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The plane controlled motions of a homogeneous rectilinear elastic beam are considered. One end 

of the beam is free, and the other is clamped on a truck moved in a horizontal direction. In the 

undeformed state, the beam is fixed in a vertical position. The control action on the beam is the 

truck acceleration . Initially, the shape of the beam lateral displacements  and its relative 

linear momentum density 

u w

p  are given in a reference frame tied to the truck and moved at the 

velocity . The truck position is specified by v x  in an inertial coordinate system, x v=  and 

. It is supposed that the coordinate and velocity of the truck are initially zero. v u=

The equations of beam motions have the form 

( ), (0, ),p m u t y lρ′′+ = − ∈   (1) 

, , (0, ),p w m EIw t Tρ ′′= = ∈   (2) 

under the boundary conditions 

( ,0) ( ,0) 0, ( , ) ( , ) 0;w t w t m t l m t l′ ′= = = =  (3) 

and the initial conditions 

(0, ) ( ), (0, ) ( ).w y f y p y g y= =   (4) 

Here,  is the bending moment in the beam cross section;  and m l ρ  are the length and linear 

density of the beam, respectively;  is its flexural rigidity; and T  is the terminal time of the 

control process. The dotted symbols denote the partial derivatives with respect to , and the 

primed symbols stand for the partial derivatives with respect to . 
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The problem is to find an optimal control  that moves the truck from its initial to terminal 

states in the given time T   

( )u t

( ) , ( ) ,f fx T x v T v= =   (5) 

and minimizes a objective function  in the class U  of admissible controls: [ ]J u

[ ] min .J u
u U

→
∈

  (6) 

To solve the initial-boundary value problem (1)–(4), we apply the method of integrodifferential 

relations (MIDR), described in [1–5]. In this case, it is possible to reduce problem (1)–(4) to a 
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variational problem. If a weak solution p∗ , m∗ , and w∗  exists then the following functional Φ  

under local constraints (1), (3), (4) reaches its absolute minimum on this solution  
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′′− −
= +

∫ ∫
 (7) 

Note that the integrand ϕ  in (7) has the dimension of the energy density and is nonnegative. 

Hence, the corresponding integral is nonnegative for any arbitrary functions p , , and  

( ). 

m w

0Φ ≥

To find an approximate solution of the optimization problem defined by Eqs. (1), (3)–(7) a 

polynomial representation of the unknown functions is applied. The functions p , , and  are 

approximated by bivariate polynomials 

m w
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The control  is restricted to a set of time polynomials u

0
:

uN
i
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U u u u t
=

⎧ ⎫
= =⎨
⎩ ⎭

∑ .⎬   (9) 

Here , , , and  are unknown real coefficients. ijp ijm ijw iu

The basis functions are chosen so that the approximations can exactly satisfy the boundary 

conditions (3), initial polynomial conditions (4), and the equation of motion (1) by suitably 

selected integers , , , and . pN mN wN uN

The resulting finite-dimensional unconstrained minimization problem (7) has a solution 

( , , )p t y u∗ , ,  for an arbitrary control u( , , )m t y u∗ ( , , )w t y u∗ U∈ . The optimal control  is 

determined from condition 

( )u t∗

(6). The total mechanical energy of the beam at the terminal time T  

is considered as a functional  [ ]J u
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l w EI wJ T y dy t y ρη η
′′

= = +∫  (10) 

The corresponding optimization problem is reduced to a system of linear equations. 

An optimal control for the beam motion has been analytically constructed for a number of 

integers , , and 20pN ≤ 21mN ≤ 23wN ≤  in (8). In the case when , the control u  in 1uN > (9) 
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contains  unknown parameters, which have been used for minimizing . The optimal 

controls obtained by the MIDR for 

1uN − J

5uN ≤  are presented.  

The value of the functional  is considered as an integral quality criterion for the optimal 

solution whereas the integrand 

Φ

ϕ  in (7) is a local error characteristic. It is shown that as the 

number of free parameters of the polynomial control in the optimization problem (1), (3)–(7) 

increases, the total energy of the beam at the terminal time reduces considerably. 
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