix (6) but
without forming it explicitly. Similar ”fast” algo-
rithms can be employed to solve periodic Riccati
equations. For many ”fast” algorithms a certain
kind of numerical stability can be proven.

In the second category there are so-called struc-

ture preserving methods, which work directly on
the system matrices and preserve the cyclic struc-
ture of matrices of the lifted representation (4).
Most algorithms in this category are very recent
developments. Several methods in this category
are structurally backward stable. For them, it can
be proven that the computed results are exact for
slightly perturbed original system data.

Three main requirements, generality, numerical

stability and efficiency, have been formulated in
(Varga and Van Dooren, 2001) for a satisfactory
algorithm for periodic systems. The requirement
of generality covers, among other aspects, the
handling of problems with time-varying dimen-
sions. Many computational methods have been
proposed for systems with constant dimensions.
While extensions to time-varying dimensions are
often straightforward, these extensions usually
rely on more involved computational ingredients
which have been only recently developed. To pro-
mote numerical stability, some of the key ingre-
dients are: using exclusively orthogonal transfor-
mations, avoiding completely forming of products
of non-orthogonal matrices, and fully exploiting
structure and possibly fully preserving structure
by employing condensed forms. The requirement
for efficiency implies avoiding excessive storage
usage (i.e., avoiding lifting) and guaranteeing a
computational complexity of at most O(Nn3),
where n is the maximal state/input/output vec-
tor dimension. Specific features of algorithms for
continuous-time periodic systems are addressed
separately in Section 7.



4. COMPUTATIONAL INGREDIENTS

The traditional computational ingredients de-
scribed in (Varga and Van Dooren, 2001), like
the algorithms to compute periodic Hessenberg,
Schur and QZ decompositions (Bojanczyk et al.,
1992; Hench and Laub, 1994), have been recently
complemented by enhanced numerically stable al-
gorithms for reordering of periodic Schur forms
(Granat and K̊agström, 2006) and QZ decompo-
sitions (Granat et al., 2006). An elegant presen-
tation of the periodic QR-algorithm related tech-
niques is part of a recent book (Kressner, 2005).

An algorithm to compute periodic Kronecker-like
forms has been recently developed (Varga, 2004c).
For given N -periodic matrix pairs (Sk, Tk) with
Sk ∈ IRµk×νk and Tk ∈ IRµk×νk+1 , this algorithm
determines orthogonal N -periodic transformation
matrices Qk and Zk such that

QkSkZk =
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where:

(a) Er
k is invertible and the periodic pair

(

(Er
k)−1Ar

k, (Er
k)−1Br

k

)

is completely reach-
able;

(b) El
k is invertible and the periodic pair

(

Cl
k, (El

k)−1Al
k

)

is completely observable;

(c) A∞

k is invertible and the product
(A∞

k )−1E∞

k . . . (A∞

k+N−1
)−1E∞

k+N−1
is nilpo-

tent;

(d) Ef
k is non-singular.

Note that QkSkZk and QkTkZk+1 have the same
row partition which however generally depends on
k. For a fixed column partitioning of QkSkZk, the
corresponding column partitioning of QkTkZk+1

is uniquely determined by the conditions (a)-(d)
above. The periodic pair (A∞

k , E∞

k ) specifies the
structure at infinity of the periodic pair (Sk, Tk),

while the pair (Af
k , Ef

k ) specifies its finite struc-
ture. Similarly, the periodic triples (Ar

k, Er
k, Br

k)
and (Al

k, El
k, Cl

k) specify the right and left Kro-
necker structures of the pair (Sk, Tk), respectively.

The algorithms proposed in (Varga, 2004c) as well
as particularizations of them have many straight-
forward applications, as for example, computation
of periodic systems poles and zeros, minimal real-
izations, solution of periodic Riccati equations in
the most general setting, etc.

5. ALGORITHMS FOR STANDARD
DISCRETE-TIME PERIODIC SYSTEMS

5.1 System conversions and analysis

Several open computational problems for periodic
systems mentioned in (Varga and Van Dooren,
2001) have been solved in the meantime. To em-
ploy frequency-domain methods for the analysis of
periodic systems, an algorithm to evaluate the as-
sociated Np×Nm TFM Wk(z) (5) has been devel-
oped (Varga, 2003a). Conversely, the minimal re-
alization of a given proper lifted TFM Wk(z) can
be reliably computed by an algorithm proposed in
(Varga, 2004d). To compute frequency responses,
the evaluation of Wk(ejθ) is necessary for a range
of values of θ. Methods to compute the frequency
response efficiently by exploiting the sparse struc-
ture of the matrices of the lifted representation (4)
have been proposed in (Varga, 2006b). Here, the
periodic Hessenberg and Schur forms (Bojanczyk
et al., 1992) play important roles to improve the
computational efficiency.

Efficient and numerically stable algorithms have
been developed for the computation of the peri-
odic Kalman reachability and observability canon-
ical forms (Varga, 2004b). These algorithms can
be used to compute minimal realizations of peri-
odic systems by eliminating the non-reachable and
non-observable parts of the system. Recently the
reduction technique of (Varga, 2004b) has been ex-
tended to address the computation of minimal dy-
namic covers for periodic systems (Varga, 2007a).

For a minimal (completely reachable and com-
pletely observable) periodic system the zeros of
the associated TFM Wk(z) (5) can be computed
using a numerically stable ”fast” algorithm which
computes the zeros of Sk(z) in (6) using struc-
ture exploiting orthogonal reduction (Varga and
Van Dooren, 2002). A structure preserving back-
ward stable approach to compute zeros is based on
the algorithm to compute the periodic Kronecker-
like forms (Varga, 2004c) applied to the periodic
pair (Sk, Tk) defined by matrices

Sk =

[

Ak Bk

Ck Dk

]

, Tk =

[

Ink+1
0

0 0

]

.

The finite zeros can be determined as the gener-
alized eigenvalues of the quotient-product

(

Ef
k+N−1

)

−1

Af
k+N−1

· · ·
(

Ef
k

)

−1

Af
k ,

while the infinite zeros structure is determined by
the nilpotent matrix quotient-product

(A∞

k )−1E∞

k . . . (A∞

k+N−1)
−1E∞

k+N−1.

For these computations extensions of the periodic
QZ decomposition techniques of (Bojanczyk et

al., 1992; Hench and Laub, 1994) to time-varying
dimensions is necessary. Works in this direction
are in progress (Kressner, 2007).



5.2 Periodic Riccati equations

As an example, consider the periodic reverse

discrete-time algebraic Riccati equation (PRDARE)

Xk = Qk + AT
k Xk+1Ak − (AT

k Xk+1Bk+Sk)

×(Rk+BT
k Xk+1Bk)−1(AT

k Xk+1Bk+Sk)T(7)

where Ak ∈ IRnk+1×nk , Bk ∈ IRnk+1×mk , Qk ∈

IRnk×nk , Rk ∈ IRmk×mk and Sk ∈ IRnk×mk are
N -periodic matrices (N ≥ 1). All Qk and Rk are
assumed symmetric matrices. We are interested
to compute the unique symmetric stabilizing N -
periodic solution Xk of equation (7). This solu-
tion allows, for example, to determine a stabiliz-
ing periodic state-feedback which solves a linear-
quadratic optimization problem.

The solution of the PRDARE (7) for constant
dimensions has been considered in (Bojanczyk et

al., 1992; Hench and Laub, 1994; Benner et al.,
2002), but PRDAREs with time-varying dimen-
sions have been considered only recently in (Chu
et al., 2004). A standard assumption in all these
algorithms is the invertibility of Rk. Recently,
general algorithms to solve PRDARE for time-
varying dimensions and possibly singular Rk have
been developed (Varga, 2005a; Varga, 2007c). The
new algorithms can be seen as extensions of both
the periodic QZ decomposition based approach
(Bojanczyk et al., 1992; Hench and Laub, 1994) as
well as of ”fast” methods (Benner et al., 2002; Chu
et al., 2004).

6. ALGORITHMS FOR DISCRETE-TIME
PERIODIC DESCRIPTOR SYSTEMS

The main computational tool for the analysis
of periodic descriptor systems is the reduction
of periodic pairs (Sk, Tk) to periodic Kronecker-
like forms (Varga, 2004c). With this tool, various
analysis tasks can be performed using suitable
choices of the periodic matrices Sk and Tk.

The solvability of the periodic descriptor system
(3) is equivalent to check the regularity of the
pencil Fk−zLk (Sreedhar and Van Dooren, 1999).
To do this, we can perform the structurally sta-
ble reduction of the periodic pair (Ak, Ek) to a
periodic Kronecker-like form using the algorithm
of (Varga, 2004c). If this pair has no left or right
Kronecker structure, then the periodic descriptor
system (3) is regular, and thus solvable.

For the computation of system zeros, a ”fast”
algorithm has been proposed in (Varga and
Van Dooren, 2003) and a structure preserving
strongly stable algorithm has been proposed in
(Varga, 2003b). These algorithms are also useful
to compute the poles (as the zeros of a particular
system without inputs and outputs). A structure

preserving backward stable approach to compute
zeros is based on applying the algorithm to com-
pute the periodic Kronecker-like forms to the pe-
riodic pair (Sk, Tk) defined by the matrices

Sk =

[

Ak Bk

Ck Dk

]

, Tk =

[

Ek 0
0 0

]

For the analysis of reachability or observabil-
ity, similar computations as described in (Varga,
2007b) can be performed for

Sk = [Ak Bk ], Tk = [Ek 0 ] (8)

or

Sk =

[

Ak

Ck

]

, Tk =

[

Ek

0

]

, (9)

to compute the input or output decoupling ze-
ros, respectively. Their presence is equivalent to
the existence of non-reachable part and/or non-
observable part. Stabilizability and detectability
can be assessed by checking the stability of input
or output decoupling zeros, respectively.

To solve the minimal realization problem, two
approaches are proposed in (Varga, 2007b). The
first approach combines the forward/backward
separation with specialized minimal realization
procedures for the forward and backward parts. In
the second approach, the non-reachable and non-
observable parts are successively eliminated by
performing special reductions of periodic matrix
pairs as defined in (8) or (9), respectively.

An enhanced general algorithm has been recently
proposed to compute the L∞-norm of a periodic
descriptor system with time-varying dimensions
(Varga, 2006a). This algorithm relies on an effi-
cient method to compute the frequency-response
of descriptor systems (Varga, 2006b) and on spe-
cialized algorithms to compute poles and zeros of
particular descriptor systems. Recently developed
reliable algorithms to compute left/right inverses
of periodic systems (Varga, 2004a) or left/right
annihilators (Varga, 2004e) also rely on the com-
putation of periodic Kronecker-like forms.

7. ALGORITHMS FOR CONTINUOUS-TIME
PERIODIC SYSTEMS

Among the first methods for continuous-time pe-
riodic systems which can be labeled ”computa-
tional”, we mention just two classes of meth-
ods proposed to evaluate system norms (Zhou
and Hagiwara, 2002; Lampe and Rosenwasser,
2004). In the first class of methods, frequency-
lifting is employed to build equivalent infinite-
dimensional system representations. Approxima-
tions obtained using various finite truncations of
infinite-dimensional Toeplitz matrices are then
employed to evaluate the H2- and H∞-norms us-
ing complex-valued computation based algorithms
(e.g., to solve Lyapunov and Riccati equations).



The second class of methods relies on closed-form
formulas to compute the H2-norm. Still, they in-
volve the evaluation of several integrals and the in-
tegration of several matrix differential equations.

Recently, a new algorithmic paradigm called
multi-shot method evolved for solving continuous-
time problems (e.g., various periodic matrix dif-
ferential equations). Using appropriate exact dis-
cretizations, the continuous-time problems are re-
duced to equivalent single- or multi-point discrete-
time periodic problems for which reliable compu-
tational algorithms are available. By solving the
discrete-time problems, so-called periodic gener-

ators are computed (e.g., initial or multi-point
conditions), which serve to determine the continu-
ous periodic solutions (usually by integrating the
underlying ordinary matrix differential equations
with known initial or multi-point conditions).

Let ΦA(t, τ) denote the transition matrix corre-
sponding to a T -periodic A(t) satisfying

∂ΦA(t, τ)

∂t
= A(t)ΦA(t, τ), ΦA(τ, τ) = I

The basis of several discretization techniques is
the product form representation of the mon-

odromy matrix

ΦA(T, 0) = ΦA(T, T − ∆) · · ·ΦA(2∆,∆)ΦA(∆, 0)

where ∆ = T/N for a suitably chosen integer
period N . The matrix Fk := ΦA(k∆, (k − 1)∆)
for k = 1, 2, . . . , is obviously N -periodic. Thus,
the eigenvalues of ΦA(T, 0) can be alternatively
computed using the periodic Schur form based
algorithm (Bojanczyk et al., 1992). The main
advantage of using product form representations is
that unstable integration of differential equations
over long periods can be completely avoided.

Similar discretizations of appropriate Hamilto-
nian matrices are employed to solve periodic Lya-
punov, Sylvester or Riccati differential equations
(Varga, 2005b). The applications of these multi-
shot methods to evaluate Hankel, H2-, or H∞-
norms (Varga, 2005b) or to solve continuous-
time output feedback linear-quadratic problems
(Viganò et al., 2007) are relatively straightfor-
ward. Recently, an evaluation of the multi-shot
method to solve periodic Riccati equations in con-
junction with special structure preserving (sym-
plectic) integrators has shown the high effective-
ness of these techniques (Johansson et al., 2007).

8. CONCLUSIONS

The expected new algorithmic developments are
driven by stringent needs in several application
areas. The development of new algorithms for
periodic descriptor systems is important in solving
fault detection problems for multi-rate systems

(modelled as discrete-time periodic systems). Spe-
cial needs arise from fault detection or controller
synthesis, where algorithms are necessary to com-
pute various factorizations (stable coprime, nor-
malized coprime, inner-outer) or to solve peri-
odic model matching problems (exactly or via
H2/H∞ optimization). Many new developments
are also expected in algorithms for continuous-
time problems, as for example, efficient compu-
tation of frequency-responses, solution of stabi-
lization and pole assignment problems, order re-
duction, solution of various controller synthesis
problems. Among new tools to be investigated
in the future is the applicability of continuous
matrix decompositions to solve various computa-
tional problems for time-varying periodic systems
(Dieci and Eirola, 1999).
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