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Abstract
A discontinuous controller for tracking feasible tra-

jectories in a class of underactuated mechanical sys-
tems with second-order non-holonomic constraints is
proposed. The controller is designed as an extension to
the underactuated case of the inverse dynamic control
approach, and a class of PD controllers. The proposal
ensures stability of the closed-loop system, and allows
to track, simultaneously for all the system variables,
feasible trajectories to reach static or non-static config-
urations under drifts in initial conditions. Numerical
simulations for tracking inverted periodic motions in
the Acrobot are provided to show the effectiveness of
the proposed control scheme.
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1 Introduction
Underactuated mechanical systems (UMS) refer to

those mechanical systems with less control inputs than
degrees-of-freedom (DOF) [Jiang, 2011]. A general
class of UMS does not satisfy the necessary Brock-
ett’s condition, which translates into the incapability
of designing a continuous time-invariant feedback con-
trol law for stabilization or tracking [Reyhanoglu et al.,
1999]. For this reason, alternative control approaches
have been proposed for these systems; among others,
time-varying, oscillatory, delayed, structural-variable,
and adaptive control laws (see e.g. [Morin and Samson,
1997], [Hong, 2002], [Olgac and Cavdaroglu, 2011],
[Ngo and Hong, 2012], and references therein).
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Analysis and control of UMS are interesting and chal-
lenging problems due to the clear reduction of the con-
trol space, and the inherent constraints in their dy-
namics, which do not allow the system to track an ar-
bitrary motion. The dynamic constraints are usually
non-holonomic, and can depend on position and veloc-
ity terms. In this case, they are known as first-order,
non-holonomic constraints (FONHC). They can also
be a function of position, velocity, and acceleration,
in which case are called second-order, non-holonomic
constraints (SONHC) [Oriolo and Nakamura, 1991].
FONHC appear in kinematic models of wheeled mo-
bile robots and wheeled vehicles, while SONHC ap-
pear in dynamic models of underwater vehicles, space
robots, and underactuated manipulators.
Some important problems for UMS include stabiliza-

tion around an equillibrium point or a manifold of
equilibria (see e.g. [Oriolo and Nakamura, 1991],
[Spong, 2002], [Fantoni and Lozano, 2002], [Olfati-
Saber, 2001], [Grizzle et al., 2005], and references
therein), trajectory generation or motion planning (see.
e.g. [Nagaragan et al., 2009], and [Miranda, 2011]),
and trajectory tracking, which has been mainly investi-
gated for UMS with FONHC.
The are some works where the trajectory tracking

problem for specific UMS with SONHC has been stud-
ied. In [Berkemeier and Fearing, 1999], the tracking
control of fast inverted periodic motions for the Ac-
robot is considered. In [Begovich et al., 2002], a fuzzy
control scheme is proposed for tracking inverted tra-
jectories in the Pendubot. In [Andary et al., 2012],
stable limit cycles are achieved for an inertia wheel
pendulum by designing a family of parametrized peri-
odic trajectories, and proposing a control scheme based
on the model-free approach. Sliding mode control has
been used for trajectory tracking in the inverted pen-
dulum [Wang, 2012], and in an underactuated surface
vessel [Yu et al., 2012]. In [White et al., 2009], a di-



rect Lyapunov method is applied, and a sliding mode
controller is proposed, which involves the solution of
the so-called matching equations, as in [Liao and Hou,
2012], where a tracking controller is designed based on
controlled lagrangians. In [Zilic et al., 2012], discon-
tinuous control is used for simultaneous stabilization
and tracking considering actuator dynamics. In these
works, the research has been mainly focused on un-
deractuated systems with an specific application inter-
est, and the proposed methodologies and control ap-
proaches cannot be applied directly to different under-
actuated devices. In addition, asymptotic stabilization
of the tracking errors are not guaranteed in general, and
the system is forced to start very close to (or on) the ref-
erence trajectory.
In this paper, the trajectory tracking problem for a

class of UMS with SONHC is analysed. A discontinu-
ous controller is proposed to track, simultaneously for
all the system variables, feasible trajectories to reach
static or non-static configurations. The key idea behind
our approach is the introduction of a coupling matrix
which permits to propose a control structure, and is rel-
atively simple because it is based on an inverse dynam-
ics approach plus a class of PD controller; moreover, it
has been designed to obtain a stable closed-loop error
dynamics. Provided some conditions were satisfied, the
proposed controller ensures local exponential conver-
gence of the tracking errors to a small neighbourhood
around zero, even under drifts in initial conditions. Fur-
thermore, the proposed control structure can be applied
to different UMS with SONHC, provided that feasible
trajectories to be tracked were available. In addition,
since our controller does not require to solve on-line
the so-called matching equations [White et al., 2009],
[Liao and Hou, 2012], the computational cost of the
implementation is reduced. Simulation results are pro-
vided to show the effectiveness of the proposed control
scheme.

2 Problem formulation
2.1 Class of UMS and properties
Let us consider UMS with 2-DOF (one-degree of ac-

tuation, and one-degree of underactuation), described
by the nonlinear matrix equation

M(q)q̈ + C(q, q̇)q̇ +G(q) = Bu, (1)

whereq is the generalized coordinate vector,M(q) is
the inertia matrix,C(q, q̇)q̇ is the vector of Coriolis and
centrifugal forces,G(q) is the vector of gravitational
forces obtained as the gradient of the potential energy,
B is a distribution vector, andu is the control input.
All matrices and vectors are defined with appropriate
dimensions.
Two classes of UMS are defined with respect toB, as

described in [Zikmund and Moog, 2006]. For UMS
class-I,B = [0 1 ]⊤, and for UMS class-II,B =
[1 0 ]⊤. In both cases, the underactuated dynamics (1)

has a SONHC denoted byN(q, q̇, q̈) = 0. In addition,
(1) has the following properties [Spong, 2006].

Property 1. The inertia matrix, and its inverse, are
symmetric, and positive definite for allq. For some
positive constants,µ

M
≤ µM , and µ

I
≤ µI , both

matrices are lower and upper bounded for allq as
µ
M

≤ ||M(q)|| ≤ µM , µ
I
≤ ||

(
M(q)

)−1
|| ≤ µI .

Property 2. The vector C(q, q̇)q̇ satisfies
||C(q, q̇)q̇|| ≤ c0||q̇||

2, for all q, q̇, and a posi-
tive constantc0.

Property 3. For revolute joints, the vectorG(q) sat-
isfies||G(q)|| ≤ g0, for all q, and a positive constant
g0.

2.2 Feasible trajectories
A SONHC appears due to the reduction of the input

space, and this translates into the incapability of the
system to track an arbitrary motion. Then, it is required
to calculate a set of ‘feasible trajectories’ to be tracked,
that is, reference motions which satisfyN(q, q̇, q̈) = 0.
So,

Q = {qr(t) : N(qr, q̇r, q̈r) = 0} t ≥ t0 (2)

will denote the set of all feasible trajectories of (1),
which will be sufficiently smooth, and bounded for all
t. For our purposes, it will be assumed that there is
available a set of feasible trajectories to be tracked.
Some algorithms for planning such feasible trajectories
can be found in [Nagaragan et al., 2009], [White et al.,
2009], and [Miranda, 2011].

2.3 Problem statement
The problem analysed in this paper can be formulated

as follows. Given a UMS modelled by (1), which satis-
fies properties 1 to 3, design, if possible, a control law
u to achieve the objective

lim
t→∞

||q(t)− qr(t)|| ≤ ǫ, (3)

for a sufficiently small non-negative constantǫ ≥ 0,
and a desired feasible trajectoryqr ∈ Q.

3 Control scheme
Define the tracking errors

q̃ = q − qr, ˙̃q = q̇ − q̇r, ¨̃q = q̈ − q̈r, (4)

and consider the control law

Bu = M(q)
(
v + q̈r +

(
M(q)

)−1
C(q, q̇)q̇ +G(q)

)
,

(5)



wherev is an auxiliary control input yet to be defined.
Then, putting (5) in (1), the following ideal error dy-
namics is obtained

¨̃q = v, (6)

wherev can be designed to drivẽq to the origin, solving
the tracking problem. However, the control law cannot
be calculated from (5) becauseB is not a square invert-
ible matrix.
At this point, let us define the coupling matrix

D(q) =
(
M(q)

)−1
BBM(q), (7)

which will play an important role in the definition of the
control scheme. It should be noted that this matrix, for
anyq, is lower and upper bounded, because of Property
1. Then, for some positive constantsµ

D
≤ µD, we

have thatµ
D

≤ ||D(q)|| ≤ µD.
After solving explicitly foru in (5), one has

u = BM(q)
[
v + q̈r +

(
M(q)

)−1(
C(q, q̇)q̇ +G(q)

)]
,

(8)
whereB is the Moore-Penrose pseudo-inverse ofB,
given by

B = (B⊤B)−1B⊤. (9)

Following with (8) and (1), and after some algebraic
manipulations, one obtains the error dynamics

¨̃q = D(q)v + [D(q)− I]
[
q̈r +

(
M(q)

)−1
×

(
C(q, q̇)q̇ +G(q)

)]
,

(10)

that contains, in the second term of the right-hand side,
various residual terms due to the model simplification
made so far, and it can be seen as a disturbance of the
ideal relation (6). Note that the second term of the
right-hand side satisfies the matching condition [Khalil,
2002], and this opens the possibility to cancel its (un-
desirable) effects in the system throughv.

Remark 1. For underactuated devices,D(q) can be
seen as a matrix which couples the error configura-
tion vector¨̃q with the residual non-linear dynamics that
contains the SONHC. This observation can be used to
extend some control schemes designed for completely
actuated systems, to the underactuated case. Note
that, if the device were fully-actuated, then the matrix
D(q) ≡ I, and the ideal relation (6) is recovered from
(10).

Now the tracking problem can be solved if it is possi-
ble to stabilize (10). To this end, we establish the next
result.

Theorem 1. The dynamics (10), obtained after substi-
tuting (8) in (1), can be stabilized around the origin
with the control law

v = φ+ ω, (11)

where

φ = −(γ + α) ˙̃q − αγq̃ = −γ ˙̃q − αs, (12)

ω =

{
−η z

||z|| if ||z|| 6= 0

0 if ||z|| = 0
(13)

s(q̃, ˙̃q) = ˙̃q + γq̃, (14)

z = D⊤s, (15)

for some positive constantsγ, α, andη satisfying

η ≥
||δ||

µ
D

, (16)

with

δ =
[
D(q)− I

][
q̈r +

(
M(q)

)−1(
C(q, q̇)q̇ +G(q)

)

−(γ + α) ˙̃q − αγq̃
]
.

(17)

Proof. Putting the control (11), (12), and (13), in (10),
the closed-loop error dynamics is described by

ṡ = −αs+Dω + δ, (18)

whereδ is given in (17), and represents the vector of
residual dynamics, which satisfies

||δ|| ≤ µD

(
||q̈r||+ µI(c0|| ˙̃q + q̇r||

2 + g0)

+(γ + α)|| ˙̃q||+ αγ||q̃||
)
.

(19)

To drive (18) to the origin,ω has been designed to
cancel the effects ofδ out. System (18) is considered
as a perturbation of the nominal system

ṡ = −αs, (20)

beings = 0 its globally exponentially stable equilib-
rium point. This is concluded from Theorem 4.10 in



[Khalil, 2002], after taking the time derivative of the
Lyapunov function

V (s) =
1

2
s⊤s, (21)

along the trajectories of (20).
For the perturbed system, the derivative of (21) along

(18) is

V̇ (s) = −α||s||2 + s⊤Dω + s⊤δ, (22)

which, after takingω as in (13), with (15), turns into

V̇ (s) = −α||s||2 + z⊤
(

−η
z

||z||

)

+ s⊤δ

= −α||s||2 − η||z||+ s⊤δ

≤ −α||s||2 −
(
ηµ

D
− ||δ||

)
||s||. (23)

With the gainη chosen as in (16), it follows thatV̇ (s) is
negative definite wheneverz 6= 0. Therefore,∀ t ≥ t0

s(t) = s(t0)e
−α(t−t0), (24)

and

q̃(t) = q̃(t0)e
−γ(t−t0) +

s(t0)

γ − α
e−α(t−t0), (25)

satisfying (3).

Remark 2. The previous result allows exponential sta-
bilization of the tracking errors whenever||z|| 6= 0.
However, there might be some circumstances for which
||z|| = 0, and as a consequence, the auxiliary con-
trol ω will not be available to cancelδ out. Under this
scenario, two different cases are possible: eithers is
exactly zero (and theñq = 0 is ES), ors 6= 0, in which
case it can be proved that||s|| is uniformly ultimately
bounded, and so the tracking errors. These cases are
described below.

- In case||z|| = 0, with ||s|| = 0, one has that
s ≡ 0, and from (14), one has

q̃(t) = q̃(t0)e
−γ(t−t0) ∀ t ≥ t0, (26)

which proves that (3) is satisfied.
- In case||z|| = 0, with ||s|| 6= 0, one has that
V̇ (s) along the trajectories of (18) is

V̇ (s) ≤ −α||s||2 + ||δ|| · ||s||, (27)

which is negative for alls, such that

||s|| >
||δ||

α
:= b. (28)
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Figure 1. Diagram of the Acrobot.

That is, if||s|| > b, thenV̇ (s) is negative definite,
ands decreases until the bound relation||s|| ≤ b

is satisfied for a finite timeT . This states thats is
uniformly ultimately bounded. After using Lemma
9.2 in [Khalil, 2002], the solution of the perturbed
system satisfies

||s(t)|| ≤ b ∀ t ≥ t0 + T, (29)

which for the tracking errors is written as in (25),
for t0 ≤ t ≤ t0 + T , and

||q̃(t)|| ≤ ǫ ∀ t ≥ t0 + T. (30)

Then (3) is satisfied.

Remark 3. As described, wheneverω is not avail-
able to compensateδ, exponential stabilization of the
tracking errors is not guaranteed. In this situation,
as proved, tracking is achieved with bounded errors,
which will depend on initial conditions. Then the
smaller drift in initial conditions, the better tracking
performance.

Remark 4. If some terms of unmodeled dynamics and
parametric uncertainties can be put intoδ, the pro-
posed controller would only need an estimation of their
maximal bounds to compensate their undesirable ef-
fects in the system. This could include some robustness
characteristics to the proposal.

4 Simulations

The aim of this section is to show the effectiveness of
the proposed result by means of simulations. To this
end, we have used the Acrobot with the proposed con-
troller to track inverted periodic motions under large
drifts in initial conditions. A diagram of the Acrobot is
shown in Figure 1.



4.1 Dynamic model
The dynamics of the Acrobot, a UMS class-I, is writ-

ten in the form of (1), and is described by

[
a1 + a2 − 2a3C2 a2 − a3C2

a2 − a3C2 a2

]

︸ ︷︷ ︸

M(q)

[
q̈1
q̈2

]

︸ ︷︷ ︸

q̈

+

[
2a3q̇1q̇2S2 + a3q̇

2
2S2

−a3q̇
2
1S2

]

︸ ︷︷ ︸

C(q,q̇)q̇

+

[
−a4S1 + a5S12

a5S12

]

︸ ︷︷ ︸

G(q)

=

[
0
1

]

︸︷︷︸

B

u,

(31)
whereq1 denotes the non-actuated DOF, whileq2 de-
notes the actuated one. Also, the following notations
was usedC2 = cos(q2), S1 = sin(q1), S2 = sin(q2),
andS12 = sin(q1 + q2).
The system parameters are lumped inai, i ∈
{1, . . . , 5}, with values taken from [Berkemeier and
Fearing, 1999]

a1 = m1l
2
c1 +m2l

2
1 + I1 = 0.0043 kg·m2

a2 = m2l
2
c2 + I2 = 0.00506 kg·m2

a3 = m2l1lc2 = 0.0338 kg·m2

a4 = (m1lc1 +m2l1)g = 0.0493 N·m
a5 = m2glc2 = 0.0379 N·m







(32)

4.2 Feasible trajectories
The desired trajectories to be tracked involve inverted

periodic motions. These trajectories, denoted byqr,
were proposed in [Berkemeier and Fearing, 1999], and
are solutions of the Acrobot’s equation of motion

M(qr)q̈r + C(qr, q̇r)q̇r +G(qr) = Bu. (33)

In this case, the input

u =
(
E
(
M(qr)

)−1
B
)−1

E
(
M(qr)

)−1
×

(
C(qr, q̇r)q̇r +G(qr)

)
,

(34)

with E = −[ 2 1 ], makes the virtual output

yr(t) = 2qr1(t) + qr2(t)− φ (35)

to remain at zero for allt ≥ t0, and with the ini-
tial conditionsyr(t0) = ẏr(t0) = 0. The constantφ
parametrizes the equilibrium manifold of the Acrobot,
and the inverted periodic motions occur whenφ = π.
Then, (33) and (34) generate the exact periodic trajec-

tories given by

q̈r1 =
a4 sin(qr1) + a5 sin(φ− qr1)

a1 − a2
, (36)

which can be interpreted as the zero dynamics of the
system (33) with respect to the output (35) [Berkemeier
and Fearing, 1999].

4.3 Results
Numerical simulations were carried out in Mat-

lab/Simulink using the Euler integration method with
fixed-step size of 1ms. Drifts in initial conditions were
considered for the Acrobot’s positions with respect to
the reference trajectories; these were of0.2 rad (≈ 11.5
deg) for the non-actuated link, and0.4 rad (≈ 23 deg)
for the actuated link. Also, the control parameters were
set toγ = 30, andα = 15.
The simulation results are shown in Figure 2, where it

can be seen that the Acrobot’s positions simultaneously
track the desired trajectories with good performance.
In the graphics, the tracking errors exponentially con-
verge to a small neighbourhood around the origin after
0.5s. At that time, chattering in the control signal is
displayed due to the switching activity of the discon-
tinuous termw, which do try to keep the error signals
to not leave the neighbourhood. Then, the proposed
controller allows to satisfy (3).

5 Conclusions
A discontinuous control scheme was proposed to track

feasible trajectories for UMS with SONHC. The pro-
posal ensures ultimate boundedness of the solution of
the closed-loop system dynamics, and allows to track
feasible trajectories under large drifts in initial condi-
tions. Numerical simulations fo the Acrobot under the
action of the proposed controller showed a good track-
ing performance.
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