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1. INTRODUCTION

Let’s consider K alternative methods of informa-
tion transmission numbered by ` = 1, . . . , K (K ≥
2). It is supposed that information is divided into
T small packages, where T is a large number. Each
method can be used to transmit information. The
usage of the `-th method is either successful (the
package is transmitted without error) with a prob-
ability p` or unsuccessful (the package is transmit-
ted with an error) with probability q` = 1 − p`,
probabilities p`, ` = 1, . . . , K are supposed to
be unknown. Therefore, information transmission
can be described by a stochastic process ξt with
t = 1, . . . , T , where ξt = 1 if a package number t
is transmitted correctly and ξt = 0 otherwise. As
total number of packages T is sufficiently large, in
the article asymptotic estimates are considered.

The goal is to maximize the total expected value
of the sum

∑T
t=1 ξt with the help of some deci-
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sion procedure based on the current knowledge
of the process. This problem is known as the
multi-armed bandit problem (Berry and Frist-
edt, 1985). There are several approaches to the
problem depending on its possible applications.
For example, optimal strategies can be calculated
exactly in Bayes setting for some known prior
distributions (Berry and Fristedt, 1985). If a prior
distribution is unknown the asymptotically opti-
mal procedure can be used, which makes estimates
of probabilities p1, . . . , pK and then preferably
applies the method corresponding to the current
larger value of these estimates (Sragovich, 1981).
To describe the expedient behavior of the simplest
organisms in random media, models based on fi-
nite automata are used (Tsetlin, 1973).

As for considered approach, the core of the prob-
lem is that changes of methods of information
transmission cannot be made too often, because
such a system would be very slow. Therefore,
packages should be divided into a number of suf-
ficiently large groups, so that to use the same



method to the packages of the same group. Note,
that the important property of the approach is
that it allows to process packages of the same
group simultaneously.

The simplest example can be described as follows.
At the beginning of the information transmission
each method is applied to τ packages. Then the
results of transmission are compared and the most
efficient method (with the less number of errors
during transmission) is applied to the rest T −
Kτ packages. This two-stage bandit problem was
investigated in (Kolnogorov, 1999), (Kolnogorov,
2000), (Kolnogorov and Melnikova, 2005) in the
minimax setting and the optimal order of τ was
proved to be T 2/3.

In the present paper such an approach is gen-
eralized to the r-stage decision design. The pro-
cedure compares alternatives on learning stages
and applies the best one on the final stage. More
precisely, denote by t0 = 0 initial total number
of choices and by I1 = {1, . . . ,K} initial set of
indices containing all alternatives. The procedure
starts with the 1-st learning stage and then follows
the algorithm:

Learning Stages: On the i-th learning stage
each of k(i) tested alternatives from the ordered
set Ii = {`i1, . . . , `ik(i)}, where 1 ≤ `i1 < · · · <
`ik(i) ≤ K, 2 ≤ k(i) ≤ K, is consequently ap-
plied τi times, 1 ≤ i ≤ r−1. Then total number
of choices and total numbers of successes on the
i-th stage corresponding to tested alternatives
are calculated as

ti = ti−1 + k(i)τi,

Xi(`ij) =
ti−1+jτi∑

t=ti−1+(j−1)τi+1

ξt,

j = 1, . . . , k(i).
The maximal current total number of successes
is determined

Xi(`ij0) = max
1≤j≤k(i)

Xi(`ij).

If there are more than one maximal elements,
the choice can be arbitrary made. Then Xi(`ij0)
is compared with all the rest {Xi(`ij)} and the
set of indices

Ji = {`ij : Xi(`ij) ≤ Xi(`ij0)−∆i}
is determined. The alternatives of the set Ji are
removed from the set Ii at the end of the stage,
so as Ii+1 = Ii \ Ji.

If at the end of the i-th stage the set Ii+1

contains the only alternative `ij0 then we apply
Ij = Ii+1, j = i + 2, . . . , r − 1, and the
strategy prescribes immediately to go to the
Final Stage, otherwise the following (i+1)-th
learning stage is implemented. We suppose that
∆r−1 = 0, so the transition to the Final Stage
at the end of the (r − 1)-th stage is obligatory.

Final Stage: On this stage only the alternative
corresponding to the larger value Xi(`ij0) on
the previous i-th stage is implemented. This
alternative is considered to be the better one
according to learning stages.

The total number T of packages is assumed to be
sufficiently large. In Bayes setting this problem
(especially for r = 2 and r = 3) was considered
by several authors (see, e.g., (Witmer, 1986),
(Cheng, 1994)). Note, that orders of magnitudes
of learning stages in these papers differ from
represented below and factors depend on the prior
distribution.

The structure of the paper is the following. In sec-
tion 2 optimal asymptotic expressions for learn-
ing stages {τi} and thresholds {∆i} are found in
general case, 3-stage and 4-stage procedures are
considered as examples. In section 3 schemes of
proves of theorems are given. Section 4 contains a
discussion of results.

2. ASYMPTOTIC ESTIMATES OF OPTIMAL
MAGNITUDES OF LEARNING STAGES AND

THRESHOLDS

Let θ = (p1, p2, . . . , pK) denote a parameter de-
scribing the multi-armed bandit and w`(θ) = p`

denote the mathematical expectation if the `-
th alternative is chosen. We consider the set of
parameters

Θ = {θ : |pl − pk| ≤ ∆W ≤ 0.5; l, k = 1, . . . , K},
excluding the case ∆W = 0 where all strategies
are optimal.

If we know θ, the optimal strategy is to choose the
alternative corresponding to max`=1,...,K w`(θ).
Then the expected total income is equal to
T max`=1,...,K w`(θ). If θ is unknown, the strategy
prescribes to use sequential learning procedure
defined above which can be described by the se-
quence π = {τ1, . . . , τr−1; ∆1, . . . , ∆r−1}. If Eπ,θ

denotes the mathematical expectation provided
that the strategy π and the parameter θ are fixed,
then the loss function due to the lack of informa-
tion on θ is equal to

LT (π, θ) = T max
`=1,...,K

w`(θ)−
T∑

t=1

Eπ,θ ξt.

Minimax risk on the class of strategies {π} and
the set of parameters Θ is equal to

RT (Θ) = inf
{π}

sup
Θ

LT (π, θ).

Note, that maximal loss does not exceed RT (Θ)
if the minimax strategy π∗ is chosen. On the
other hand, RT (Θ) is achieved for any strategy π
and some θ = θ(π). Let V denote the maximal



variance of income V`(θ) = p`q` on the set of
parameters Θ

V = max
Θ

max
`=1,...,K

V`(θ) = 0.25.

The following theorems describe asymptotic de-
pendence of minimax risk RT (Θ) on T for cases
r = 2 and r ≥ 3.

Theorem 2.1. If r = 2 then ∆1 = 0 and asymp-
totically optimal learning stage satisfies condition

∆Wτ1 ∼ C2(V/τ1)1/2T.

Consequently

τ1 ∼ C
2/3
2 κ1/3T 2/3,

where C2 ≈ 0.240, κ = V (∆W )−2 and minimax
risk RT (Θ) satisfies the limiting equality

lim
T→∞

RT (Θ)τ−1
1 = (K − 1)∆W.

Theorem 2.2. If r ≥ 3 then asymptotically opti-
mal learning stages and thresholds satisfy condi-
tions

τi ∼ (aiT
αi)2, ∆i ∼ bi(2V τi)1/2,

i = 1, . . . , r − 1,

where α1, . . . , αr−1 satisfy the system of equations

2α1 = 2αi+1 − αi = 1− αr−1, (1)

i = 1, . . . , r − 2,

b1, . . . , br−1 are expressed by

bi = (βi ln T )1/2, βi = 2(1− αi − 2α1), (2)

i = 1, . . . , r − 1,

a1, . . . , ar−1 satisfy asymptotic (as T → ∞) rela-
tions

∆Wa2
1 ∼

bia
2
i+1(2V )1/2

ai
∼ C2V

1/2

ar−1
, (3)

i = 1, . . . , r − 2.

Minimax risk RT (Θ) satisfies the limiting equality

lim
T→∞

{a1T
α1}−2RT (Θ) = (K − 1)∆W, (4)

where α1 = 2r−2(2r − 1)−1, a1 ∼ γ1{ln T}δ1/2,
δ1 = (2r−2 − 1)(2r − 1)−1.

It can be found from (2) and (3) that

ai ∼ γi(lnT )δi/2, i = 1, . . . , r − 1,

and δ1, . . . , δr−1, γ1, . . . , γr−1, satisfy systems of
equations

δ1 =
1 + 2δi+1 − δi

2
= −δr−1

2
, (5)

γ2
1

κ1/2
=

(2βi)1/2γ2
i+1

γi
=

C2

γr−1
, (6)

i = 1, . . . , r − 2.

The values α1, . . . , αr−1, β1, . . . , βr−1, δ1, . . . , δr−1

can be found from (1), (2) and (5) by induction

or as the solutions of appropriate difference equa-
tions and are equal to:

αi =
2r−1 − 2r−i−1

2r − 1
, βi = 2

2r−i−1 − 1
2r − 1

,

δi =
2r−i−1 · (3− 2i)− 1

2r − 1
, i = 1, . . . , r − 1.

It’s easy to see that αi > 0, βi > 0 for i =
1, . . . , r− 1; δ1 > 0 and δi < 0 for i = 2, . . . , r− 1.
Obviously, γi > 0 for all i = 1, . . . , r− 1 but their
determination is a bit more difficult. From (6) the
following expressions can be obtained

ln γi =
2i − 1
2i−1

ln γ1 +
i−1∑

j=1

2i−j − 1
2i−j−1

hj (7)

for i = 2, . . . , r with

h1 = − ln(2κβ1)
4

, hr−1 =
ln(2βr−2)− 2 ln C2

4
,

hi =
ln βi−1 − ln βi

4
, i = 2, . . . , r − 2

and ln γr = 0. Hence, ln γ1 can be determined with
the help of (7) as

ln γ1 = − 2r−1

2r − 1

r−1∑

j=1

2r−j − 1
2r−j−1

hj

and then all the rest ln γ2, . . . , ln γr−1 can be
calculated. Examples of parameters in cases r = 3
and r = 4 are given in Table 1 and Table 2.

Table 1. Parameters in case r = 3

i αi βi γi δi

1 2
7

2
7

(
4C4

2κ3

7

)1/14

≈ 0.639κ3/14 1
7

2 3
7

0

(
49C6

2κ

16

)1/14

≈ 0.588κ1/14 − 2
7

Table 2. Parameters in case r = 4

i αi βi γi δi

1 4
15

6
15

(
43C8

2κ7

3253

)1/30

≈ 0.621κ7/30 1
5

2 6
15

2
15

(
5C4

2κ

12

)1/10

≈ 0.518κ1/10 − 1
5

3 7
15

0

(
5634C14

2 κ

212

)1/30

≈ 0.622κ1/30 − 2
5

The idea of the proof is that there exist r para-
meters θ1, . . . , θr, depending on T , such that ex-
pected losses LT (π, θi), i = 1, . . . , r have maximal
possible values on Θ and the optimal durations of
learning stages and magnitudes of thresholds are
obtained by balancing all LT (π, θi), i = 1, . . . , r.
It can be shown that τi/τi+1 → 0 as T → ∞ for
i = 1, . . . , r − 1.

Note, that asymptotically unimprovable value of
the minimax risk for all possible strategies is
presented in (Vogel, 1960). Since this value is of
the order T 1/2, the formula (4) gives result close
to unimprovable one for moderate r.



3. SCHEMES OF PROVES

3.1 Some auxiliary estimates

Let’s introduce the notations

ϕ(x) =
1√
2π

exp
(
−x2

2

)
, Φ(x) =

x∫

−∞
ϕ(t)dt.

Lemma 3.1. The limiting equalities hold

lim
x→+∞

Φ(−x)
(
x−1ϕ(x)

)−1
= 1, (8)

lim
b→+∞

eb2ϕ−1(b)
(

max
x≥0

xΦ(−b− x)
)

= 1, (9)

lim
b→+∞

b−1

(
max

x∈U(b)
xΦ(b− x)

)
= 1, (10)

lim
b→+∞

b−1

(
max

x/∈U(b)
xΦ(b− x)

)
= 0, (11)

where U(b) = {x : Cb1/2 ≤ x ≤ 2b, C > 0}.

Proof. The estimate (8) is represented in the
reference book (Prokhorov and Rozanov, 1987).

To prove (9) we use (8), so as Φ(−b − x) ∼
(2π)−1/2(b + x)−1 exp

(−b2/2− bx− x2/2
)
. Then

noting that max0≤x≤2b−1 x exp(−bx) = (be)−1 at
x = b−1 and maxx≥2b−1 x exp(−bx) = 2e−1(be)−1 <
(be)−1 at x = 2b−1 we see that maxx≥0 xΦ(−b −
x) = max0≤x≤2b−1 xΦ(−b − x) ∼ (eb2)−1ϕ(b) as
b → +∞.

To prove (10), applying x = b(1 − b−1/2) we
get the lower bound estimate maxx≥0 b−1xΦ(b −
x) ≥ (1 − b−1/2)Φ(b1/2) → 1 as b → +∞.
The upper bound estimates for x ≤ b and x >
b are the following: maxx≤b b−1xΦ(b − x) ≤ 1
and maxx>b b−1xΦ(b − x) = maxy>0 b−1(b +
y)Φ(−y) ≤ 0.5 + b−1 maxy>0 yΦ(−y) ≤ 1 for
sufficiently large b. It is easy to see that (11) is
correct as well. ¥
For i = 1, . . . , r − 2, consider Xi(`), ` = 1, k,
the total numbers of successes on the i-th stage
corresponding to probabilities of success p` = p−
m`, where m` = x`(2V/τi)1/2; ` = 1, k; xk ≥ x1 =
0.

Lemma 3.2. Let p ∈ [d, 1 − d], 0 < d < 0.5, bi →
+∞, τi → +∞ as T → +∞ and i = 1, . . . , r − 2.
Then the following estimates hold as T →∞

sup
xk∈U(bi)

mkP(Xi(k) > Xi(1)−∆i)
bi(2V/τi)1/2

∼ 1, (12)

sup
xk /∈U(bi)

mkP(Xi(k) > Xi(1)−∆i)
bi(2V/τi)1/2

→ 0, (13)

sup
xk≥0

mkP(Xi(1) ≤ Xi(k)−∆i)
(2V/τi)1/2b−2

i e−1ϕ(bi)
. 1. (14)

Proof. Considered magnitudes of the difference
Xi(k) − Xi(1), including large deviations, obey
the central limit theorem (see reference book
(Prokhorov and Rozanov, 1987)). Denote V` =
p`(1− p`), V (p) = p(1− p). Then

E(Xi(k)−Xi(1)) = −xk(2V τi)1/2,

Var(Xi(k)−Xi(1)) = (V1 + Vk)τi ∼ 2V (p)τi

as τi →∞. To prove (12) we write

P(Xi(k) > Xi(1)−∆i)) ∼ Φ((bi−xk)(V/V (p))1/2)

and then

sup
xk∈U(bi)

mkP(Xi(k) > Xi(1)−∆i) ∼ (2V/τi)1/2×

× sup
xk∈U(bi)

xkΦ((bi−xk)(V/V (p))1/2) ∼ bi(2V/τi)1/2

according to the estimate (10). The estimates (13)
and (14) can be proved in the similar way using
the estimates (11) and (9). ¥
For Xr−1(`), ` = 1, . . . , k consider the probabili-
ties of success p` = p −m`; m` = z`(V/τr−1)1/2;
` = 1, . . . , k; zk ≥ · · · ≥ z1 = 0. Then define
C1 = 0 and for k ≥ 2

Ck = max
U

k∑

i=1

zi

∞∫

−∞
ϕ(t + zi)

k∏

j=1
(j 6=i)

Φ(t + zj)dt,

where U = {(z1, . . . , zk) : zk ≥ · · · ≥ z1 = 0}.
These constants can be calculated by numerical
methods. Some particular values are given below

C2 ≈ 0.240, C3 ≈ 0.372, C4 ≈ 0.463.

Lemma 3.3. Let p ∈ [d, 1 − d], 0 < d < 0.5,
br−2 → +∞, τr−1 → +∞ as T → +∞ and
zk ≥ · · · ≥ z1 = 0. Then following estimates hold
as T →∞

sup
zk≤br−2

(
k∑

l=1

mlP
(

Xr−1(l) = max
`=1,...,k

Xr−1(`)
))

×

×(V/τr−1)−1/2 ∼ (V (p)/V )1/2Ck, (15)

sup
z2≥br−2

(
k∑

l=1

mlP
(

Xr−1(l) = max
`=1,...,k

Xr−1(`)
))

×

×(V/τr−1)−1/2 → 0, (16)
and for k > 2

Ck ≤ C2(k − 1). (17)

Proof. The estimates (15) and (16) can be proved
in the similar way as (12). To prove (17) note, that

C2 = max
z2≥0

z2

∞∫

−∞
ϕ(t + z2)Φ(t)dt,

Ck ≤ max
U

k∑

i=2

zi

∞∫

−∞
ϕ(t + zi)Φ(t)dt

for k > 2 and, hence, (17) holds. ¥



3.2 Scheme of estimation of the minimax risk

Let’s make some notations. Without loss of gener-
ality we assume that w1(θ) ≥ w2(θ) · · · ≥ wK(θ)
and denote m` = w1(θ) − w`(θ), so that mK ≥
· · · ≥ m2 ≥ m1 = 0. Denote by Di = (Ii, `ij0 ,Ji)
the statistics {Xi(`); ` ∈ Ii} collected at the i-th
learning stage with the set of tested alternatives Ii

which results to the better alternative `ij0 and the
set of rejected alternatives Ji, by Ci = D1 . . .Di

the total statistics up to the i-th learning stage
describing the changes of D1, . . . ,Di. Obviously,
Ci = Ci−1Di if i ≥ 2. Denote by #Ii the number
of elements in the set of indices Ii. We denote
by C+

i = Ci ∩ {#Ii+1 > 1} the subsets of Ci

which prescribe to continue learning stages, by
D−i = Di ∩ {#Ii+1 = 1} the subsets of Di which
prescribe immediately to go to the final stage. If
r = 2 then

LT (π, θ) =
K∑

`=1

m`τ1 +
∑

{D−1 }
P(D−1 )m`1j0

(T − t1).

If r ≥ 3 then

LT (π, θ) =
K∑

`=1

m`τ1 +
∑

{D−1 }
P(D−1 )m`1j0

(T − t1)+

+
r−1∑

i=2





∑

{C+
i−1}

P(C+
i−1)

∑

`∈Ii

m`τi+

+
∑

{C+
i−1D−i }

P(C+
i−1D−i )m`ij0

(T − ti)





.

To simplify notations, dependence of P(D−1 ),
P(C+

i−1), P(C+
i−1D−i ) and m` on θ is omitted.

In the sequel we focus on the case r ≥ 3. Let’s
denote by Ĉ+

i = C+
i ∩ {`i,1 = 1, `i+1,1 = 1},

D̂−i = D−i ∩ {`i,1 = 1}, i.e. the alternative ` = 1
was not rejected up to the i-th stage. Obviously,
estimation holds

LT (π, θ) ≥ L̂T (π, θ) =
K∑

`=1

m`τ1+

+
r−1∑

i=2

∑

{Ĉ+
i−1}

P(Ĉ+
i−1)

∑

`∈Ii

m`τi+

+
∑

{Ĉ+
r−2D̂−r−1}

P(Ĉ+
r−2D̂−r−1)m`r−1,j0

(T − tr−1).

The estimate (4) can be obtained for L̂T (π, θ) and
then generalized to LT (π, θ). Let τr = T − tr−1

and suppose at first that the requirements hold

τ1 & T ε0 , τi+1/τi & T ε0 , i = 1, . . . , r − 1 (18)

for some ε0 > 0 and

bi → +∞, biT
−ε → 0, i = 1, . . . , r − 2 (19)

for all ε > 0 as T →∞. Let br−1 = 0.

For w ∈ [d, 1 − d] with sufficiently small d define
intervals Pi(w) (i = 1, . . . , r)

P1(w) = {p : p = w − x, b−1
1 ≤ x ≤ ∆W} ∩ [0, w],

Pi(w) = {p : p = w−x(2V/τi−1)1/2, x ∈ U(bi−1)},
i = 2, . . . , r − 1,

Pr(w) = {p : p = w−z(V/τr−1)1/2, 0 ≤ z ≤ br−2}
and

P0(w) = [0, w] \
r⋃

i=1

Pi(w).

Pi(w) ∩ Pj(w) = ∅ for sufficiently large T and all
i 6= j, w ∈ [d, 1 − d]. Obviously,

⋃r
i=0 Pi(w) =

[0, w].

Then define the set of indices N = {n2, . . . , nK}
with 0 ≤ n` ≤ r, ` = 2, . . . , K and n2 ≥ · · · ≥ nK .
For every w ∈ [d, 1− d] let

Θ(w,N ) = {θ : p1 = w, p` ∈ Pn`
(w), ` = 2, . . . , K}

and denote by #iN the number of elements n` ∈
N such that n` = i. One can say of `-th compo-
nent of Θ(w,N ) that it can contribute to total
loss on the n`-th stage only (n` > 0) and its
contribution on other stages is negligible because
m` is either too small or sufficiently large but `-th
alternative has been already rejected on previous
stages. If n` = 0 then contribution of this compo-
nent is negligible on all stages. Denote

f1(π,w) = min(w, ∆W )τ1,

fi(π) = bi−1(2V/τi−1)1/2τi,

fr(π, n) = Cn(V/τr−1)1/2T,

i = 2, . . . , r − 1, n = 1, . . . , K.

It can be shown that

sup
Θ(w,N )

L̂T (π, θ) = LT (π, w,N ),

where

LT (π, w,N ) = (#1N + ε1N )f1(π,w)+

+
r−1∑

i=2

(#iN + εiN )fi(π)+ (1+ εrN )fr(π, #rN +1),

and εiN → 0 as T → ∞ for all N , i. The
estimates of sup

(∑
{Ĉ+

i−1}
∑

`∈Ii
m`P(Ĉ+

i−1)
)
, i =

2, . . . , r − 1 use (12), (13). The estimate of
sup

(∑
{Ĉ+

r−2D̂−r−1}m`r−1,j0
P(Ĉ+

r−2D̂−r−1)
)

uses (15),
(16). If w /∈ [d, 1 − d], so that the central limit
theorem cannot be used, the estimates can be
based on the Chebishev’s inequality, the corre-
sponding value of the loss function is negligible
in comparison with presented above. Hence

RT (Θ) ≥ inf
π

sup
Θ

L̂T (π, θ) =

= inf
π

max
N

sup
w∈[d,1−d]

sup
Θ(w,N )

L̂T (π, θ) =

= inf
π

max
{N}

LT (π, ∆W,N ),



and, therefore,

RT (Θ) ≥ inf
π

max
i=1,...,r

LT (π, ∆W,Ni), (20)

where eachNi = (n2, . . . , nK) is defined as n2 = i,
n3 = · · · = nK = 1. Since each function fi(·) is
increasing in τi and decreasing in τi−1 (excepts
fr(·) and f1(·) which do not depend on τi and
τi−1 respectively) the inf in (20) is achieved for
the strategy π∗ balancing functions

LT (π∗, ∆W,N1) = · · · = LT (π∗,∆W,Nr)

or equivalently

f1(π∗, ∆W ) = fi(π∗) = fr(π∗, 2), (21)

i = 2, . . . , r − 1.

Since fr(π, n + 1) ≤ nfr(π, 2), n ≥ 2, due to (17),
it follows from (21) that

LT (π∗, ∆W,N ) ≤ LT (π∗,∆W,N1)

holds for strategy π∗ for all {N}. Assuming that
τi = (aiT

αi)2, i = 1, . . . , r − 1, where {ai} are
slow functions of T (i.e. a−1

i T−ε → 0, aiT
−ε → 0

as T → ∞, ∀ε > 0), we find from (21) that {αi}
satisfy conditions (1). The least possible {bi} such
that

L−1
T (π∗, ∆W,N1)×


 ∑

{D̂−1 }
P(D̂−1 )m`1j0

(T − t1)+

+
r−2∑

i=2

∑

{Ĉ+
i−1D̂−i }

P(Ĉ+
i−1D̂−i )m`ij0

(T − ti)


 → 0

as T → +∞ should be chosen from (2) (here esti-
mate (14) is used). Then {ai} are chosen from (3).
Then it can be shown that π∗ asymptotically does
not increase the value of risk for all probability
events {C+

i ,D−i }. Finally, restrictions (18), (19)
can be removed because for any other strategy π
there exists such parameter θ that corresponding
loss exceeds LT (π∗, ∆W,N1).

4. CONCLUSION

As mentioned above, considered approach allows
parallel processing of handled units on all stages.
In this case total duration of the process is often
mainly influenced by the number of stages r rather
than by the number of processed units T . Since
the minimax risk is close to unimprovable one for
moderate r, considered approach can be especially
recommended for usage in such systems.

As a more vivid example of this property the
medical treatment of a large group of T patients
by K alternative medicines with different and
unknown effectiveness can be considered. The
goal is to maximize the expected total number of
successful treatments.

The application of the r-stage approach assumes
that at the beginning of each stage the medicines
are given to the patients of appropriate groups
simultaneously. Then some time is necessary for
passage of the course of treatment. At the end of
the stage the results of treatment are analyzed.

In this example the duration of course of treat-
ment is much larger than the duration of medi-
cines assignment and analyzing the results. Hence,
the total duration of the process is determined by
the duration of r successive courses of treatment
and not by the number of patients T .

Since all estimates have asymptotic character, it is
interesting to know how they behave for particular
finite values T for different r. The general rule is
that conditions τi ¿ τi+1, i = 1, . . . , r−2 and τ1+
· · ·+τr−1 ¿ T should hold, where τi, i = 1, . . . , r−
1 are determined by theorems 2.1 and 2.2. If these
conditions do not hold, the approach considered
in (Kolnogorov, 2000) for close distributions may
be useful.

REFERENCES

Berry, D.A. and B. Fristedt (1985). Bandit Prob-
lems: Sequential Allocation of Experiments.
Chapman and Hall. London, New York.

Cheng, Y. (1994). Multistage decision problems.
Sequential Analysis 13, 329–350.

Kolnogorov, A.V. (1999). A simple strategy of be-
havior in a stationary medium with exponen-
tial guaranteed convergence rate. Automation
and Remote Control 60, 1136–1140. (Trans-
lated from Russian).

Kolnogorov, A.V. (2000). On optimal prior learn-
ing time in the two-armed bandit problem.
Probl. Inf. Transm. 36, 387–396. (Translated
from Russian).

Kolnogorov, A.V. and S.V. Melnikova (2005). On
optimal duration of initial stage in the two-
stage model of expedient behaviour in ran-
dom medium. Vestnik Novgorodskogo Univer-
siteta 34, 73–75. (In Russian).

Prokhorov, Yu.V. and Yu.A. Rozanov (1987).
Theory of Probability. Nauka. Moscow. (In
Russian).

Sragovich, V.G. (1981). Adaptive Control. Nauka.
Moscow. (In Russian).

Tsetlin, M.L. (1973). Automation Theory and
Modeling of Biological Systems. Academic
Press. New York. (Translated from Russian).

Vogel, W. (1960). An asymptotic minimax theo-
rem for the two-armed bandit problem. Ann.
Math. Stat. 31, 444–451.

Witmer, J.A. (1986). Bayesian multistage decision
problems. Ann. Stat. 14, 283–297.


