
CYBERNETICS AND PHYSICS, VOL. 14, NO. 1, 2025, 40–51

DISTRIBUTED DUAL GRADIENT TRACKING FOR
NONCONVEX RESOURCE ALLOCATION WITH LIMITED

COMMUNICATION DATA RATE

Keli Fu
School of Mathematical Sciences

East China Normal University
China

zzufukeli@163.com

Xiaozheng Fu∗

School of Mathematical Sciences
East China Normal University

China
fxz4926@163.com

Tao Li
School of Mathematical Sciences

East China Normal University
China

tli@math.ecnu.edu.cn

Article history:
Received 21.02.2025, Accepted 21.06.2025

Abstract
We study the distributed nonconvex resource allocation

with Limited Communication Data Rate (LCDR) over a
communication network. Each node in the network has
its own private cost function and determines the opti-
mal resource allocation through interactions solely with
its neighboring nodes. The nodes need to cooperatively
minimize the total cost function to achieve the optimal
resource allocation under the constraint of constant total
resources. First, we consider exact communication. By
Lagrange dual method, we propose a successive convex
approximation-based distributed dual gradient tracking
algorithm to solve the distributed nonconvex resource al-
location problems. Then, we consider the case of digital
communication among nodes based on LCDR. The in-
formation transmission among nodes is based on the Dy-
namic Encoding and Decoding (DED) with finite-level
uniform quantization. We propose a successive convex
approximation-based distributed dual gradient tracking
algorithm with LCDR and conduct numerical simula-
tions. The numerical results show that the algorithm con-
verges based on merely one-bit quantizers when appro-
priate step sizes and scaling functions are chosen.

Key words
Limited communication data rate, distributed resource

allocation, nonconvex, gradient tracking, successive
convex approximation.

1 Introduction
Distributed Resource Allocation Problems (DRAPs)

study how to optimally allocate available resources to
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multiple users called nodes connected through a commu-
nication network. The global goal of DRAPs is to allo-
cate the total resources to multiple nodes while minimiz-
ing the global cost. A primary characteristic of DRAPs
is that every node computes its optimal resource alloca-
tion by interacting only with neighboring nodes over the
communication network. DRAPs are applicable across a
broad spectrum of practical scenarios such as economic
dispatch ([Richard et al., 2013]), smart grid systems
([Fan et al., 2013]) as well as wireless sensor networks
([Georgiadis et al., 2006]). A typical application is dis-
tributed Economic Dispatch (ED), where the local cost
functions are usually quadratic functions ([Yang et al.,
2013; Chen and Li, 2020]). See [Ho et al., 1980; Xiao
and Boyd, 2006; Hariharan and Daniela, 2008; Zhao
et al., 2018; Zhang et al., 2020] for more applications
of DRAPs.

DRAPs are optimization problems with globally cou-
pled equality or inequality constraints caused by the lim-
itation of the amount of resources to be allocated. The
local resource allocation amounts are coupled together
through the global constraint which is the sum of the lo-
cal constraints, and each node has a local private con-
straint. This brings difficulties to design fully distributed
algorithms. An effective way to decouple global con-
straints is using Langrange function. This kind of meth-
ods transform the original optimization problem with
coupling constraints into a dual problem without con-
straints, and the dual problem can be solved by a fully
distributed method (see [Xu et al., 2015; Xu et al., 2017a;
Li and Hu, 2018; Alessandro et al., 2020; Yang et al.,
2017; Yi et al., 2015; Yi et al., 2016; Liang et al., 2018;
Chang et al., 2014]). [Xu et al., 2017b] developed a
nonnegative surplus-based distributed optimization algo-
rithm to solve DRAPs where the local cost functions are
quadratic and the global equality constraint function is



CYBERNETICS AND PHYSICS, VOL. 14, NO. 1, 2025 41

linear. [Chang et al., 2015] investigated an Alternating
Direction Method of Multipliers (ADMM) based dis-
tributed algorithm and proved the convergence of the
algorithm under some convexity assumptions of local
cost functions. And the distributed algorithms based on
ADMM were further developed in [Chang, 2016; Aybat
and Hamedani, 2019; Pham et al., 2023]. [Zhang et al.,
2020] considered a Distributed Dual Gradient Tracking
algorithm (DDGT) to solve DRAPs over an unbalanced
network. They proved that the DDGT converges linearly
with strongly convex local cost functions and linear con-
straints.

The above research mainly focused on those prob-
lems with convex cost functions, convex inequality con-
straints ([Yi et al., 2015; Yi et al., 2016; Liang et al.,
2018; Chang et al., 2014]) or linear equality constraints
([Xu et al., 2017b; Chang et al., 2015; Chang, 2016; Ay-
bat and Hamedani, 2019; Zhang et al., 2020]). While,
the actual problems are often more complex. For ex-
ample, in the ED for energy internet, the equality con-
straints may be nonlinear functions ([Li et al., 2019b;
Soliman and Mantawy, 2012; Yalcinoz and Short, 1996;
Wollenberg and Bruce, 1996; Saini and Ohri, 2023]), or
the cost functions are often nonconvex ([Chiang, 2005])
due to the prevalence of valve-point loading effects.
[Giulio et al., 2014] proposed a distributed algorithm
based on the auction technique to solve distributed non-
convex ED problems by introducing an auction-based
technique combined with a leaderless consensus proto-
col. The distributed EDs for the grid-connected micro-
grids were studied in [Li et al., 2019b; Chen and Li,
2020], where the cost functions as well as the equality
constraints are quadratic. [Chen and Li, 2020] proposed
a distributed ED algorithm for the grid-connected micro-
grid and proved the convergence of the algorithm. [Li
et al., 2019b] combined frequency control methods with
consensus protocols to balance real power between load
and generation during ED, and proposed a distributed
algorithm to solve distributed ED problems. Note that
the above works have proposed targeted distributed algo-
rithms for specific nonconvex ED problems, while dis-
tributed algorithms for more general Distributed Non-
convex Resource Allocation Problems (DNRAPs) need
to be developed.

All the studies mentioned above assume that every
node can acquire exact information about its neigh-
bors via local communication, which implies that the
communication channels among nodes have unlimited
capacity (bandwidth) when the nodes’ states are real-
valued. However, the communication channels of real
distributed networks often have only limited capacity,
e.g., underwater vehicles or low-cost unmanned aerial
vehicles only allow the exchange of digital informa-
tion with limited bits among individuals ([Xiong et al.,
2022]). To solve the problems of the communication
limitations, a common technique is to design a dis-
tributed algorithm based on digital communication [Li

et al., 2011]. In this context, a distributed gradient de-
scent algorithm with LCDR was proposed in [Zhou et al.,
2019] based on the DED in [Li et al., 2011] to solve
DRAPs with linear equality constraints. To minimize
the communication costs among nodes, [Li et al., 2021]
proposed a continuous-time distributed algorithm with
LCDR based on event-triggered communication mech-
anism to solve DRAPs with linear equality constraints.
[Mohammadreza et al., 2022] proposed a continuous-
time distributed algorithm with LCDR based on uniform
quantization to solve DRAPs with time-varying commu-
nication networks, and proved the convergence of the al-
gorithm. Based on the DED in [Li et al., 2011], [Ma
et al., 2021; Xiong et al., 2022] proposed Distributed
Gradient Tracking (DGT) algorithms with LCDR for
distributed optimization and proved that the designed
algorithms can converge to the unique solution of the
optimization problems at a linear rate. However, the
distributed algorithms with LCDR based on DGT for
DNRAPs remain to be developed.

In this paper, we study DNRAPs with LCDR over a
communication network. Each node in the network has
an individual private cost function that evaluates the cost
of its allocated resources, with the global objective being
to cooperatively minimize the total resource allocation
cost under a specified global constraint. First, by La-
grange dual method, we transform the original DNRAPs
into its dual problem which can be transformed into a
distributed convex optimization problem without con-
straints. Due to the possible nonconvex nature of the
original problems, the Lagrange function of the original
DNRAPs may be a nonconvex function with respect to
the original variables. To this end, we make one step of
the Successive Convex Approximation (SCA) ([Scutari
et al., 2017]) method to minimize the Lagrange function
in original variables and use the computed results to cal-
culate the dual function’s gradient. Then, for the case of
exact communication, we propose a Successive Convex
Approximation-based Distributed Dual Gradient Track-
ing (SCA-based DDGT) algorithm by using a DGT al-
gorithm. Next, we consider the case of digital commu-
nication among nodes based on LCDR. We propose a
SCA-based DDGT algorithm with LCDR based on the
DED in [Li et al., 2011]. Finally, we test the SCA-based
DDGT algorithm with LCDR by four examples. The
numerical simulations show that the SCA-based DDGT
algorithm with LCDR can solve DNRAPs, and when the
appropriate step sizes and scaling functions are chosen,
one-bit quantizers can ensure the convergence of our al-
gorithm.

To summarize, the contributions of this paper are as
follows.

1) We consider DNRAPs. Specifically, the local cost
functions can be nonconvex and nonsmooth, and the
equality constraints can be nonlinear functions. The lo-
cal cost functions and the equality constraints of [Chen
and Li, 2020; Li et al., 2019b] are quadratic functions.
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In order to account for the valve-point loading effects,
the quadratic cost function in [Giulio et al., 2014] is
extended by including an additional rectified sinusoidal
term, and the equality constraints are quadratic func-
tions. Different from [Chen and Li, 2020; Li et al.,
2019b; Giulio et al., 2014], the local cost functions and
equality constraints can be more general functions with-
out special structures in this paper, and the models con-
sidered in [Chen and Li, 2020; Li et al., 2019b; Giulio
et al., 2014] are our special cases. The non-quadratic
equality constraints are meaningful. For example, for
the ED problems with polynomial transmission loss in
the power network ([Jiang and Ertem, 1995]), the equal-
ity constraints are polynomial functions.

2) We consider the case of digital communication
among nodes based on LCDR. Convex DRAPs with
LCDR were studied in [Zhou et al., 2019; Li et al., 2021;
Mohammadreza et al., 2022], where the local cost func-
tions are convex, and the equality constraint functions
are linear. Different from [Zhou et al., 2019; Li et al.,
2021; Mohammadreza et al., 2022], the DRAPs in this
paper can be nonconvex. And the models considered in
[Zhou et al., 2019; Li et al., 2021; Mohammadreza et al.,
2022] are our special cases.

3) We propose a SCA-based DDGT algorithm with
LCDR. Different from the algorithms using logarithmic
quantizers in [Li et al., 2021; Mohammadreza et al.,
2022], we use a uniform quantizer with finite levels.
Different from the algorithms based on gradient descent
methods in [Zhou et al., 2019], our algorithm is based
on DGT methods. The numerical results indicate that
the proposed algorithm is able to solve DNRAPs, and
when the appropriate step sizes and scaling functions are
chosen, one-bit quantizers can ensure the convergence of
the proposed algorithm.

The subsequent sections of this paper are arranged as
follows. In Section 2, the mathematical model of DRAPs
is introduced. Section 3 gives our algorithms. Section 4
gives several numerical simulations to demonstrate the
effectiveness of our algorithms. Section 5 concludes this
paper and outlines several potential future research top-
ics.

Notation: R: the set of real numbers; Rn: the n dimen-
sional Euclidean space; 0m: the m dimensional vector
with all zeros; |S|: the cardinality of set S; D1f̃(x, y):
the partial gradient of f̃(·, ·) with respect to the first ar-
gument evaluated at (x, y); ∂f(x̄): the sub-differential
set of the convex function f(·) at x̄, i.e., ∂f(x̄) =
{d|f(x̄) + dT (x − x̄) ≤ f(x)}; conv{x1, . . . , xn}: the
convex hull of {x1, . . . , xn}.

2 Problem Formulation

Consider a network with N nodes, and the objective
of the nodes is to cooperatively solve the DRAPs that
can be modeled as the following distributed optimization

problem

min
x1,··· ,xN

N∑
i=1

fi(xi)

subject to xi ∈ Xi,

N∑
i=1

hi(xi) = 0m, (2.1)

where for i = 1, . . . , N , fi(·) : Rni → R is the local
private cost function of node i ; xi ∈ Rni represents the
resource allocated to node i; Xi ⊆ Rni is a local convex
and closed constraint set.

∑N
i=1 hi(xi) = 0m represents

the constraint on total available resources, which shows
the coupling among nodes, where each hi : Rni → Rm

is known to node i only.

Remark 1. Many forms of DRAPs considered in the ex-
isting literature are the special cases of Problem (2.1).
For example, the local constraint sets are bounded and
closed intervals ([Chen and Li, 2020; Yang et al., 2013;
Xu et al., 2017b; Xu et al., 2015; Yang et al., 2017; Li
et al., 2019a]); the local equality constraints are affine
functions ([Zhang et al., 2020; Yang et al., 2013; Li et al.,
2019a; Xu et al., 2017b; Yang et al., 2017]) or quadratic
functions ([Chen and Li, 2020; Li et al., 2019b]); the lo-
cal cost functions are quadratic functions ([Chen and Li,
2020; Xu et al., 2017b; Xu et al., 2015; Li et al., 2019b])
or strongly convex functions ([Chen and Li, 2020; Yang
et al., 2013; Zhang et al., 2020]). In the case of the
distributed ED with valve-points loading in power sys-
tems, the local cost functions are nonconvex and nons-
mooth ([Mohammadreza et al., 2022; Walters and She-
ble, 1993]). See the numerical simulations in Section 4
for more examples.

The information structure of the network is modeled
by a directed graph G = {V, EG ,AG}, where V =
{1, . . . , N} is the set of nodes, EG ⊆ V × V is the set
of edges, and (j, i) ∈ EG if node j can send information
to node i directly, and node j is called the in-neighbor
of node i, and the set of all the in-neighbors of node i
is denoted by N in

i = {j ∈ V|(j, i) ∈ EG}. Similarly, if
node i can send information to node j directly, then node
j is called the out-neighbor of node i, and the set of all
the out-neighbors of node i is denoted by N out

i = {j ∈
V|(i, j) ∈ EG}. The weight associated to edge (j, i) is
defined as aij and aii = 0, aij > 0 ⇔ j ∈ N in

i . If any
two nodes of G can reach each other, then G is strongly
connected. If

∑
j∈N in

i
aij =

∑
j∈Nout

i
aji for all i ∈ V ,

then G is balanced, otherwise, G is unbalanced.

3 Algorithm Design
We are now ready to formally introduce our SCA-

based DDGT algorithm with LCDR to solve (2.1) over a
directed network. First, we transform the dual problem
of (2.1) into a form of distributed optimization. Then,
we make one step of the SCA-based ([Scutari et al.,
2017]) methods for minimizing the Lagrange function in
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original variables and use the computed results to com-
pute the gradient of the dual function. Next, by using
the DGT algorithms ([Nedić et al., 2017]), we propose
a SCA-based DDGT algorithm with exact communica-
tion to solve DNRAPs. Finally, based on the DED in [Li
et al., 2011], we propose a SCA-based DDGT algorithm
with LCDR.

3.1 The Dual Problem
In this subsection, we will focus on the dual problem

of (2.1). Consider the Lagrange function of (2.1)

L(x, λ) =

N∑
i=1

Li(xi, λ), (3.1)

where x = [xT
1 , · · · , xT

N ]T ∈ Rn, n =
∑N

i=1 ni, and
Li(xi, λ) = fi(xi)+λThi(xi), λ ∈ Rm is the Lagrange
multiplier. Then, we give the dual problem of (2.1) as
following

max
λ∈Rm

inf
x∈X

L(x, λ), (3.2)

where X = X1 × . . . × XN . Let gi(λ) =
supxi∈Xi

[−Li(xi, λ)], from (3.1), we have

inf
x∈X

L(x, λ) = inf
x∈X

N∑
i=1

Li(xi, λ)

=

N∑
i=1

inf
xi∈Xi

Li(xi, λ) =

N∑
i=1

− sup
xi∈Xi

[−Li(xi, λ)]

=

N∑
i=1

−gi(λ),

which means that (3.2) is equivalent to the following un-
constrained distributed optimization problem

min
λ∈Rm

N∑
i=1

gi(λ). (3.3)

From Li(xi, λ) = fi(xi) + λThi(xi) and gi(λ) =
supxi∈Xi

[−Li(xi, λ)], we have that gi(·) is continuous
and for any λ1, λ2 ∈ Rm and θ ∈ (0, 1)

gi(θλ1 + (1− θ)λ2)
= sup

xi∈Xi

{−fi(xi)− (θλ1 + (1− θ)λ2)
Thi(xi)}

= sup
xi∈Xi

{−θ(fi(xi) + λT
1 hi(xi))

−(1− θ)(fi(xi) + λT
2 hi(xi))}

≤ sup
xi∈Xi

{−θ(fi(xi) + λT
1 hi(xi))}

+ sup
xi∈Xi

{−(1− θ)(fi(xi) + λT
2 hi(xi))}

= θgi(λ1) + (1− θ)gi(λ2).

Thus, gi(·) is convex, and problem (3.3) is an uncon-
strained convex optimization problem. By Danskins the-
orem [Bertsekas, 2016], if Xi, i = 1, 2, . . . , N are com-
pact, then

∂gi(λ) = conv {−hi (xi) | xi ∈ Si(λ)} , (3.4)

where Si(λ) = {x̄i|Li(x̄i, λ) = minxi∈Xi
Li(xi, λ)}.

In the next subsection, we will use the DGT algorithms
to solve (3.3) and propose the SCA-based DDGT algo-
rithm.

3.2 SCA-based DDGT Algorithm with Exact Com-
munication

We will introduce the SCA-based DDGT algorithm
with exact communication in this subsection. The DGT
algorithms ([Nedić et al., 2017]) will be used to solve
problem (3.3), which is the equivalent problem of (3.2),
and the SCA-based methods ([Scutari et al., 2017]) will
be used to solve the problem min

xi∈Xi

Li(xi, λ). We give

the following iterative formula for the ith node

λi(k + 1) =λi(k) + η
∑

j∈N in
i

aij (λj(k)− λi(k))

+ αyi(k), (3.5a)

x̂i(k + 1) =argmin
x∈Xi

{
f̃i(x, xi(k))

+λT
i (k + 1)∇hi(xi(k))(x− xi(k))

}
,

(3.5b)

xi(k + 1) =xi(k) + β (x̂i(k + 1)− xi(k)) , (3.5c)

yi(k + 1) =yi(k) + η
∑

j∈N in
i

aij (yj(k)− yi(k))

+ hi(xi(k + 1))− hi(xi(k)), (3.5d)

where λi(k) ∈ Rm and xi(k) ∈ Rni represent the es-
timations of the optimal solution for the problems (3.3)
and (2.1) by the ith node, respectively; yi(k) ∈ Rm and
x̂i(k) ∈ Rni are the intermediate variables. The iterates
are initiated with xi(0) ∈ Xi and yi(0) = hi(xi(0)),
∀ i ∈ V; α > 0, β > 0 and η > 0 are the step sizes.
f̃i(x, xi(k)) represents a convex approximation of fi(·)
at xi(k) that needs to satisfy the following conditions

1) f̃i(x, y) : Xi×Xi → R is a strongly convex function
and continuously differentiable with respect to x;

2) D1f̃i(y, y) = ∇fi(y), ∀ y ∈ Xi;
3) D1f̃i(·, ·) is continuous on Xi ×Xi.

In practical applications, the function f̃i(·, ·) should be
designed as a strongly convex function as simple as pos-
sible that preserves the first order properties of fi(·). The
most obvious choice for f̃i(x, xi(k)) is the linearization
of fi(·) at xi(k),

f̃i(xi, xi(k)) = fi(xi(k)) +∇fi(xi(k))
T (xi − xi(k))

+
τi
2
∥xi − xi(k)∥2, (3.6)

where τi > 0 is the regularization coefficient, and the
proximal regularization guarantees that f̃i(xi, xi(k)) is
strongly convex with respect to xi. For cost functions
with different specific structures, many convex approx-
imation methods satisfying conditions 1)-3) are intro-
duced in [Scutari et al., 2017; Scutari and Sun, 2019],
and will not be repeated here.
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We call Algorithm 1 as the SCA-based DDGT algo-
rithm and now explain it in detail. After initialization,
four vectors λi(k), x̂i(k), xi(k) and yi(k) are iteratively
updated by each node i. To be specific, at each iteration
step k, firstly, each node i sends its inner states λi(k)
and yi(k) to all its out-neighbors and receives λj(k) and
yj(k) from all its in-neighbors j ∈ N in

i at the same time.
Then the vectors λi(k + 1), x̂i(k + 1), xi(k + 1) and
yi(k + 1) are updated according to (3.5). This process
repeats until terminated.

Algorithm 1 SCA-based DDGT algorithm for (2.1).

Initialization: λi(0) = 0m, xi(0) ∈ Xi, yi(0) =
hi(xi(0)) for each i ∈ V , α ∈ (0, 1), β ∈ (0, 1],
η ∈ (0, 1).
for k = 0, 1, 2, . . . do

for i = 1, . . . , N do
Communication: receive λj(k) and yj(k)

from in-neighbor j ∈ N in
i , and

broadcast λi(k) and yi(k) to each of i’s
out-neighbors;

Updation: update λi(k + 1), x̂i(k + 1),
xi(k + 1) and yi(k + 1) via (3.5) .

end for
end for
Return {xi(k)}Ni=1.

Remark 2. Algorithm 1 is actually a double loop algo-
rithm, where (3.5a) and (3.5d) is its out-loop, the DGT
algorithm is applied to solve the problem (3.3). Not-
ing that gi(·) may be nondifferentiable due to the possi-
ble nonconvex properties of problem (2.1), thus we use
the subgradient of gi(·) instead of the gradient in Algo-
rithm 1. It is known from (3.4) that we must first solve
the nonconvex minimization problem min

xi∈Xi

Li(xi, λ) to

find the subgradient of gi(·). We make one step of the
SCA-based methods in the inner loop of Algorithm 1
(i.e. (3.5b) and (3.5c)) to solve min

xi∈Xi

Li(xi, λi(k + 1))

and use the calculated xi(k + 1) to replace the opti-
mal solution of min

xi∈Xi

Li(xi, λi(k+1)), then from (3.4),

we get an approximate subgradient −hi(xi(k + 1)) of
gi(·). In (3.5a) and (3.5d), yi(k) represents the value of
1
N

∑N
i=1 hi(xi(k)) tracked by node i.

Noting that Algorithm 1 is based on exact communica-
tion, that is, in each communication step, node i can in-
cept the exact λj(k) and yj(k) and transmit exact λi(k)
and yi(k) to all its out-neighbors. However, the commu-
nication channels usually have limited channel capaci-
ties in real communication networks, exact communica-
tion is hard to achieve. Thus, in the next subsection, we
will consider the case of digital communication among
nodes based on LCDR, that is, before communication,
node i needs to encode the information λi(k) and yi(k)

to be sent, and the information it receives from its in-
neighbors is also encoded, and the estimates of the in-
neighbors’ states can only be obtained after decoding.

3.3 SCA-based DDGT Algorithm with Limited
Communication Data Rate

In this subsection, we consider the case of digital com-
munication among nodes based on LCDR, and propose a
SCA-based DDGT algorithm with LCDR to solve (2.1).
First, we introduce the communication mechanism of
digital communication based on LCDR.

Let λi(k) ∈ Rm and xi(k) ∈ Rni represent the es-
timations of the optimal solution for the problems (3.3)
and (2.1) by the ith node, respectively. Let yi(k) ∈ Rm

and x̂i(k) ∈ Rni be two intermediate variables. A key
step of the distributed algorithms is the communication
among neighboring nodes. And we consider the case
that the exact state information is not available due to
the fact that the communication channels have a finite
bandwidth, and the nodes can only exchange symbolic
data with each other. We consider a communication
mechanism based on DED. The communication chan-
nels among different nodes are noiseless digital chan-
nels, which can be represented by a pair of encoders and
decoders. The encoder of the jth node is denoted as Φj ,
which is given by

ξλj (0) = 0m,

ξyj (0) = 0m,

∆λ
j (k) = Q

(
1

g(k − 1)
(λj(k)− ξλj (k − 1))

)
,

∆y
j (k) = Q

(
1

g(k − 1)
(yj(k)− ξyj (k − 1))

)
,

ξλj (k) = g(k − 1)∆λ
j (k) + ξλj (k − 1),

ξyj (k) = g(k − 1)∆y
j (k) + ξyj (k − 1), k = 1, 2, . . .

(3.7)

where ξλj (k) ∈ Rm and ξyj (k) ∈ Rm are the inter-
nal states of Φj ; ∆λ

j (k) ∈ Rm and ∆y
j (k) ∈ Rm are

the outputs of Φj , and they will be transmitted to the
out-neighbors of the jth node. Q(·) : Rm → Rm

is a uniform quantizer with finite quantization levels,
and g(k) = g0γ

k is a decaying scaling function, where
g0 > 0, γ ∈ (0, 1).

The quantizer Q(·) with 2K + 1 quantization levels
for a vector z = [z1, . . . , zm]T is defined as Q(z) =
[q(z1), . . . , q(zm)]T , where

q(x) =



0, −1/2 < x < 1/2,

t,
2t− 1

2
≤ x <

2t+ 1

2
, t = 1, . . . ,K − 1,

K, x ≥ 2K − 1

2
,

− q(−x), x ≤ −1/2,

(3.8)

with x ∈ R. Clearly, the quantizer q(·) : R →
Γ maps a real number to a set Γ, where Γ =
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{−K, . . . ,−1, 0, 1, . . . ,K} is the set of quantized lev-
els.
Remark 3. If the output of the quantizer is zero, then no
information needs to be sent, therefore, for a (2K + 1)-
level quantizer, at each time step, the communication
channel needs to be capable of transmitting inerrably
⌈log2(2K)⌉ bits. When taking K = 1, it is clear that
the minimal quantization level is 3, and in this case, the
quantizer is a one-bit quantizer.

At time instant k, when the ith node receives the quan-
tized outputs ∆λ

j (k) and ∆y
j (k) of its in-neighbor j ∈

N in
i , it needs to decode these quantized outputs using

a decoder Ψji to obtain the states of jth node, and the
decoder Ψji is defined as follows

λ̂ji(0) = 0m,

ŷji(0) = 0m,

λ̂ji(k) = g(k − 1)∆λ
j (k) + λ̂ji(k − 1),

ŷji(k) = g(k − 1)∆y
j (k) + ŷji(k − 1),

(3.9)

where λ̂ji(k) ∈ Rm and ŷji(k) ∈ Rm are the outputs of
Ψji at time instant k. From (3.7) and (3.9), we have

λ̂ji(k) = ξλj (k), ŷji(k) = ξyj (k),

∀j ∈ V, i ∈ N out
j , k ≥ 0. (3.10)

Based on (3.5) as well as the encoder and decoder de-
fined by (3.7) and (3.9), we give the following iterative
formula for the ith node

λi(k + 1) =λi(k) + η
∑

j∈N in
i

aij

(
λ̂ji(k)− ξλi (k)

)
+ αyi(k), (3.11a)

x̂i(k + 1) =argmin
x∈Xi

{
f̃i(x, xi(k))

+λT
i (k + 1)∇hi(xi(k))(x− xi(k))

}
,

(3.11b)

xi(k + 1) =xi(k) + β (x̂i(k + 1)− xi(k)) , (3.11c)

yi(k + 1) =yi(k) + η
∑

j∈N in
i

aij (ŷji(k)− ξyi (k))

+ hi(xi(k + 1))− hi(xi(k)), (3.11d)

where α > 0, β > 0 and η > 0 are the step sizes, xi(0)
and yi(0) are initialized such that yi(0) = hi(xi(0)),
∀ i ∈ V . f̃i(x, xi(k)) is a convex approximation of
fi(·) at xi(k), and the specific selection methods of
f̃i(x, xi(k)) is the same as that in (3.5).

We call Algorithm 2 as the SCA-based DDGT algo-
rithm with LCDR and now explain it in detail. After
initialization, four vectors λi(k), x̂i(k), xi(k) and yi(k)
are iteratively updated by each node i. To be specific,
at each iteration step k, firstly, each node i encodes its
own information according to (3.7) to obtain its inter-
nal states ξλi (k) and ξyi (k), and its outputs ∆λ

i (k) and

∆y
i (k), and sends the outputs to all its out-neighbors. In

the same time, node i receives ∆λ
j (k) and ∆y

j (k) from
all of its in-neighbors j ∈ N in

i . Then, node i decodes the
received information according to (3.9) to obtain λ̂ji(k)
and ŷji(k). Finally, the vectors λi(k + 1), x̂i(k + 1),
xi(k+1) and yi(k+1) are updated according to (3.11).
This process repeats until terminated.

Algorithm 2 SCA-based DDGT algorithm with LCDR
for (2.1).

Initialization: λi(0) = 0m, xi(0) ∈ Xi, yi(0) =
hi(xi(0)) for each i ∈ V , α ∈ (0, 1), β ∈ (0, 1],
η ∈ (0, 1).
for k = 0, 1, 2, . . . do

for i = 1, . . . , N do
Encoder: calculate ξλi (k), ξ

y
i (k), ∆

λ
i (k) and

∆y
i (k) via (3.7);

Communication: receive ∆λ
j (k) and ∆y

j (k)

from in-neighbor j ∈ N in
i , and broadcast

∆λ
i (k) and ∆y

i (k) to each of i’s out-
neighbors;

Decoder: calculate λ̂ji(k) and ŷji(k) via
(3.9);

Updation: update λi(k+1), x̂i(k+1), xi(k+
1) and yi(k + 1) via (3.11) .

end for
end for
Return {xi(k)}Ni=1.

4 Numerical Simulation
In this section, we test the SCA-based DDGT with

LCDR on four examples of (2.1). The first example is the
case of quartic local cost functions and quadratic equal-
ity constraints. In this case, the gradients are not Lip-
schitz continuous. We verify the linear convergence of
the SCA-based DDGT algorithm with LCDR and com-
pare it with the centralized algorithms in [Hours and
Jones, 2014]. The second, third and fourth examples
are distributed ED problems. In the second example, we
compare the SCA-based DDGT algorithm with LCDR
with the algorithms in [Chen and Li, 2020]. The third
and fourth examples verify the linear convergence of the
SCA-based DDGT algorithm with LCDR in solving the
distributed ED problems with valve-points ([Walters and
Sheble, 1993]) and cubic transmission losses ([Jiang and
Ertem, 1995]), respectively.

4.1 The Distributed Resource Allocation Prob-
lems with Quartic Local Cost Functions and
Quadratic Equality Constraints

We consider a network with 6 nodes, and the commu-
nication structure of this network is shown in Figure 1.
The weights are chosen as follows: if (j, i) ∈ EG , then
aij = 1, otherwise aij = 0. The local cost function
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Figure 1. The communication network.

and local equality constraint of the ith node are a quar-
tic function fi(xi) = i(xi − i)4 and a quadratic func-
tion hi(xi) = ix2

i − di, respectively, where xi ∈ R
and di = 1, 4, 9, 16, 25, 36, then we have ni = 1,
m = 1 in (2.1), where i = 1, 2, 3, 4, 5, 6. For con-
venience, denote x(k) = [x1(k), . . . , xN (k)]T ∈ RN ,
λ(k) = [λ1(k), . . . , λN (k)]T ∈ RN , h(x(k)) =∑N

i=1 hi(xi(k)), and x∗ = [x∗
1, . . . ,x

∗
N ]T ∈ RN

denotes the optimal resource allocation scheme. We
run Algorithm 2 with α = 0.1, β = 0.3, η =
0.3 and g(k) = 20(0.95)k to solve this DNRAP.
We use one-bit quantizer, i.e. K = 1. Take
the initial value x(0) = [0, 1, 2, 3, 4, 5]T , λ(0) =
[19, 18, 17, 16, 20, 21]T , yi(0) = hi(xi(0)). Then, we
calculate by using Algorithm 2 and get Figure 2. It can
be seen from Figure 2 (a) and Figure 2 (b) that Algo-
rithm 2 is convergent, and Figure 2 (c) shows that the
state of each node converges to the feasible solution of
problem (2.1). Figure 2 (d) shows that the SCA-based
DDGT algorithm with LCDR can converge linearly by
using one-bit quantizer.
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Figure 2. The convergence of Algorithm 2 for DRAPs with quartic
cost functions and quadratic equality constraints. (a) Local resources
allocated xi(k). (b) Dual variables λi(k). (c) Global equality con-
straint h(x(k)). (d) Trajectories of log10(∥x(k)− x∗∥).

Let β = 0.3, η = 0.2, K = 1 and g(k) =
20(0.99)k. We then implement Algorithm 2 with α =
0.017, 0.016, 0.013, 0.011, respectively. Figure 3 dis-
plays the trajectories of log10(∥x(k) − x∗∥) for differ-
ent step sizes α. It shows that the SCA-based DDGT
algorithm with LCDR is always convergent at a linear
convergence rate with different α and larger α leads to
a faster convergence. Figure 4 shows that Algorithm 2
converges faster than the centralized algorithm in [Hours
and Jones, 2014].
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Figure 3. Trajectories of log10(∥x(k) − x∗∥) for different step
sizes α.
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k
,K=1 

Algorithm in [Hours and Jones, 2014]: ρ=0.1

Figure 4. Trajectories of log10(∥x(k)− x∗∥) for different algo-
rithms.

4.2 Distributed Economic Dispatch in Power Sys-
tems

In this subsection, we use three different ED problems
in the power system to test our Algorithm 2. Consider
a microgrid system with N buses connected to a dis-
tributed system. All buses contain their own Distributed
Generators (DGs) and loads. The DGs are equipped with
Intelligent Control Units (ICUs) that serve as their lo-
cal controllers and have generation costs associated with
them. The ED problem involves minimizing the overall
cost of electricity generation while ensuring that power
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Figure 5. Test system of energy internet.

Figure 6. Communication topology of the test system.

supply meets demand and that the generation limits of
DGs are adhered to. The formula of the ED problems is
described as follows

min
P1,...,PN

N∑
i=1

Fi(Pi),

subject to
N∑
i=1

Pi = PL + PTL,

P i ≤ Pi ≤ P i, (4.1)

where the symbols Pi, Fi(·), PL and PTL represent the
active power produced by the ith DG, the ith local cost
function, the total current system load and the total sys-
tem transmission loss, respectively. The positive con-
stants P i and P i represent the lower and upper effec-
tive power limits of the ith DG, which are determined
by its physical power constraints and maximum ramping
rate. Obviously, ED problem (4.1) is a typical DRAP
as described in (2.1). For convenience, let P (k) =
[P1(k), . . . , PN (k)]T ∈ RN , P = [P1, . . . , PN ]T ∈
RN , λ(k) = [λ1(k), . . . , λN (k)]T ∈ RN , h(P (k)) =∑N

i=1 hi(Pi(k)). Let P ∗ = [P ∗
1 , . . . , P

∗
N ]T ∈ RN be

the optimal economic dispatch scheme of ED problem
(4.1).

4.2.1 Distributed Economic Dispatch with
Quadratic Local Cost Functions and Quadratic
Transmission Losses

We study the ED problem within an energy internet
that consists of Energy Routers (ERs), interconnected
microgrids, and the main grid. And the ith local cost

function is shown as

Fi(Pi) =
(Pi − ai)

2

2bi
+ ci, i = 1, . . . , N, (4.2)

where ai ≤ 0, bi > 0 and ci ∈ R represent the
cost coefficients. We give the total generation cost by∑N

i=1 Fi(Pi) + λ0P0, where λ0 represents the electric-
ity price for the distributed system that obtained by ER,
and P0 represents the power exchanged between the dis-
tributed system and the microgrid. We give the total cur-
rent system load by PL =

∑N
i=1 PLi, where PLi repre-

sents the ith bus’s load. We give the total system trans-
mission loss by

PTL(P ) =

N∑
i=1

BiP
2
i , (4.3)

where Bi > 0 represents the loss factor. A distributed al-
gorithm for problems (4.1)-(4.3) was proposed in [Chen
and Li, 2020], but the algorithm in [Chen and Li, 2020]
can only be used when the cost functions and the trans-
mission loss functions are quadratic functions, and can-
not be used when cost functions are nonconvex or trans-
mission loss functions are cubic functions.

We consider a test electrical system containing five
DGs, one ER and four loads, the microgrid is linked
to the distributed system via ER. The electrical net-
work of the test system is presented in Figure 5, while
the communication network among ICUs is illustrated
in Figure 6. It is important to note that the structures
of the electrical network and the communication net-
work are different here. Specifically, Bus 2 and Bus
4 in Figure 5 are neighbors in the electrical network,
but not in Figure 6. The cost functions of the ER
and the DGs are given by F0(P0) = λ0P0 and (4.2),
respectively. Let hi(Pi) = PLi + BiP

2
i − Pi, i =

1, 2, 3, 4, 5, h0(P0) = −P0. Then, the ED problem
(4.1)-(4.3) is a standard optimization problem as de-
scribed in (2.1). Let F̃0(P0, y) = λ0P0 +

τ
2∥P0 − y∥2

with τ = 0.1, PL = [50, 150, 0, 150, 200, 0]T . We
give the parameters for DGs in Table 1 ([Chen and
Li, 2020]), where the per unit of P i and P i is MW.

Table 1. The parameters of each DG ([Chen and Li, 2020]).

DG ai bi ci P i P i Bi

G1 -7830.11 93.81 -326572 50 200 0.00021

G2 -4658.77 56.24 -192750 20 70 0.00017

G3 -5337.61 64.52 -220578 0 100 0.00016

G4 -6047.20 73.75 -247705 0 150 0.00020

G5 -5468.96 67.48 -221390 45 180 0.00019

Take the initial value P (0) = [60, 30, 10, 10, 50, 163]T ,
λ(0) = [79, 80, 81, 82, 83, 84]T , yi(0) = hi(Pi(0)).
Then, we calculate by using Algorithm 2 with α = 0.01,
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β = 0.01, η = 0.1, K = 1 and g(k) = 20(0.99)k, and
Figure 7 shows the simulation results. It clearly shows
that the SCA-based DDGT algorithm with LCDR con-
verges to the optimal solution for ED problems (4.1)-
(4.3) at a linear convergence rate by using one-bit quan-
tizer.

We assess and compare the convergence performance
for Algorithm 1, Algorithm 2 and the algorithm pro-
posed in [Chen and Li, 2020]. The simulation results
are shown in Figure 8. We observe that Algorithm 2
converges at a slower rate than Algorithm 1, which is
to be expected considering that the performance is natu-
rally impacted by information loss. And Figure 8 shows
that proper step size (α = 0.011) can be chosen to make
Algorithm 2 converge faster than the algorithm in [Chen
and Li, 2020].
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Figure 7. The convergence of Algorithm 2 for distributed ED with
quadratic cost functions and transmission loss. (a) Active power gen-
erated by each DG and active power exchanged with the distribution
system. (b) Dual variables λi(k). (c) Global equality constraint
h(P (k)). (d) Trajectories of log10(∥P (k)− P ∗∥).

4.2.2 Distributed Economic Dispatch with Valve-
points Loading

The valve-points loading effects are universal in the
ED problems of real power network. In this case, the
local cost functions are nonconvex and nonsmooth. Dif-
ferent centralized genetic algorithms were proposed to
solve this problem in [Chiang, 2005; Walters and Sheble,
1993]. Different from [Chiang, 2005; Walters and She-
ble, 1993], the algorithms in this paper are distributed.
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Figure 8. Trajectories of log10(∥P (k) − P ∗∥) for different al-
gorithms.

Figure 9. Test system.

In this subsection, we will test Algorithm 2 on the ED
problems with valve-points loading. We consider a test
system with three DGs, and the DGs can communicate
with each other. The electrical network structure of the
test system is illustrated in Figure 9. The local cost func-
tion for the ith DG is defined as

Fi(Pi) = aiP
2
i + biPi + ci

+|ei sin(γi(P i − Pi))|, (4.4)

and the total system transmission loss is defined as

PTL(P ) =

N∑
i=1

N∑
j=1

PiBijPj

+

N∑
i=1

B0iPi +B00. (4.5)

Then, the local constraint function of the ith node is
given by hi(P ) = PLi +

∑N
j=1 PiBijPj + B0iPi +

B00/3 − Pi, i = 1, 2, 3. Let PL = 210 MW. We give
the parameters for DGs in Table 2 ([Walters and Sheble,
1993]), where the per unit of P i and P i is 100 MW. The
transmission loss coefficients are given by ([Walters and
Sheble, 1993])

B =

 0.06760 0.00953 −0.00507
0.00953 0.05210 0.00901
−0.00507 0.00901 0.02940

 ,
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Table 2. The parameters of each DG ([Walters and Sheble, 1993]).

DG ai bi ci ei γi P i P i

G1 0.001562 7.92 561 300 0.0315 0.5 2

G2 0.00194 7.85 310 200 0.042 0.375 1.5

G3 0.00482 7.97 78 150 0.063 0.45 1.8

B0 =

−0.07660
−0.00342
0.01890

 , B00 = 0.040357.

We take the convex approximation of the local cost
functions according to (3.6) with τ = 0.1. Let α = 0.1,
β = 0.1, η = 0.1, K = 1 and g(k) = 20(0.94)k. Take
the initial value P (0) = [1, 1, 1]T , λ(0) = [16, 17, 18]T ,
yi(0) = hi(Pi(0)). Then, we calculate by using Al-
gorithm 2, and the simulation results are shown in Fig-
ure 10. It clearly shows that the SCA-based DDGT algo-
rithm with LCDR can converge to the feasible solution
of the ED problems (4.1), (4.4) and (4.5) linearly by us-
ing one-bit quantizer.
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Figure 10. The convergence of SCA-based DDGT algorithm with
limited communication data rate for distributed ED with valve-points
loading. (a) Active power generated by each DG. (b) Dual variables
λi(k). (c) Global equality constraint h(P (k)). (d) Trajectories of
log10(∥P (k)− P ∗∥).

4.2.3 Distributed Economic Dispatch Problems
with Quadratic Local Cost Functions and Cubic
Transmission Losses

In order to simulate the actual transmission losses
more accurately in the ED problems of power network,
the polynomial transmission loss model is introduced in
[Jiang and Ertem, 1995]. In this subsection, we will
test Algorithm 2 on the distributed ED problems with

quadratic local cost functions and cubic transmission
losses. We still consider the test system featuring the
electrical network structure depicted in Figure 9. The
local cost function of the ith DG is defined as

Fi(Pi) = aiP
2
i + biPi + ci, (4.6)

and the total system transmission loss is defined as

PTL = C0 +

N∑
i=1

C1iPi

+

N∑
i=1

C2iP
2
i +

N∑
i=1

C3iP
3
i . (4.7)

Table 3. The transmission loss coefficients ([Jiang and Ertem, 1995]).

DG C1i C2i C3i

G1 -0.02588 0.01274 0.00019

G2 -0.02517 0.01236 0.00016

G3 -0.01225 0.00696 0.00001

Then, the ith local constraint function is defined as
hi(Pi) = PLi + C0/3 + C1iPi + C2iP

2
i + C3iP

3
i −

Pi, i = 1, 2, 3. The parameters ai, bi, ci of each DG are
given in Table 2. The transmission loss coefficients are
shown in Table 3 and C0 = 0.065792 ([Jiang and Ertem,
1995]).
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Figure 11. The convergence of SCA-based DDGT algorithm with
limited communication data rate for distributed ED with quadratic lo-
cal cost functions and cubic transmission losses. (a) Active power gen-
erated by each DG. (b) Dual variables λi(k). (c) Global equality
constraint h(P (k)). (d) Trajectories of log10(∥P (k)− P ∗∥).
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Take PL = 210 MW, α = 0.1, β = 0.01, η = 0.1,
K = 1 and g(k) = 20(0.985)k. Take the initial value
P (0) = [1, 1, 1]T , λ(0) = [7, 8, 9]T , yi(0) = hi(Pi(0)).
Then, we calculate by using Algorithm 2, and the sim-
ulation results are shown in Figure 11. It clearly shows
that the SCA-based DDGT algorithm with LCDR can
converge linearly by using one-bit quantizer.

5 Conclusions

We have studied DNRAPs over a communication net-
work. Every node in the network is associated with its
own private local cost function. Each node needs to co-
operatively minimize the total cost function, aiming to
optimally allocate resources while maintaining a fixed
total resource. Firstly, by using Lagrange dual meth-
ods, SCA-based methods and the DGT algorithms, we
have proposed a SCA-based DDGT algorithm with exact
communication to solve DNRAPs. Then, based on DED
scheme and the SCA-based DDGT algorithms, we have
proposed the SCA-based DDGT algorithm with LCDR.
The information transmission among nodes is based on
DED with finite-level uniform quantization, which can
effectively solve the communication channel limitation
problem and reduce the communication cost. The nu-
merical simulations show that the SCA-based DDGT al-
gorithm with LCDR can converge by using one-bit quan-
tizer.

Future works are to provide a strict proof of the conver-
gence for the SCA-based DDGT algorithm with LCDR
and a tight bound for the convergence rate, and ana-
lyze the impact of quantization levels on the convergence
rate. In addition, it is an interesting work to design the
stochastic SCA-based DDGT algorithm with LCDR for
distributed stochastic nonconvex optimization problems.
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