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Abstract: This paper proposes a method for modeling and compensating nonlinear
input distortion in MIMO dynamical systems. This is conducted in three steps.
First, the distorted signals are recovered from the observed output by using blind
signal deconvolution based on statistical independence of the input signals. The
linear part of the system is also identified in this first step. Secondly, the recovered
signal, together with the input signal, gives a model of distortion as a nonlinear
function. Finally the distortion is compensated by applying the inverse of the

estimated function.
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1. INTRODUCTION

In practical situations, a system to be controlled is
more or less input-distorted, i.e., its input signals
undergo some nonlinear distortion before they
excite a linear dynamical system. This model is
called Hammerstein system (Fig.1). Such distor-
tion often arises due to saturation, dead-zone,
or other imperfections of actuators even if the
nominal system is linear. It is hence of great in-
terest to model and compensate the distortion for
achieving good control performance. In this paper,
we study a method for identifying both the linear
part and the nonlinear distortion part simultane-
ously for multi-input multi-output (MIMO) sys-
tems.

Traditional identification methods fail to pro-
vide a model in this case because they have
no access to the distorted signals, which then
pass through the (unknown) linear part. Conse-
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Fig. 1. Hammerstein system

quently some complicated identification methods
have been proposed. Most of the existing meth-
ods express the nonlinearity as a combination of
nonlinear basis-functions and use the input out-
put relationship to perform the identification, see
(Pawlak, 1991; McKelvey and Hanner, 2003; Gre-
blicki, 1989, among others).

This paper proposes yet another approach based
on “blind signal deconvolution”. Under the as-
sumption that the distortion is memoryless (static)
and component wise (no interaction among chan-
nels), the distorted signal is retrieved by deconvo-
luting the output signal. Then we provide a simple
way to compensate the nonlinearity.



In general, the goal of blind signal deconvolu-
tion is to retrieve the source signals applied to
a linear dynamical system when only its output
signals are observed. When retrieving the source,
we also obtain the system parameter up to certain
indeterminacies; see Section 2 for a detail. The
research conducted on blind signal deconvolution
during the last decades gave birth to many effi-
cient methods; see review paper (Cardoso, 1998)
and book (Cichocki and Amari, 2002) for details.
Since the methods are mainly based on the inde-
pendence of signals, these techniques are also re-
ferred to as ICA (Independent Component Analy-
sis). ICA techniques seem promising in control en-
gineering, too, although few papers have appeared
so far (Sugimoto and Nitta, 2005; Sugimoto et
al., 2005; Even and Sugimoto, 2006).

Based on ICA, this paper gives an efficient method
for identification of Hammerstein system. In fact,
the simulation results below are quite satisfac-
tory. In particular, the method is successful in
ameliorating the performance of a feedforward
controller. It is hence expected that the proposed
method may help us to broaden the range of
operation in various application.

The remainder of the paper is organized as follows.
In Section 2, as preliminary, we briefly present
blind signal deconvolution. In 3, the problem is
stated and the proposed method is detailed. In 4,
a numerical simulation illustrates the effectiveness
of the proposed method.

Throughout the paper the signals are in discrete-
time with time ¢ = 0,1,2,---. Matrices and
vectors are written in boldface. Z,,, and Opxm
respectively denote m X m identity matrix and
p X m zero matrix.

2. PRELIMINARIES: BLIND
DECONVOLUTION

The blind deconvolution problem is formulated
as follows. v(t) = [vi(t),...,vm(t)]T are the
output signals of a dynamical system H(z),
called “mixer,” excited by the “source” signals
s(t) = [s1(t),-..,5m(t)]T. Both the mixer and the
sources are assumed to be unknown. The goal is
to recover the source signals as closely as possible.

A dynamical system W(z), called “demixer,”
is applied to the observed signals, see Fig. 2.
Then the demixer is adapted so that its outputs
y() = [y1(t),...,ym(t)]" estimate the inputs s(t).
A common hypothesis used in blind signal decon-
volution is that the signals s;(t) are

i) statistically independent,
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Fig. 2. Blind signal deconvolution

ii) identically independently distributed (i.i.d.),
iii) non Gaussian.

With these hypotheses, the goal can be achieved
by adapting the demixer W(z) until the compo-
nents of y are mutually statistically independent;
for a detail, see (Cardoso, 1998) and references
herein. Usually, the statistical independence is
measured by a cost function based on their higher
order statistics. The mutual information of y(¢)

m

Mi(y) = —H(y)+ Y H(y:) (1)
i=1
is a commonly used cost function (see Appendix

A).

Even under the above conditions the blind iden-
tification of the transfer matrix has indetermina-
cies: a permutation, a delay or a scaling of any
components cannot be detected. This is illustrated
by:

W()H(z) = P A(2), (2)
where P is some permutation matrix and

Amz ™

for some real number ); and some integer ;.
These indeterminacies, however, can be resolved
with our identification setting, as will be shown
in Section 3.4.

3. MAIN RESULTS
3.1 Problem formulation

Now consider a Hammerstein system composed of
a nonlinear part and a linear part as described
in Fig. 3. There are m memoryless nonlinear
functions f;(-) that distort the signals u(¢) =
[ug(t),...,um(t)]*. Let us assume that f;(-) is
smooth with f;(0) = 0. The linear part is a
dynamical system modeled by an m x m stable,
minimal phase and biproper rational transfer ma-
trix H(z). The signal u(t) is assumed to satisfy
the assumptions i)-iii) in Section 2.

Our final goal is to compensate the nonlinear
functions f;(-). First the unknown signal s(t) =
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Fig. 3. Recovery of source s(t) by blind signal
deconvolution

[51(t), ..., sm(®)]T, where s;(t) = fi(ui(t)), is
estimated. This is done by means of a blind
deconvolution technique outlined in Section 2.
Then using the signal u(¢) and the estimates of
s(t), we compute approximates of the nonlinear
functions f;(-). Finally, we compensate their effect
by applying the reverse functions. These are done
in batch processes and are detailed below.

3.2 Estimation of linear part

The assumptions i)-iii) of Section 2 also hold for
the input signals s() = [s1(t), - .-, sm(t)]T of H(z)
because the nonlinear part of the system is non
mixing and memoryless. We further assume that
fi(u;(t)) has a non-Gaussian distribution without
much loss of generality. These assumptions allow
us to recover s(¢) by means of an approximate
blind deconvolution method, using the following
“finite impulse response (FIR)” demixer W (z).

The demixer is represented by the state space
model

x(t+1)=Aw x(t) + By v(¢) (3)
y(t) =Cw x(t) + Dw v(t)

Iml Olem mixm

[Dw Cw]=[Wy W, ... W]

W(z) is an FIR filter of sufficiently large length
[+ 1, the matrices Ay and By, are fixed whereas
Cw and Dy are adapted with a batch algo-
rithm based on the on-line method proposed
in (Cichocki and Amari, 2002), which exploits
the relative gradient of the mutual information
MI[y(t)], as follows.

Let Cw (k) and Dy (k) denote the matrices at
iteration k and u(k) be the positive adaptation
step used at iteration k. The adaptation law for
Cw (k) and Dy (k) are

Cw(k+1)=Cw(k) — u(k)ACw (k)
Dy (k + 1) = Dy (k) — u(k) ADw (k),

>

with

ACw (k)= [Tm— < ¥(y(t)y" (t) >:]Cw (k)
— <p(y®)x"(t) >
ADy (k)= [Zn— < ¢(y(£)y" (t) >:]Dw (k)

where < . >; denotes the time average on the
data block. ¥(.) = [¥1(.)...¥n()]T is a vector
containing the score functions associated with the
input signal (see next paragraph). In iteration
k, the whole block of the signal y(¢) and the
state x(t) has to be computed using Eq. (3)
with Cw (k) and Dw (k) (hence this is a batch
algorithm). At initialization [Dw (0)] Cw(0)] is
set t0 [Zm| Omxmi]. An important property of
the above adaptation law is that once W(z) is
initialized to a biproper filter, it remains biproper
during adaptation (Cichocki and Amari, 2002).
After convergence of the algorithm, W(z) is an
approximate inverse of H(z).

The components of the signal u(¢) are not ob-
served and thus neither their probability distri-
bution functions P, (u;) nor their score functions
Yo, (u;) = —0In[P,, (u;)]/Ou; are known. A simple
approach is to use some prior knowledge in order
to determine an approximation of the required
score functions (Cardoso, 1998). Conversely, as in
this paper, the score functions can be estimated
during the adaptation so that no prior knowledge
on the form of the nonlinear functions f;(-) is
necessary. These approximate score functions are
used to compute the update matrices ADy (k)
and ACw (k). During adaptation, y(t) converges
to u(t) and thus ¢(.) converges to the desired
score function; see (Taleb and Jutten, 1999) for a
detail on adaptive score function estimation.

3.8 Approximation of the nonlinear functions

After the blind deconvolution method has con-
verged, the output y(¢) of the demixer is an es-
timation of the input s(¢) of the linear part of the
system. Let us first assume that the permutation
indeterminacy was solved (see next section for
resolving permutation indeterminacy). Then, for
each of the nonlinear functions f;(-), a set of input
u(t) and an estimation of the corresponding set of
output s(t) are available. Thus an approximation
of the inverse of the nonlinear functions f; *(-)
can be obtained by using a function approxima-
tion method based on neural network, splines or
polynomials among others.

In this paper, a generalized regression neural net-
work provides the approximated inverse functions

£ 1(-) (Wasserman, 1993).



3.4 Resolution of indeterminacies

Since the input signal s(t) is observed, it is pos-
sible to detect and correct the permutation P of
the components of y(t), i.e. y(t) ~ P u(t), by
computing the covariance

Loy =& {s(t)y®)"'} =& {s)u®)’} P
"N

PT

X

Tm

since & {SZ (t)f]'(Sj (t))} = % 67;7]' with 67;7]' the
Kronecker symbol (the ; are unknown but sup-
posed non null). By taking P = (sign (Fsy))T, any
inversion of a the components is corrected.

In the proposed identification setting, both H(z)
and W(z) are biproper thus there is no delay
indeterminacy. But in the non biproper case,
the delay indeterminacy is resolved along with
the permutation indeterminacy by computing the
covariances of s;(t) and y;(t + 7) for different
values of 7.

The scale indeterminacy of the blind deconvolu-
tion method is compensated by the approxima-
tion of the inverse nonlinear functions. Suppose
yi(t) = MNu;(t), then the estimated inverse is

T—

fl @) = f7 (/)

4. NUMERICAL SIMULATION

Consider the transfer matrix

p ~0.7(z - 0.3)
_| ZZo7 2+ 04
H:)=105:-05 2205 |-
2-06 2403

as the linear part, whose impulse response is given
in Fig. 4 and the nonlinear functions

fi(u1) = tanh(2uy),
f2(u2) = tanh(3us).

For all figures representing impulse or frequency
responses, the subplot at the i** row and j**
column corresponds to the transfer from the j**
component of the input to the i** component of
the output. Namely, (i, j)-subplot represents (i, j)
entry in the transfer matrix.

The input signal components are uniformly dis-
tributed and 5000 samples have been used for the
identification. The observed signals are corrupted
by small additive Gaussian noises. The SNR are
33dB for v; () and 31dB for va(t).

The joint density of the components is plotted
in Fig.5-a (This plot is obtained by plotting 500
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Fig. 4. Impulse response of each entry in H(z).
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Fig. 5. Evolution of joint density: original source
(a), after distortion (b), after filtering (c) and
recovered distorted source (d).

points of the signals). A severe effect of the non-
linear functions is visible on the joint density of
s(t) in Fig.5-b. Then the linear part of the system
transform the joint density in the one plotted in
Fig.5-c.

4.1 Linear part

The length of the FIR demixer W (z) is 15 (degree
[ = 14). Figure 6 shows that, after convergence,
W (z)H(z) is a diagonal constant matrix. This
means that the blind deconvolution is successfully
achieved. Thus the joint density of the compo-
nents of y(t) (Fig.5-d) is similar, except the dis-
persion introduced by the additive noise and a
scaling of the components, to the one of the com-
ponents of s(t) (Fig.5-b). Namely, (y1(t),y=2(t)) =~
(a181(t), ans2(t)) + estimation noise (where a;
and ao are the scaling factors, here close to one).

4.2 Compensation of nonlinear functions

The inverses of the functions fi, fo are approx-
imated with a generalized regression neural net-
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Fig. 6. Impulse response of each entry in the
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Fig. 7. Compensation of nonlinear functions.

work (the spread of the radial basis functions
is 0.07). In Fig. 7, the input of the linear part
are plotted with and without compensation. The
hyperbolic distortions are linearized by the com-
pensation.

4.3 Example: Feedforward control

In this part, the proposed method is used to im-
prove the performance of a feedforward controller
for the previous system. If there is no nonlinearity,
the ideal feedforward controller is the inverse of
the system. First, as a reference, the estimate
of the inverse system is obtained by using an
identification method that does not consider the
nonlinear part. Here, the N4sid method from the
identification toolbox is used. Then the proposed
method is also applied. In fact the feedforward
controller is obtained by the blind deconvolution
method during the estimation of the nonlinear
part. The inverse of the system obtained by N4sid
and the proposed method are both very close to
the true inverse as seen in figs.8 and 9.

However, the tracking performances are not the
same because of the non-linear part. In figs.10
and 11, the tracking performances are significantly
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Fig. 8. Gain of the true inverse of the system
(dashed line), the inverse obtained with N4sid
(dashed dotted line) and the inverse obtained
with the proposed method (solid line).
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Fig. 9. Phase of the true inverse of the system
(dashed line), the inverse obtained with N4sid
(dashed dotted line) and the inverse obtained
with the proposed method (solid line).

better with the proposed method. Figs.12 and 13
show the corresponding quadratic error between
commands and outputs with the two methods.
These results show that the proposed method
gives a significant improvement of the feedforward
controller performance by modeling and compen-
sating the nonlinearities.

5. CONCLUSION

This paper proposes a simple method for the iden-
tification of linear systems with component wise
non-linearities at the inputs. By using indepen-
dent component analysis, this method recovers the
outputs of the nonlinear blindly from the outputs
of the linear part. Thus this methods gives an ef-
fective way to separate the identification of linear
and non linear parts. Hence it is possible to apply
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Fig. 10. Command input (solid line), output by
proposed method (solid line) and output by
N4sid (dashed line) of the first channel, re-
spectively.
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Fig. 11. Command input (solid line), output by
proposed method (solid line) and output by
Nd4sid (dashed line) of the second channel,
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Fig. 12. Quadratic error with N4sid (dashed line)
and with the proposed method (solid line) for
the first channel.

(Command — output)?

Fig. 13. Quadratic error with N4sid (dashed line)
and with the proposed method (solid line) for
the second channel.

another identification method for the linear part if
the FIR filter model of the proposed method is not
well suited for a given application. In this case, the
proposed method can be seen as a preprocessing
that compensates the non-linearities in order to
apply a method designed for linear systems.

Appendix A. MUTUAL INFORMATION

Signal components are called statistically inde-
pendent, if their joint probability density function
Py(y) can be factorized in the product of the
marginal probability density functions P,;:

m

Py(y) = HPyi (vi)

i=1

In order to measure how far the components
are from statistical independence, we can use
the Kullback-Leibler divergence between the joint
probability density function and the product of
marginal probability density functions:

K (Py<y>| Hnyi)) -
Py(y)

[ R

which vanishes if and only if the output compo-
nents are independent. This quantity measures
the mutual information between the components
of the output signals.

dy,

It can be expressed with the entropy of y and the
marginal entropies:



where H(x) = — [ Px(x)In Py (x)dx.

Assuming ergodic statistical properties of the out-
put signals, the cost function is:

m

MI(y(k)) = —H(y(k)) + > H(yi(k)).

i=1

The true marginal distributions of the sources are
unknown so that the marginal entropies H (y;(k))
must be estimated using a distribution @Q;. @y,
may be determined using some prior knowledge or
estimated from the output components.
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