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Abstract: Speech Enhancement aims at denoising a noisy speech signal and to
extract the clean speech. In this work, nonstationary periodic noise is regarded.
The coefficient energy distribution of a period of noise is analyzed by a Period
Wavelet Packet transform. This transform can analyze signals of arbitrary (non-
dyadic) length. The estimated coefficient energy distribution can be used as a
threshold for wavelet thresholding techniques. The efficiency of the algorithm and
its sensitivity to period variations is evaluated.
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1. INTRODUCTION

Speech enhancement is an important task for ap-
plications like communication in noisy cockpits,
speech recognition systems and hands-free car
sets. In this work, the class of periodic noises will
be regarded, because they occur in many environ-
ments, especially in presence of machines (engines,
compressors, factory noise etc.). The approach
in this paper is to estimate the time-frequency
energy distribution of a period of the noise when
only noise is present (speech pause). This knowl-
edge is then used to remove the noise when speech
is present. However, noise can have an arbitrary
period while the common filter bank algorithm
can only analyze signals of dyadic length. There-
fore, a new representation is required.

This paper is structured as follows. A review of
the signal adaptive wavelet packet transform and
wavelet-based denoising is given in section 2. A
wavelet representation of a periodic signal of non-
dyadic length and appropriate filter algorithms
are presented in section 3. Examples in section 4

will show the effectiveness and flaw of the pro-
posed method. The conclusions are drawn in sec-
tion 5.

2. REVIEW: DENOISING BY
WAVELET PACKETS

A discrete wavelet transform (DWT) can be com-
puted efficiently by a Conjugate Mirror Filter
bank (Mallat, 1999). A signal x of dyadic length
N = 2l, l ∈ N, is analyzed by cyclic convolutions
with high pass and low pass filters and subsequent
downsampling. For wavelet bases, only the low
pass signals are decomposed into their high pass
and low pass component (see figure 1, solid lines
only). A generalized approach is to apply the
decomposition stage to high pass and low pass
signals alike. This yields a tree-like redundant
decomposition as shown in figure 1b (solid and
dashed lines), a so-called wavelet packet (WP).
Each node represents a certain frequency band.
The coefficients of a certain node correspond to
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Fig. 1. Wavelet Packet Transform, max. depth
D = 2, solid line: wavelet transform (sub-
set of a wavelet packet), dashed: additional
decomposition for wavelet packets

the development over time in this frequency band.
Each coefficient of a WP can be addressed by

WP (d, b, n) , 0 ≤ d ≤ D , 0 ≤ b < 2d−1

, 0 ≤ n <
N

2d
− 1

where d denotes the depth in the tree, b is the
node number in this depth and n is the coefficient
number in the certain node.

Fast algorithms have been developed to search
the “best” orthonormal basis in a wavelet packet
(Coifman and Wickerhauser, 1992). The “best”
basis is the sparsest representation of the signal
within the WP, i.e. the signal is represented by
few but large coefficients. This could be e.g. the
wavelet basis or the basis indicated by the gray
nodes in figure 1b.

Denoising in the wavelet domain was introduced
by Donoho for additive, white noise (Donoho,
1995) and by Johnstone and Silverman for sta-
tionary, colored noise (Johnstone and Silverman,
1997). The results can be translated easily to
WPs. An additive, white noise in the time domain
corresponds to an additive white noise in every
orthonormal basis. Thus, a threshold

t = σ
√

2 loge N σ2 : noise covariance

N : signal length

can be found for which the probability is high,
that the absolute values of the noise coefficients
are below this threshold. Setting all coefficients
with an absolute value smaller than the threshold
to zero is a simple but efficient denoising method:

WPfilt(d, b, n) =

{

WP (d, b, n) , |WP (d, b, n)| ≥ t

0 , |WP (d, b, n)| < t

(1)

This method becomes much more effective, if the
best basis of the WP is selected for the threshold-
ing. Besides this “hard” thresholding (1), several
other thresholding functions have been proposed
(Ayat et al., 2004), but the decision which one to
use is not relevant for this paper.

For colored noise, a node-dependent threshold can
be calculated for each node. After thresholding all
coefficients according to the thresholding function
and the threshold t, the WP synthesis filter bank
yields the filtered signal.

3. THE PERIOD WAVELET PACKET
TRANSFORM

In recent years, wavelet packets have been used for
denoising distorted speech, e.g. see (Sheikhzadeh
and Abutalebi, 2001), (Shao and Chang, 2005).
They usually regard stationary noise. However, an
advantage of time-frequency representations over
Fourier transforms is the processing of nonstation-
ary signals. Thus, the approach in this paper is to
use wavelet packets to estimate the noise energy
distribution in the time-frequency plane for the
class of periodic noise. Periodic noise does not
denote a periodic signal, but a disturbance with
a power density which changes periodically over
time. The basic idea is to analyze the coefficient
energy distribution of a single period in the time-
frequency plane and subsequently use this estima-
tion to shrink each WP coefficient of the noisy
signal individually. The noise coefficient energy
distribution of multiple periods can be averaged
in order to get a more robust estimation. An
adaptive averaging is given by

F1(d, b, n) = P1(d, b, n)

Fk(d, b, n) =

∑k

i=1 λk−iPi(d, b, n)
∑k−1

i=0 λi

where Fk(d, b, n) is the averaged noise energy dis-
tribution after k periods, Pi(d, b, n) is the ana-
lyzed noise energy distribution of period i and λ
is a forgetting factor. This results to the recursive
equation:

Fk+1(d, b, n)

=
Fk(d, b, n) ·

∑k

i=1 λi + Pk(d, b, n)
∑k

i=0 λi
.

(2)

The basic problem of this approach is, how to
calculate the noise WP coefficients of a single
period, because the WP filter bank needs an input
signal of dyadic length N = 2l, l ∈ N, whereas in
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Fig. 2. WP Filter bank stage
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Fig. 3. Period WP filter bank stage

general a noise period can be of arbitrary length.
Therefore, a new representation is required.

3.1 Analysis

A single filter bank decomposition stage is re-
garded in figure 2. The input coefficient array
c(n) is convoluted with the impulse response a
(high pass or low pass respectively). The result
cf (n) is downsampled which finally yields the new
coefficient array d(n). If the coefficient array c(n)
has the period T , then the convoluted coefficient
array cf (n) has the same period T , due to the
cyclic convolution used. The downsampling oper-
ator only keeps the even-indexed samples.

If the period T is even, the downsampled array
d(n) consists of the even-indexed samples of the
period. An example is shown in figure 4, double-
lines marking a period. The signal d(n) has the
period T/2, but all multiples of T/2 are also valid
periods of d(n).

If the period T is odd, then the even-indexed
samples of the first period are kept followed by
the odd-indexed samples of the second period, see
figure 5. The period of cf (n) for this case is still T .
From this follows, that the period T is not changed
by a filter bank stage.

This means, if a single period is to be analyzed,
the coefficient array lengths must stay constant.
Otherwise, the coefficient arrays of later decompo-
sition stages get shorter while the period remains
constant. Important information would get lost.
Thus, a sorting operator “↔” is applied instead
of a downsampling operator. It translates a coeffi-
cient array cf (n) of length N = T to an array d(n)
of the same length. The sorting depends on T . If
T is even, the array of the even-indexed samples is
repeated once, in order to form an array of length
T (compare the first period of cf (n) and d(n) in
figure 4). If T is odd, the array of the even-indexed
samples is concatenated with the array of the odd-
indexed samples, yielding again an array of length
T (compare the first period of cf (n) and d(n) in
figure 5).

These explanations can be summarized by the
mathematical representation
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Fig. 5. Example: Period is odd, gray: even-indexed
samples

cf (n) = c(n) ∗ a(n) (3)

d(n) = [d(0), . . . , d(T − 1)]
︸ ︷︷ ︸

T samples

=

{

[

T

2
samples

︷ ︸︸ ︷

cf,even(m),

T

2
samples

︷ ︸︸ ︷

cf,even(m) ] , T even

[ cf,even(m)
︸ ︷︷ ︸

⌈T

2 ⌉ samples

, cf,odd(l)
︸ ︷︷ ︸

⌊T

2 ⌋ samples

] , T odd

(4)

where cf,even(m) are the even-indexed samples of
cf (n) and cf,odd(l) are the odd-indexed samples
of cf (n). The FIR impulse response a(n) is the
high pass or low pass filter impulse response
respectively.

This decomposition results in a subspace tree sim-
ilar to the ordinary WP tree. However, the number
of coefficients Nc of each node is constant Nc = T
now. With the Period Wavelet Packet (PWP)
transform (3)–(4), the coefficient energy of a single
period of arbitrary length can be analyzed. The
absolute value of the PWP coefficients

Pk(d, k, n) = |PWP { [e(0 + k · T ), . . .

. . . , e(T − 1 + k · T )] } | ,

where e(n) is the periodic noise and the operation
|·| returns the absolute values, represents the time-
frequency coefficient energy distribution for the k-
th period of noise. It can be used for the adaptive
estimation equation (2) of Fk(d, b, n). The PWP
Fk(d, b, n) is then the adaptively estimated time-
frequency coefficient energy distribution after k
periods. It is called “filter packet” because it will
be used to threshold the WP coefficients of the
noisy speech.

3.2 Denoising

If a noisy signal y(n) (i.e. a corrupted speech
frame) of dyadic length N = 2l, l ∈ N

y(n) = x(n) + e(n) ,
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Fig. 6. Example: Signal of length N = 8, period
T = 5, ∆T = 3, gray: repetition

where x(n) is the clean signal (speech) and e(n)
the periodic noise, is to be denoised, the noisy
signal y(n) can be decomposed into a regular
WP. The filter packet Fk(d, b, n) (PWP represen-
tation) can be translated into a corresponding
WP FWP

k (d, b, n) as follows. Each node of the
filter packet has T coefficients. The number of
coefficients of a node of WP{y(n)} in depth d is
Nc(d) = N/2d. If Nc(d) > T for a given node of
the tree, the coefficients of the filter packet can
be repeated to create an array of length Nc(d). If
Nc(d) < T for a given node, the coefficient array of
the filter packet must be cut to length Nc(d). This
filter packet FWP

k (d, b, n) in the WP domain can
be used to extract thresholds for each coefficient
of the basis selected by the best basis algorithm.

However, the cyclic convolution of the regular WP
transform has to be changed. The signal length N
of y(n) can be written as a multiple of the period
plus a fraction ∆T of the period:

N = k · T + ∆T , 0 ≤ ∆T < T

with usually k > 0 and ∆T > 0. The incom-
plete period ∆T must be regarded by the cyclic
convolution. This is best shown by the example
in figure 6. If the signal is repeated cyclically
(figure 6a), the unfinished period is not completed
correctly. Instead of a cyclic repetition, the signal
should be repeated from the ∆T + 1 sample on,
thus completing the unfinished period correctly
(figure 6b). Unfortunately, this can only be done
down to a critical depth

Dcrit = ⌊log2 N − log2 T + 1⌋

because the coefficient array length of nodes in
depth Dcrit or deeper is shorter than the period
T :

Nc(d ≥ Dcrit) < T .

To solve this problem, a structure can be build
composed of a WP above depth Dcrit and a PWP
below. This composite packet is shown in figure 7.
All black nodes are of length

Nc(d < Dcrit) = N/2d > T

and are processed by WP filter stages (filtering
& downsampling). The convolution can be cor-
rected. The gray nodes are of length

Nc(d ≥ Dcrit) = T

and are processed by PWP filter stages (filtering
& sorting). After the calculation, this WP/PWP

d = 0

d = 1

d = Dcrit = 2

d = 3

Fig. 7. Example for a composition of WP / PWP,
Dcrit = 2, black: WP nodes, gray: PWP
nodes

composition can be translated into a regular WP
the same way as the filter packet.

The thresholding paradigm (section 2) can be
applied now. The individual threshold for each
coefficient is extracted from the filter packet
FWP

k (d, b, n) in the WP domain. This is repre-
sented by

WPfilt(d, b, n)

=

{

WP (d, b, n) , |WP (d, b, n)| ≥ FWP
k (d, b, n)

0 , |WP (d, b, n)| < FWP
k (d, b, n)

(5)

for hard thresholding but every other thresholding
function could be used. The inverse wavelet packet
transform for the “best basis” finally yields the
filtered signal.

4. VALIDATION

The effectiveness of the proposed method com-
pared to the classical (stationary) wavelet thresh-
olding scheme is shown for a nonstationary chirp
signal. Afterwards, the deterioration of the perfor-
mance for period variations is examined. Finally,
a real engine noise is used to evaluate the algo-
rithm performance compared to classical wavelet
thresholding.

All time and frequency axes in this section are
normalized to observation time and Nyquist fre-
quency respectively. “Symmlet 4” filters were used
in the filter bank and the garrote function (Ayat
et al., 2004) was chosen as thresholding function.

4.1 Chirp noise without variations

The adaptive PWP noise estimation is applied to
a nonstationary noise problem. The disturbance in
this example is a series of chirps. The period does
not vary for this example. The coefficient energy
of the clear speech is shown in the phase plane
in figure 8a. The phase plane of the noisy speech
is shown below in figure 8b. The Signal-to-Noise-
Ratio (SNR) of the noisy speech in time domain
is −14.4 dB. A PWP filter packet is calculated
from 20 periods of noise. Thresholding the WP
coefficients according to the filter packet yields
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(b) Noisy speech, SNR = −14.4 dB
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(c) Filtered (proposed method), SNR = 7.75 dB
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(d) Classical WP thresholding, SNR = −9.87 dB

Fig. 8. Phase planes for chirp disturbances with-
out period variations

the filtered coefficients represented by figure 8c.
The SNR was improved to 7.75 dB.

It is clear that the stationary thresholding method
gives poor results for this nonstationary noise.
Each frequency subband is shrinked by a fixed
threshold over time. The SNR of the stationary
filter method for this example is −9.87 dB. The
corresponding phase plane is shown in figure 8d.

4.2 Chirp noise with variations

The disturbance in this example is again a series of
chirps. Figure 9 shows the phase planes for no pe-
riod variations. The SNR is increased from −6.78
dB to 9.82 dB. The starting point of each chirp
period is now varied at random with a variance of
1% of the period length. The phase plane of the
noisy speech is shown in figure 10a. Thresholding
the WP coefficients yields the filtered coefficients
represented by figure 10b. The SNR was improved
from −6.78 dB to 9.18 dB. This is still a very good
result even though not as good as without period
variations.

Using a period variation of 5% of the period
length yields the noisy and filtered phase plane in
figure 11. Residues of some chirps can be seen in
the phase plane 11b. The SNR deteriorates from
9.18 dB for the 1% case to 4.38 dB. This was
expected because the assumption of periodicity
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(b) Noisy speech, SNR = −6.78 dB
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(c) Filtered (proposed method), SNR = 9.82 dB

Fig. 9. Phase planes for chirp disturbances, no
period variations

Time

F
re

q
u
e
n
c
y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

(a) Noisy speech, SNR = −6.78 dB
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(b) Filtered (proposed method), SNR = 9.18 dB

Fig. 10. Phase planes for chirp disturbances, small
period variations
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(a) Noisy speech, SNR = −6.84 dB
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(b) Filtered (proposed method), SNR = 4.38 dB

Fig. 11. Phase planes for chirp disturbances,
medium period variations

was not satisfied as good as before. An additional
problem is, that the discrete wavelet transform is
not shift-invariant.
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(a) Noisy speech, SNR = −2.45 dB
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(b) Filtered (proposed method), SNR = 5.59 dB

Fig. 12. Phase planes for engine disturbance

4.3 Comparison for engine noise

The advantage of the proposed methods over
stationary wavelet thresholding can also be shown
for real engine noise. A sample of engine noise was
taken from a noise database and used to calculate
filter packets and frequency band thresholds. The
subsequent filtering gave a SNR of 5.59 dB for
the proposed method and a SNR of 3.6 dB for the
stationary WP filtering. The corresponding phase
planes are shown in figure 12.

5. CONCLUSIONS

In this paper, the problem of nonstationary noise
was regarded for the class of periodic noise. The
noise was reduced by wavelet thresholding. How-
ever, the coefficient energy distribution of a noise
period was adaptively estimated and applied to
the filtering, instead of just applying a constant
threshold for each subband. For these purposes,
a method was proposed to calculate the WP
transform of a periodic signal of arbitrary pe-
riod length. The thresholding results based on the
proposed Period Wavelet Packet showed superior
performance over common WP thresholding in a
nonstationary noise environment. The proposed
method was not yet compared to adaptive filters,
which will be part of future work. However, adap-
tive filters should not yield better results for the
given examples because the signal spectra change
too quickly.

Further improvements to this method could be
achieved by applying a complex wavelet trans-
form to the analysis of the noisy speech. Complex
wavelet transforms are (nearly) shift invariant
with an redundancy factor of only 2 (Selesnick
et al., 2005), promising good results by only mod-
erate computation costs. A shift-invariant trans-
form should give more robustness against period
variations of real signals.
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