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Abstract: The inertial navigation system means the deteroinaf position, velocity and attitude of
vehicles using only inertial sensors, accelerormsetard gyrometers for strapdown inertial navigation
system. INS/GPS has proven to be a very efficiezdims of navigation due to the short term accurécy o
INS allied to the long term accuracy of GPS. Thegration was tested through non linear filters as
extended Kalman filter (EKF) and Sigma-points Katnfiters (SPKF), both were compared in this work
and were applied to direct mode integration in fidsseactivated selective availability (SA) conalits.
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1. INTRODUCTION

The integrated systems INS/GPS were widely usdmbth of
military and civilian applications. During thesestahirty (30)
years , different architectures of integrations evdeployed
and investigated , using several algorithms ieffiitg theory,
linear and non linear filters were applied to estiendifferent
state navigation compounds as position, velocity atitude
of the vehicles (car, aircraft, underwater,. .eftle most
popular filter used in this kind of integration wasad is at
this time too the extended kalman filter (EKF). Then
linear equation of inertial navigation imply theedsof non
linear filtering in most of time, EKF is a localltér witch
uses a linearization through Taylor developmenithat first
order only, in the case of non derivative non limfeaction at
a given estimate point, creating a singularity paind non
efficiency of the EKF, so, by the way, others estions were
introduced to salve this problems , the most irstiamg filters
are the Sigma points Kalman filters (SPKF)
Merwe.R, E. Wan, and S. J. Julier 2004) both Unszkn
Kalman Filters (UKF) and Central Difference Kalmaitters

(CDKF) mean the SPKF, in this case, it is not tba finear

function witch is estimate but the RGV , and thegigy of

probability using a deterministic sigma points siimate at

the first and the second order the moment of th¥/ R®, the

means and the covariance of the state vector castbeated

better than by the EKF, because the accuracy stthimd of

For the CDKF, it adopts an alternative method

linearization called central difference approxiroatilike the
UKF, CDKF generates several points about the meaed
on varying the covariance matrix along each dimamsalso
it evaluates a non linear function at two differgoints for
each dimension of the state vector that are dividgdan

appropriate chosen[, the SPKF are powerful estimatnd
have been to be a superior alternative to the BK&everal
applications. We will see in this work the advaesgf each
estimator according to integrated navigation ajaioe.

2. KALMAN FILTERING

In the early 40s, and through great efforts of tani}i research
conducted at Massachusetts Institute of Technojolfiener

(Varr Olebecame interested in the problem of filtering aasegbirth

to the first filter that bears his name "Wiendefi." In 1961,
Kalman and Bucy introduced a filter that enriches Wiener
filter on two essential points:

- The filter is a recursive filter.
- The filter can be applied to a non stationarycpss.

The Kalman filter (KF) was developed in a lineardabin
the presence of additive Gaussian noise. Howeuss, t

estimators is the second and the third order ofloray assumption of normality noise is not restrictive tle

development ,in these algorithms, the non linepradons
are directly use to propagate the sigma pointsuftiothe
state system equation and the observation equdtlenUKF
uses a deterministic sampling approach to caphegentean
and covariance estimates with a minimal set of $ampints.

functioning of the filter. In many situations theFKs still

robust vis-a-vis the nature of noise in particuleose whose
power is low. However, the assumption of linearigynains
important.



2.1. Kalman filtering algorithm

The linear Kalman filter is presented under as (KR2004):

 Initialisation : X , et p, .

* Prediction :

Xk =@y Xy
Pk = @ P @ kT +Qy

» Filtering :
-1
Kk Pk/lekT HkPk/k—lHkT+Rk

X X k/k- 1+Kk (Zk_Hka/k—l)
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® k =k +1

Important note : the initialization is not more iantant in the
linear case to ensure the convergence of the.filter

2.2 Extended Kalman filter (EKF)

It is the most used technique in non linear fittgr. for each
time of calculation of the algorithm, the non lineynamic
and the measurement functions are approximatehetdirst
order of Taylor development around the currentmedes.
The algorithm of EKF is done as this(Kim.J2004):

* Initialisation : ¢ et p, .
» Prediction :

Xisare = Fi(Xy)
Pk =F (X )P F (X )T +Q,

* Filtering :

KR H &) HK IR H G R
>A§< =>A§</k—1+K<lZz _Q(X/k—:l)]
R K HK e Rica

e k=k+1

2.3 Sgma Point Kalman filters

The sigma-points Kalman filters are used a detastiin
sampling points to capture the mean and the cawegiaf the
estimate state vector, according to those defimsti@rassidis
J.L 2006), we can present the algorithms of the WiKE the
CDKEF (resp.) like in the following points(Cho.S.Y28):

e Initialisation
X, = E[Xo]r P, = El_ Xo - )A(o)(xo - )A(O)TJ

X2 = E[[xg] = [xgvoT nOT]

P =E (Xg -% )(Xo - XS)T]
P, 0 O
=|l0 R, O
0 0 R,
. For k=1....... 0
1. t=k-1

2. sigma points

N A A

3. propagation of the sigma points through tile
system equation

o= tlesox )
R 2L
Xk = z w\mX\Xk/l
i=0
2L R . T
Po=> @i - 20 e - %0)
i=0
4. Filtering
k/t h(Xklt‘X'{)
2L
e =2 @i

szzwic(lk/t yk)(lk/t )
kaw = . w, ()(lk/t Xk)( |k/t )

le-3<a<1,B=2,k=0

2.3.1. Unscented Kalman filter algorithm

For the UKF , the propagation will do in one stepda
propagated through the non linear function of tlyaadnic
and measurement equations of the system(Haykin(8)20
We can compare it with the CDKF algorithm :



2.3.2. Central difference Kalamn filter 3. NAVIGATION SYSTEMS

For the CDKF , it is the approximately the sameaids in  We have to present briefly the strapdown inerteigation
UKF algorithm, at the difference of the steps dbpagation system and the global positioning system witchiategrated
of the sigma points through the non linear funatioof using variants Kalman filters:

dynamic of the system and measurement equatiorindeh . L

this the non linear approximation of these fundiosing the 3.1 Inertial Navigation System- INS
divided differences (Van der Merwe 2004) . At first , we have to define the different framegch are
used in inertial equations:

* |nitialisation
Xo = E[Xo], P,, = El_(xo = %o )%, - )A(O)TJ

2. Sigma points
% =[x v]

P 0
pov = | e
0 R

Xlav = [)'zlav )'Zlav + h Plav )’Zla\/ — hﬁ] ¥ %
3. propagation of Sigma points through the :
dynamic function

xio= o)

N Fig.1. inertial navigatioames
X, = Z @" X
i=0

There are four (04) different frames : inertialnfie (i), earth

N A
Pi=Y [@@(X‘x’m - ka“)z + o (/Y.‘,k,[ X 2)(5,“[)2 frame (e) Navigation frame (n) and body frame (b)
i=1

-The mechanisation of strapdown inertial navigati®mione
as this (Savage 1998):

The attitude of the vehicle is obtained using tbkofving

4. Sigma points of measurements

£, = [kk‘ ﬁ] integration:

an _ Px: 0 .
Pt = o R 4 P cod sinsind  cogsind) p

o o nAm p= o — p=|6|=C_ |q|=——| 0 cogrod -sipcod|q| (1)
X = [Xepe X+ hy P Xere =y P ] : oop ! par r cod 0 sinp cow |

5. Update and filtering v

According to the director cosines matrix and athéu

integration’s matrix:

Y = h(/Yl?/wXEH) g
2L

Y = zw\in‘ t

R ! costog/ —cogsin/+singsirbcog  sigsiny+cogsirbcog/

P, = i [wfl(Y_k,[ BN T \ P 2Y0,k,[)2] R,=| cossiny cogrogrsinsitdsiny  —sinrog-cogsirsiny (2)
- T n -sirg sirgcod cogros
Pykxk = \l(“)lC Py )[Y]_'L,k/l _YL+12L,k/l]
And
K, = Pw Pykil . ) (1) sin g tan 8 cos_ gtan g (3)
A - - 6wy = cos @ sin @
Xk=Xk+Kk(yk_yk) 0 sin gsecd cos gsecd
P, = P — KiPy K¢ For position and velocity integration we have tce ube
, , 1 following equations in North, East and Down direqtiof
h=1, &) = (h - L)/h , =W navigation frame (n):
’ . vo) ((ry +h) 0 o’
wt = TE ’ V' =lvg | = 0 (r;+h)cogp 0 A (4)
v, 0 0 -1 N

w? = (h? -1)/ an*

: Wh ta = T s th t f the th
Generally we use the optimal value #f=1 (Norgard.M ('e.re T lo 2 h.] s e 'vec or o . e e
2000). positions: latitude, longitude and altitude of trehicle.



r: Meridian radius of the earth in WGS 84 system.
M

r+: Tangential radius of the earth in WGS 84 system.

By this, we can integrate the last equation to iobthe
position in the navigation frame using the follogiiequation:

?’ (ry +h) 0 0 vy
fe=lAl=| 0  (qthcogp 0 |v. [=Dv" (5)
i 0 0 -1 Vg
3.1.1 Errorsininertial sensors
Bias : Qoupr = B T OBy
wou’tpul = winpul + 50') bias
Scale factors: Qoo = K2 @inpu
a)output =K w a)input
. o ~ ,
Non “nearlty. aompm - KO + K1ainpm + Kzainput ..
— 2
woutput - LO + Lla)inpui + Lza)inpui ..

The inertial navigation system presents some adgastand
disadvantages as follow :

-Advantages: complete output solution, good acgudacing
short time, high data rate and small size.

-Disadvantages: accuracy decrease after a long tinagity
sensitivity and obligatory external aid for initizdtion.

So, after have seen generally the inertial navgasystem ,
we will try to define briefly the GPS working astime follow
paragraph.

3.2 Glabal Positioning System -GPS

The Global Positioning System (GPS) is a spacehaatko
navigation system. Its world-wide coverage, avdlikyh and
high accuracy makes it one of history’s most retiohary
developments. In airborne navigation, its completagn
characteristics to the inertial navigation systemkenit an
excellent aiding source.

3.2.1 GPS measurements

Advantages: precision during long term, absolubsitpn
and operational conditions.

Disadvantages: multipath problems, dependency te th
United state’s Department of Defense and atmospheri
delays.

4. INTEGRATED SYSTEM

The goal of hybridization is to combine two systemith the
advantages of one are the disadvantages of the arlevice
versa. The hybridization of such systems should keathe
creation of a new optimal improving the effectives®f the
two merged, and optimizing their respective chanéstics in
the area in which they live.

We can give the principal modes of INS/GPS intégrat
-Non coupled mode.

-Indirect mode loosely coupled.

-Direct mode.

4.1 Mode of INS'GPSintegration

In our work, the direct mode was used to implentkatINS
non linear model of dynamic state equation andnaali
model of GPS measurement equation. The followiggré
shows the direct integration mode (Kim.J 2004):

Position
Velocity
angles

B

[l [/
GPS

Fig.2. Direct mode integration

This mode imply to use a non linear estimators bsedhere
are nonlinear equations to integrate as it is dondhe
following paragraph.

4.2 Sate equations of discrete direct mode

The principal mode of GPS measurement is the cod this case, we have choose to integrate theiposiusing

measurement mode ( ).

Code measure:

Pil = p'J +cot = \/(XJ _)(I)Z-p(yJ - y')2+(zi —Zi)2 + cot

(6)

the distances north, east and down without useudti
Jongitude and altitude as presented in previousgraph,
the velocities are integrated in north ,east andvrdo
directions, and the angles integration provide ypit¢h and
roll angles of the vehicle the state equationdigtrete time

c: light velocity, pij : pseudorange between gps receiver angbuld be written as the following forms (Sukkart&1.999):

gps satellite .

In our work the date used to integrate INS werdtjposand
velocity from final GPS output. The satellite datae
provided in WGS84 coordinates system (Bo.T 2005).

Where GPS has several advantages and disadvaraage YK

following:

P py(k—-+y, (k¢ w, ()
%09 | = vy k-Gl b0+, 0+ [+ w, (9
k-DHEKR-YSR -+ | [w, 0

(7)



Where X (k) = f(x(k —2),u(k),w(k)) is the state vector below. All the results are showed on the nine f@¥pwing

to estimate and contains three positions, threecitads and 19Ures.

three angles of vehicles attitude (Sukkarieh.S 1999
E[w, (k)] =0

T Uzb 0 (8)
Efw, (K)w, (k)" ]=Q(k) = Of

0.2
Where
ap" (k) op" (k) ap" (k)
op"(k-1) ov'(k-1) ay"(k-1) (9)
| av™(k) av" (k) ov" (k)
Of, (k) =
op"(k-1) ov"(k-1) ay"(k-1)
ay" (k) ay" (k) ay" (k)
| op"(k-1) ov"(k-1) Ody"(k-1) ]

The observation equation from GPS is linear as:
Z., =H(X,)+V, (20)

Where observation matrix is as follow:

1 0 000
H, =0 1 0|0 (11)
0 0 10|0
E[V, (K] =0
Where : (12)

E[V, (k)V, (k)] =Q(K)

Q(K)is the noise covariance matrix of GPS measurement.

The noise is assumed white Gaussian additive noise.
5. SIMULATIONS

In our work the duration of simulation was Time=&p@nd
all EKF, UKF and CDKF were implemented using
MATLAB software, in S.A (selective Availability)
conditions, an we assumed that all noises are v@dtessian
noises ,the simulations data are as in following:

Sample timeA t=0.005s, receiver noise=10m, accelerometer
bias=0.05-1g, gyrometer bias=0.02-2°/s ,velocitye=15
220m/s, Uncertainty initial in North distance: 1000m,
Uncertainty initial in East distance : 1000m, ¥rainty
initial in Down distance : 100m , Uncertaintytial in VN :
5m/s, Uncertainty initial in VE : 5m/s, Uncertajrinitial in
VD : 10m/s, Uncertainty initial inp(yaw): 1°, Uncertainty
initial in O (pitch) : 1° , Uncertainty initial inp (roll) : 1°,
and GPS data in SA conditions are augmented from tt
1000 m during 40 seconds for positions ,from 5 t@/S0m/s
for velocities and froml° to 10° for attitudes as®l.
concerning the initialization step of the thredefit , it was
the same and the following value: 80% from the wakies
of the state vector. GPS data were used at theidrery of
10Hz and the inertial integration process was maidéhe
frequency of 200 Hz. We can observe in the follawin
figures the simulation results and comment themilyeas
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6. CONCLUSION

After testing the various algorithms to estimateamlinear
model, we can conclude that all these algorithmseha
worked well and gived good results without reafidifities
with the exepted UKF with three parameters to seperly.
It is therefore worth noting that it would be prefele to
implement a CDKF that UKF since it shows the perfance
and competing does not parameters. but hardly a tin
execution is little more. For the velocity , SPKffeo better
solutions then EKF in general conditions, but wissh was
introduced , we observed a duration of time torretan the
true values of the estimate state vector. Redle ,SPKF in

this case and using this model don't perform sigaiitly the
EKF because the non linearity is only present endiinamic
state equation, witch is used only to make theiptied step

, SO in the future work , these algorithms will bged and
applied in INS/GPS integration using a non linear
measurement model to determine and verify the dieat
results comparing means and variances of eachastim
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