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Abstract: The inertial navigation system means the determination of position, velocity and attitude of 
vehicles using only inertial sensors, accelerometers and gyrometers for strapdown inertial navigation 
system. INS/GPS has proven to be a very efficient means of navigation due to the short term accuracy of 
INS allied to the long term accuracy of GPS. This integration was tested through non linear filters as 
extended Kalman filter (EKF) and Sigma-points Kalman filters (SPKF), both were compared in this work 
and were applied to direct mode integration in possible reactivated selective availability (SA) conditions.  
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                              1. INTRODUCTION 

The integrated systems INS/GPS were widely used in both of 
military and civilian applications. During these last thirty (30) 
years , different architectures of integrations were deployed 
and investigated , using several algorithms in filtering theory, 
linear and non linear filters were applied to estimate different 
state navigation compounds as position, velocity and attitude 
of the vehicles (car, aircraft, underwater,. .etc). the most 
popular filter used in this kind of integration was and is at 
this time too the extended kalman filter (EKF). The non 
linear equation of inertial navigation imply the used of non 
linear filtering in most of time, EKF is a local filter witch 
uses a linearization through Taylor development at the first 
order only, in the case of non derivative non linear function at 
a given estimate point, creating a singularity point and non 
efficiency of the EKF, so, by the way, others estimators were 
introduced to salve this problems , the most interesting filters 
are the Sigma points Kalman filters (SPKF)  (Van der 
Merwe.R, E. Wan, and S. J. Julier 2004) both Unscented 
Kalman Filters (UKF) and Central Difference Kalman Filters 
(CDKF) mean the SPKF, in this case, it is not the non linear 
function witch is estimate but the RGV , and the density of 
probability using a deterministic sigma points to estimate at 
the first and the second order the moment of the RGV, so, the 
means and the covariance of the state vector can be estimated 
better than by the EKF, because the accuracy of these kind of 
estimators is the second and the third order of Taylor 
development  ,in these algorithms, the non linear equations 
are directly use to propagate the sigma points through the 
state system equation and the observation equation. The UKF 
uses a deterministic sampling approach to capture the mean 
and covariance estimates with a minimal set of sample points.  

 

 

For the CDKF, it adopts an alternative method in 
linearization called central difference approximation, like the 
UKF, CDKF generates several points about the mean based 
on varying the covariance matrix along each dimension, also 
it evaluates a non linear function at two different points for 
each dimension of the state vector that are divided by an 
appropriate chosen[,  the SPKF are powerful estimators and 
have been to be a superior alternative to the EKF in several 
applications. We will see in this work the advantages of each 
estimator according to integrated navigation application. 

 

                         2. KALMAN FILTERING 

In the early 40s, and through great efforts of military research 
conducted at Massachusetts Institute of Technology , Wiener 
became interested in the problem of filtering and gave birth 
to the first filter that bears his name ''Wiener filter .'' In 1961, 
Kalman and Bucy introduced a filter that enriches the Wiener 
filter on two essential points: 

- The filter is a recursive filter.  

- The filter can be applied to a non stationary process. 

The Kalman filter (KF) was developed in a linear model in 
the presence of additive Gaussian noise. However, the 
assumption of normality noise is not restrictive to the 
functioning of the filter. In many situations the KF is still 
robust vis-à-vis the nature of noise in particular those whose 
power is low. However, the assumption of linearity remains 
important. 

 



 
 

     

 

2.1. Kalman filtering algorithm 

The linear Kalman filter is presented under as (Kim.J2004): 

 

 

  

 

 

 

 

 

 

 

Important note : the initialization is not more important in the 
linear case to ensure the convergence of the filter. 

2.2 Extended Kalman filter (EKF)  

It is the  most used technique in non linear filtering . for each 
time of calculation of the algorithm, the non linear dynamic 
and the measurement functions are approximated to the first 
order of Taylor development  around the current estimates. 
The algorithm of EKF is done as this(Kim.J2004): 

 

 

 

2.3  Sigma Point Kalman filters 

The sigma-points Kalman filters are used a deterministic 
sampling points to capture the mean and the covariance of the 
estimate state vector, according to those definitions (Crassidis 
J.L 2006), we can present the algorithms of the UKF and the 
CDKF (resp.) like in the following points(Cho.S.Y2006): 

 

 2.3.1. Unscented Kalman filter algorithm 

For the UKF , the propagation will do in one step and 
propagated through the non linear function of the dynamic 
and measurement equations of the system(Haykin.S 2001). 
We can compare it with the CDKF algorithm :  
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• For  k=1…….∞  

1. t=k-1 
2. sigma points                        
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3. propagation of the sigma points through the 
system equation 
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2.3.2. Central difference Kalamn filter 

For the CDKF , it is the approximately the same idea as in 
UKF algorithm, at the difference of the steps of propagation 
of the sigma points through the non linear functions of 
dynamic of the system and measurement equation, behind 
this the non linear approximation of these functions using the 
divided differences (Van der Merwe 2004) .  

   

 

 

 

 

 

Generally we use the optimal value of h =1 (Norgard.M 
2000). 

                       3. NAVIGATION SYSTEMS 

We have to present briefly the strapdown inertial navigation 
system and the global positioning system witch are integrated 
using variants Kalman filters: 

3.1 Inertial Navigation System - INS 

At first , we have to define the different frames witch are 
used in inertial equations: 

     

                       Fig.1. inertial navigation frames 

There are four (04) different frames : inertial frame (i), earth 
frame (e) Navigation frame (n) and body frame (b) 

-The mechanisation of strapdown inertial navigation is done 
as this (Savage 1998): 

The attitude of the vehicle is obtained using the following 
integration: 
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According to the director cosines matrix and attitude 
integration’s matrix: 

 

         

 

And  

         

 

For position and velocity integration we have to use the 
following equations in North, East and Down direction of 
navigation frame (n): 
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Where [ ]TLLar h    λϕ=  is the vector of the three 

positions: latitude, longitude and altitude of the vehicle. 
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3. propagation of Sigma points through the 
dynamic function 
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4. Sigma points of measurements 
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5. Update and filtering 
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rM
: Meridian radius of the earth in WGS 84 system.  

rT
:  Tangential radius of the earth in WGS 84 system. 

By this, we can integrate the last equation to obtain the 
position in the navigation frame using the following equation: 
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3.1.1 Errors in inertial sensors 

Bias :       

 

Scale factors:     

 

 Non linearity:   

 

The inertial navigation system presents some advantages and 
disadvantages as follow  : 

-Advantages: complete output solution, good accuracy during 
short time, high data rate and small size. 

-Disadvantages: accuracy decrease after a long time, gravity 
sensitivity and obligatory external aid for initialization. 

So, after have seen generally the inertial navigation system , 
we will try to define briefly the GPS working as in the follow 
paragraph. 

3.2 Global Positioning System  -GPS 

The Global Positioning System (GPS) is a spaceborne, radio 
navigation system. Its world-wide coverage, availability, and 
high accuracy makes it one of history’s most revolutionary 
developments. In airborne navigation, its complementary 
characteristics to the inertial navigation system make it an 
excellent aiding source.              

3.2.1 GPS measurements 

The principal mode of GPS measurement is the code 
measurement  mode (  ). 

Code measure:      

             ( 6 ) 

c: light velocity, i
jρ : pseudorange between gps receiver and 

gps satellite .  

In our work the date used to integrate INS were position and 
velocity from final GPS output. The satellite data are 
provided in WGS84 coordinates system (Bo.T 2005). 

Where GPS has several advantages and disadvantages as 
following: 

Advantages:  precision during long term, absolute position 
and operational conditions.  

Disadvantages: multipath problems, dependency to the 
United state’s Department of Defense and atmospheric 
delays. 

                            4. INTEGRATED SYSTEM 

The goal of hybridization is to combine two systems with the 
advantages of one are the disadvantages of the other and vice 
versa. The hybridization of such systems should lead to the 
creation of a new optimal improving the effectiveness of the 
two merged, and optimizing their respective characteristics in 
the area in which they live. 

We can give the principal modes of INS/GPS integration : 

-Non coupled mode. 

-Indirect mode loosely coupled. 

-Direct mode. 

4.1 Mode of INS/GPS integration 

In our work, the direct mode was used to implement the INS 
non linear model of dynamic state equation and a linear 
model of GPS measurement equation. The following figure 
shows the direct integration mode (Kim.J 2004): 

 

 

                     Fig.2. Direct mode integration 

This mode imply to use a non linear estimators because there 
are nonlinear equations to integrate as it is done in the 
following paragraph. 

4.2 State equations of discrete direct mode 

In this case, we have choose to integrate the positions using 
the distances north, east and down without use latitude 
,longitude and altitude as presented in previous paragraph,  
the velocities are integrated in north ,east and down 
directions, and the angles integration provide yaw, pitch and 
roll angles of the vehicle  the state equations in discrete time 
could be written as the following forms (Sukkarieh.S 1999): 
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 Where ))(w),(u),1(xf()(x kkkk −= is the state vector 

to estimate and contains three positions, three velocities and 
three angles of vehicles attitude (Sukkarieh.S 1999). 
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The observation equation from GPS is linear as: 

                             kkk VXHZ +=+ )(1                       (10) 

Where observation matrix is as follow: 
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)(kQ is the noise covariance matrix of GPS measurement. 

The noise is assumed white Gaussian additive noise. 

                                    5. SIMULATIONS 

In our work the duration of simulation was Time=100s, and 
all EKF, UKF and CDKF were implemented using 
MATLAB software, in S.A (selective Availability) 
conditions, an we assumed that all noises are white Gaussian 
noises ,the simulations data are as in following: 

Sample time ∆ t=0.005s, receiver noise=10m, accelerometer 
bias=0.05-1g, gyrometer bias=0.02-2°/s ,velocity=150-
220m/s, Uncertainty initial in North distance  :  1000m, 
Uncertainty initial in East distance :   1000m, Uncertainty 
initial in Down distance  :  100m , Uncertainty initial in VN :  
5m/s, Uncertainty initial in VE :  5m/s, Uncertainty initial in 
VD : 10m/s, Uncertainty initial in ϕ(yaw): 1°, Uncertainty 
initial in  θ (pitch) : 1° , Uncertainty initial in ψ (roll) : 1°, 
and GPS data in SA conditions are augmented from 10m to 
1000 m during 40 seconds for positions ,from 5 m/s to 50m/s 
for velocities and from1° to 10° for attitudes angles . 
concerning the initialization step of the three filters , it was 
the same and the following value: 80% from the true values 
of the state vector. GPS data were used at the frequency of 
10Hz and the inertial integration process was made at the 
frequency of 200 Hz. We can observe in the following  
figures the simulation results and comment them easily 

below. All the results are showed on the nine (09) following 
figures. 
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    Fig.3. North distance in meter (m) during time (s) 

Fig.4. East distance in meter (m) during time(s) 

     Fig.5. Vertical distance  in meter(m) during time (s) 

Fig.6. North velocity estimation (m/s) during time (s) 

Fig.7. East velocity estimation (m/s) during time in second (s) 



 
 

     

 

 

 

 

 

     

                                 6. CONCLUSION 

After testing the various algorithms to estimate a nonlinear 
model, we can conclude that all these algorithms have 
worked well and gived good results without real difficulties 
with the exepted UKF with three parameters to set properly. 
It is therefore worth noting that it would be preferable to 
implement a CDKF that UKF since it shows the performance 
and competing does not parameters. but hardly a time of 
execution is little more. For the velocity , SPKF offer better 
solutions then EKF in general conditions, but when SA was 
introduced , we observed a duration of time to return on the 
true values of the estimate state vector. Really , the SPKF in 

this case and using this model don’t perform significantly the 
EKF because the non linearity is only present in the dynamic 
state equation, witch is used only to make the prediction step 
, so in the future work , these algorithms will be used and 
applied in INS/GPS integration using a non linear 
measurement model to determine and verify the theoretical 
results comparing means and variances of each estimator. 
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Fig.8 .Down velocity estimation(m/s) during time in second (s) 

Fig.9 .pitch angle estimation in degrees (°) during timle in second (s) 

Fig.10. Yaw angle estimation in degrees (°) during time in second (s) 

Fig.12. Roll angle estimation in degrees (°) during time in second (s) 


