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Abstract

In this paper, we are interested in the question of how
bistability can appear in coupled neurons. Concrete
motivation for such a general problem is the search for
a way to destroy an organism having a stable dynamics
by destabilizing its metabolism. To address this issue,
we consider the model of a pair of neuron cells coupled
via an electrical synapse. We focus on the Hindmarsh-
Rose model which provides a simple description of the
patterned activity observed in molluscan neurons. The
results of numerical simulations show that asymmetric
electrical coupling between periodically spiking neural
oscillators results in bistability in this system. One of
the coexisting attractors is a limit cycle similar to the
attractor of the uncoupled neuron, while the other one
can be either a chaotic or a periodic orbit depending
on the coupling strengths. Bistability is only observed
for relatively small couplings. When the coupling is
sufficiently strong, the neurons are in a monostable pe-
riodic regime, similar to the spiking regime observed in
the uncoupled neurons.
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1 Introduction

Synchronous firing of cortical inhibitory neurons
plays an important role in encoding of information in
the cortex [Singer and Gra, 1995; Ritz and Sejnowski,
1997]. Certain neurons in the mammalian brain have
long been known to be joined by electrical synapses im-
plicated in several physiological aspects of brain func-
tion and in anomalous population activity characteris-
tics of epilepsy. An electrical synapse is a conduc-
tive link between two neurons in the form of a nar-
row gap known as a gap junction which allows vari-
ous molecules and ions to pass directly from one cell
to another. Gap junction intercellular channels are the
structural basis of synapses that provide a high electric
conductance for direct exchange of ions, metabolites,
secondary messengers, and small molecules between
neighboring cells [Laird, Castillo, and Kasprzak, 1995;
Evans and Martin, 2002]. Depending on the gap junc-
tion type, the molecules can pass either in both direc-
tions or asymmetrically, thus providing electrical com-
munication between the neighboring cells. Gap junc-
tions can synchronize electrical activity and may sub-
serve metabolic coupling and chemical communication
as well [Bennett and Zukin, 2004]. Since a gap junc-
tion creates a bridge connecting two cells, when cur-
rent flows from a more positive cell to depolarize a
more negative cell, the transjunction current makes the
first cell less depolarized; the coupling excites one cell
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while inhibiting the other. Therefore, one can char-
acterize these synapses as synchronizing rather than
excitatory or inhibitory. Although most of electrical
synapses are bidirectional, some gap junctions restrict
communication to only one direction or represent an
asymmetry in coupling [Bukauskas et al., 2002], i.e.
the efficacy of transmission in one direction is greater
than in the other, as is the case at the giant motor
synapse of the crayfish [Furshpan and Potter, 1959].
In spite of a great interest in understanding cooper-

ative behavior of coupled neurons, where identifica-
tion and characterization of neuron dynamics are es-
sential, and a large number of papers on synchroniza-
tion of coupled neural oscillators [Belykh, de Lange,
and Hasler, 2005; Abarbanel, Huerta, and Rabinovich,
1996; Bazhenov et al., 1998; Baptista, Moukam Kak-
meni, and Grebogi. 2010; Liang et al., 2009], the prob-
lem of how interaction among the cells promotes syn-
chrony is not yet well understood [Whittington, Traub,
and Jefferys, 1995; Bennett and Zukin, 2004]. In this
work, we are interested in the question of how bista-
bility can appear in a given neuron model. Concrete
motivation of such a general problem is the search for
a way to destroy an organism having a stable dynamics
by destabilizing its metabolism. To address this issue
theoretically, we study the model of a pair of neuron
cells coupled via an electrical synapse. Here, we fo-
cus on the Hindmarsh-Rose (HR) model [Hindmarsh
and Rose, 1984] which provides a simple description of
the patterned activity observed in molluscan neurons.
Even though this model is not wholly based on physiol-
ogy as the accurate Hodgkin-Huxley model [Hodgkin
and Huxley, 1952], it allows basic phenomenological
description of neuron dynamics, such as quiescence,
spiking, irregular spiking and chaotic bursting [Rabi-
novich and Abarbanel, 1998; Belykh, de Lange, and
Hasler, 2005], and reveals nonlinear dynamical mecha-
nisms underlying many biological processes.
Choosing the parameters so that the uncoupled neu-

rons are in a periodic spiking regime, we study how the
system dynamics depends on the coupling strengths by
analyzing bifurcation diagrams of interspike intervals
(ISI) and Lyapunov exponents.

2 Model
The system of two coupled HR neurons can be de-

scribed by the following nonlinear differential equa-
tions:

ẋ1 = y1 − ax3
1 + bx2

1 − z1 + Iext1 + σ1(x2 − x1),
ẏ1 = c− dx2

1 − y1,
ż1 = r[s(x1 − x0)− z1],
ẋ2 = y2 − ax3

2 + bx2
2 − z2 + Iext2 + σ2(x1 − x2),

ẏ2 = c− dx2
2 − y2,

ż2 = r[s(x2 − x0)− z2],
(1)

where x1,2 are membrane potentials, y1,2 are recovery
variables associated with a fast current of Na+ or K+

ions, z1,2 are adaptation currents associated with a slow
current of Ca+2 ions, Iext1,2 are external input currents,
x0 = −1.6 is the x-component of the stable equilib-
rium point without input (Iext = 0), and 0 < σ1,2 < 1
are electrical coupling strengths used as control param-
eters. The following parameters are used in numerical
simulations: a = 1, b = 3, c = 1, d = 5, s = 4, and
r = 0.006.
The dynamics of the membrane potential x is deter-

mined by the value of Iext. For small and large Iext, the
solitary neuron generates tonic spikes, whereas for in-
termediate current its dynamics is chaotic. In this work
we fix the currents for both neurons at Iext1 = Iext2 =
Iext = 1.4, where the uncoupled neurons oscillate in a
periodic spiking regime.

2.1 Bistability
In the majority of papers a bidirectional coupling is

considered as symmetrical. It is well known that two
identical neurons with symmetric coupling represent
similar dynamics, as shown in Fig. 1. No bistability
was found in symmetrically coupled neurons.
Significantly less attention was paid to a study

of asymmetrically coupled neurons [Kim and Jones,
2011]. Here, we will show that the asymmetry leads
to bistability in the neural system, that was never ob-
served in symmetrically coupled neurons.
The time series of two coexisting regimes, periodic

and chaotic, in asymmetrically coupled neurons are
shown, respectively, in Figs. 2 and 3. These states
were found by taking different initial conditions, when
all system parameters were fixed.
One can see that one of the coexisting states is peri-

odic (Fig. 2), whereas the other one is chaotic (Fig.
3).
Bistability can also be revealed with bifurcation dia-

grams calculated by taking random initial conditions.
Such bifurcation diagrams of inter-spike intervals (ISI)
for two coupled neurons are shown in Fig. 4.
One can see that the bifurcation diagram contains sev-

eral branches. One of them (P1) corresponds to tonic
spikes, similar to the uncoupled neuron, and the other
ones to the coexisting chaotic (for 0.11 < σ2 < 0.16
and 0.20 < σ2 < 0.24) or periodic attractor.

2.2 Lyapunov Exponent
Another measure which can reveal the coexistence of

attractors is the Lyapunov exponent. In Fig. 5 we plot
the largest Lyapunov exponent for the coupled neural
system in the space of two coupling strengths, σ1 and
σ2, calculated for fixed initial conditions. One can see
that the exponent values are asymmetric with respect to
the diagonal, although the system Eq. (1) is symmetric.
This means that the system is bistable for certain values
of the coupling parameters.
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Figure 1. (a,b) Time series of neural membrane potentials and (c)
synchronization phase portrait for symmetrically coupled neurons
with σ1 = σ2 = 0.051. Starting from different initial condi-
tions, the neurons generate asynchronous tonic spikes.

3 Conclusion

We have shown that bistability can appear in asym-
metrically coupled spiking neurons for certain values
of the coupling strengths. While one of the coexisting
attractors is periodic, the other one can be either pe-
riodic or chaotic. This effect has been demonstrated
in the Hindmarsh-Rose neural model with time series,
phase-space portraits, bifurcation diagrams, and Lya-
punov exponents.
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Figure 2. Coexisting periodic regime in asymmetrically coupled
neurons. (a,b) Tonic spikes of (a) neuron 1 and (b) neuron 2, and
(c) synchronization phase portrait for σ1 = 0.05 and σ2 = 0.2.
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and neuron 2, respectively, and (c) synchronization phase portrait for
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