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Abstract 
The nonlinear behaviour of the buck converter controlled 

by double-edged PWM waveform is studied in this paper. 
The stability of the system is analyzed using the state 
transition matrix over one switching cycle (the monodromy 
matrix) including the state transition matrices during each 
switching (saltation matrices). Three supervising control 
methods are applied to extend the normal period one 
operation of the system. Good agreement is demonstrated 
between theoretical analysis, numerical simulations and the 
results are experimentally verified.   
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1  Introduction 
    Pulse width modulation (PWM) is the most frequently 
used control method for switching converters. 
Conventionally a saw-tooth signal is compared with a 
control signal to produce a series of pulses that control the 
states of the power electronic switches. The nonlinear 
effects of these switchings have been extensively studied in 
the past and various methods have been proposed for their 
analysis and control [Verghese, Elbuluk and Kassakian, 
1986], [Chakrabarty, Poddar and Banerjee, 1996], [Di 
Bernando, Garofalo, Glielmo and Vasca, 1998], and [Tse, 
2003]. Most of these methods assume that the saw-tooth 
signal is discontinuous at t =T, where T is the period of the 
signal. This, however, is not a valid approximation at high 
frequencies where the signal looks more like an 
asymmetric triangular wave. Such a system demands a 
fresh look at its bifurcations and chaotic behaviour. 

The control of a chaotic response has been the focus of 
extensive research such as the Ott-Grebogi-Yorke (OGY) 
method [Ott, Grebogi and Yorke, 1990] and linear Time 
Delayed Feedback Control (TDFC) method [Bleich,  and 
Socolar, 1996] and [Pyragas, 2001] which are designed to 
stabilize one of the unstable periodic orbits that exist in a 
chaotic system. However, these controllers may require 
high processing power and are not always applicable to real 
systems with small signal to noise ratio. An alternative 
method has been proposed by the authors which is simpler, 
easier to implement, and greatly extends the stable 
operating region of the converter [Giaouris, Banerjee, 

Zahawi and Pickert, 2008] and [Giaouris, Elbkosh, Pickert, 
Zahawi and Banerjee, 2006]. This method is based on 
changing the state transition matrices during the switchings 
in such a way that the eigenvalues of the system remain 
within the unit cycle. In this paper, the analysis is extended 
by applying this method to DC/DC buck converters 
controlled by double-edged PWM waveform.  

The paper is organized as follows: Section two briefly 
outlines the operation of the DC/DC buck converter and its 
dynamic equations. Section three shows the bifurcation 
behaviour of the system. In Section four, we analyse the 
stability of the system based on the complete cycle solution 
matrix of the system (the monodromy matrix). Finally, we 
apply three control methods based on the proposed analysis 
to maintain the stability of the system over a much wider 
range of input parameters. Analytical, numerical and 
experimental results validate the proposed controllers. 

 
2 System Descriptions and Operation 
   Fig. 1(a) shows a simplified block diagram that describes 
the voltage mode controlled buck converter.  
 

a)      

b)         
Figure 1. (a) Block diagram of the buck converter with voltage controller, 

(b) the generation of switching signal. 

 



The switch S is controlled by a comparator which 
compares the control signal Vcon with a suitable periodic 
triangular waveform Vtri and a switching occurs when these 
two signals become equal (Fig. 1b). The triangular signal 
can be written as:  
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where VU, VL are the upper and lower limit of the 
triangular signal and LU VVV −=∆ . The state equations 
that represent the states during a switching cycle are: 
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3  Bifurcation Behaviour 

In general, the circuit gives an average dc output voltage 
close to the desirable value with a periodic ripple equal to 
the period of the driving clock (the triangular signal) as 
shown in Fig. 2. However, by increasing the input voltage a 
smooth period doubling bifurcation renders the system 
unstable and almost instantly a nonsmooth bifurcation 
forces the system into a chaotic region (Figs. 3 & 4).  
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Figure 2. Experimental result, Period-1 operation at input voltage of  

20 volt, Vref = 11.3 V, Kp = 8.4, L= 0.002 H, C = 47µF, R=22 Ω,  
T=400 µs, VL = 3.8 V, VU = 8.2 V 
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Figure 3. Bifurcation diagram with input voltage as bifurcation parameter  
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Figure 4. The period-2 response of the system at input voltage of 34 V  
 
This non-smooth bifurcation occurs when the periodic 

solution of the system touches the non-smooth hyper-
surface (i.e., the upper or lower part of the triangular 
signal) [Banerjee, Ott, yorke and Yuan, 1997], [Yuan, 
Banerjee, Ott and yorke, 1998], [Banerjee and Verghese, 
2001] and [Tse and Di Bernardo, 2002]. 
 
4 Stability Analysis of the System  

The stability analysis of a saw-tooth controlled DC/DC 
converter is usually based on the derivation of the Poincaré 
map of the system [Verghese, Elbuluk and Kassakian, 
1986], [Banerjee and Chakrabarty, 1998], [Di Bernando 
and Vasca, 2000] and [Fang and Abed, 2001]. Other 
methods include trajectory sensitivity [Hiskens and Pai, 
2000] and auxiliary vectors [Dranga, Buti, Nagy and 
Funato, 2005]. A different approach, based on the system 
saltation matrices [Aizerman and Gantmakher, 1958], 
[Filippov, 1988], [Baushev, Zhusubaliev, Kolokolov, and 
Terekhin, 1992] and [Zhusubaliyev, Soukhoterin, and 
Mosekilde, 2001] as previously applied to non-smooth 
mechanical systems [Leine, Campen and Vrande, 2000] 
and [Leine and Nijmeijer, 2004], has been proposed by the 
authors and applied to DC/DC converters with fruitful 
results [Giaouris, Banerjee, Zahawi and Pickert, 2008], 
[Giaouris, Elbkosh, Pickert  , Zahawi and Banerjee, 2006] 
and [Giaouris, Elbkosh, Banerjee, Zahawi and Pickert, 
2006]. One of the advantages of this method is that it treats 
each switching separately and hence the overall analysis is 
simpler than the conventional Poincaré map approach. 
Furthermore, the analysis it offers an insight into the 
operation of the system and its loss of stability, and hence 
makes it possible to derive new control laws to extend the 
stable operating region [Giaouris, Banerjee, Zahawi and 
Pickert, 2008]. 

The application of the scheme to converters that use a 
triangular carrier wave imposes new challenges as the 
trajectory crosses two switching manifolds at t = d1T and    
t = d2T  (Fig. 5). 

 

11.9 11.92 11.94 11.96 11.98 12
0.48

0.5

0.52

0.54

0.56

0.58

0.6

output voltage (V)

in
du

ct
or

 c
u
rr
e
nt

 (A
)

Switch OFF

Switch ON

f-f+

h1

h2

f+ f-

X (d2T)

X (d1T)

X (T)=X(0)

 
Figure 5. Period-1 orbit of the system 



 
The monodromy matrix of the system consists of the 

fundamental solution matrices during the smooth areas and 
the saltation matrices during the switchings [Leine and 
Nijmeijer, 2004]:  
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where S2 and S1 are the saltation matrices at the switching 
time d2T and d1T, respectively [Leine and Nijmeijer, 
2004], and can be calculated from:      
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where h is the switching manifold, n is the normal to h, I 
is the identity matrix,  is the switching time, and 

are the two smooth vector fields before and after the 
switching. From the circuit topology, it can be deduced 
that the two switching manifolds are: 
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The perpendicular vectors onto these surfaces are: 
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At the time instant t = d1T the switching condition 
 is satisfied and hence a switching takes place 

from f  to f
( ) 0, =Tdh x

ETdx ))(( BxA +=− ETdx ))(( BxA
11

s 11 s 21 +=+ . 
The saltation matrix at this point is calculated from (4):  

        

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

×
−

−
−+= 0

5.0
)())()((

00

11121

p

LU

KT
VV

C
RTdxTdx

LE
IS      (6) 

   
At t= d2T, there is another switching as ( ) 0, 22 =Tdh x . 

The two vector fields before and after the switching 
are  &ETdx s 22 ))(( BxAf +=+ ETdx s 12 ))(( BxAf +=− . 
The state transition matrix at this point is  
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The stability of the system can be determined by 

calculating the Floquet multipliers or the eigenvalues of the 
fundamental solution matrix M.  Common problems that 
have to be addressed here are the location of the limit cycle 
and the times at which the switchings take place. This can 
be achieved numerically by deriving a nonlinear function 

( )idg  whose root will define the switching instant [Fossas, 
and Olivar, 1996] and [Giaouris, Banerjee, Zahawi and 
Pickert, 2008]. Once the switching instances have been 
identified, utilizing the fact that the system is linear time 
invariant (LTI) before and after the switching, it is possible 
to locate the limit cycle. Once these values are found, the 
monodromy matrix can be expressed as a function of the 
input voltage using (3), (6) and (7), and its eigenvalues can 
be calculated. Fig. 6 shows the eigenvalues of the system 
for different values of the input voltage clearly indicating 
the loss of stability through a smooth period doubling 
bifurcation around 32.3 V as predicted by the results 
presented in Figs. 2-4. At this point we would like to note 
that these results could have also been obtained by using 
the Poincare map but then the analysis would have been 
more complicated as the overall formula for the Jacobian of 
the Poincare map would have to include all the switchings 
[Fang and Abed, 2001].  
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Figure 6. Loci of the eigenvalues of M  

 
5 Control of Bifurcation  

In addition to its simplicity, the stability analysis 
presented in the previous section offers an insight into the 
behaviour of the system that can be used to evolve control 
strategies to avoid instabilities. The control requirement 
here is not only to stabilise the period-1 orbit but also to 
keep the same steady state value, which implies keeping 
the location of the orbit almost unchanged. First of all we 
note that the stability of the system is governed by the 
eigenvalues of the state transition matrix over a clock cycle 
(the monodromy matrix), and this matrix is in turn 
influenced by the state transition matrices across the 
switching events (the saltation matrices). Hence it is 
possible to stabilize the orbit without changing its location 
by manipulating the saltation matrices. Thus we aim at a 
control action that will change M but not ( ) ( )0,, xx TdTd ii . 
S can be influenced by changing the smooth vector fields 
before and after the switching, and the switching manifold. 
In practice we cannot change the vector fields as this would 
imply the physical re-design of the converter. But it is 
possible to alter the switching manifold(s). To avoid a big 
change that would change the location of the limit cycle we 
aim at small changes in h that will cause “significant” 
changes in ∂h/∂x and ∂h/∂t.   
5.1 Control Based on the Change of the Upper Limit of 

the Ramp Signal 
The system can be stabilized and the eigenvalues of the 

monodromy matrix pushed back inside of the unit circle by 



modifying the peak value of the ramp signal (VU) to (a1 VU) 
with the value of a1 chosen to determine the desired 
location. The effect of this change is to alter the time 
derivative of h to influence the saltation matrices. Using the 
theory presented in the last section it is possible to create 
an analytical expression of the Floquet multipliers as a 
function of a1. Hence, by numerically solving the non-
linear transcendental equation 0824.0))0,(( =−Teig M , it 
is possible to locate the eigenvalues at a predefined 
location (in this case at a circle of radius 0.824) which 
indicates stable period-1 behaviour. Corresponding values 
of a1 for different values of input voltage can then be 
calculated (Fig. 7). Experimental waveforms of the output 
voltage and the inductor current at 34 V are presented in 
Fig. 8 showing that the system is operating in period-1 
operation. Note that according to Fig. 4 the system is 
unstable at an input voltage of 34V without the proposed 
control. 
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Figure 7. Values of a1 calculated to place the eigenvalues at a circle of 

radius 0.824-change of the ramp signal 
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Figure 8. Experimental results with the controller at input voltage of 34 V. 

  
5.2 Control Based on an Additional Sinusoidal Signal 

Another control method is based on adding a sinusoidal 
signal to the switching manifold h, this can be made by 
changing the value of Vref to Vref (1+ a2 sin(ωt)), where 
ω=2π/T and the values of a2 are chosen to determine the 
desired location. The effect of this change on the saltation 
matrix can be seen by deriving the time derivative 
of : )(( 11 TdXh

        ( )( )
p

LU
ref KT

VVtaV
t

TdXh
×
−

−−=
∂

∂
5.0

)()cos(2
11 ωω      (8) 

It is obvious from (8) that altering the value of a2 will 
have an effect on the time derivative and hence S1 and the 
eigenvalues of the monodromy matrix. Again we can locate 

the eigenvalues at any chosen location. The relation 
between the change of the input voltages and the required 
values of a2 for a radius of 0.824 are shown in Fig. 9. The 
response of the system while the input voltage changes 
suddenly from 30 to 35V (at 0.1 sec.) is shown in Fig. 10. 
It is clear that the system, after a very small transient, will 
settle down quickly to the stable period 1 limit cycle.  
This method of stabilising an unstable orbit by another 
signal at the same frequency is referred to as “resonant 
control” and it has been empirically applied to a PWM 
controlled buck converter [Zhou, Tse, Qiu, and Lau, 2003]. 
But, by using the saltation matrix approach it is possible to 
carefully design the controller and avoid using trial and 
error approaches which may lead to instability.  
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Figure 9. Values of a2 calculated to place the eigenvalues at a circle of 

radius 0.824-additional sinusoidal signal.  
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Figure 10. Response of the controller when the input voltage is changed 

 
5.3 Control Based on Additional Control Signal 

Proportional to the Output Voltage 
Another control method is based on introducing a change 

to the normal to the switching manifold. In this method, we 
slightly change the magnitude of the normal vector n so 
that [ ]Tp ak 0)1( 3+=n . This will have an influence on the 
saltation matrices S1 and S2 thus changing the position of 
the eigenvalues of the system. The relation between the 
change of the input voltages and the required values of a3 
are shown in Fig. 11. The response of the system when the 
input voltage changes from 30 to 35V is shown in Fig. 11. 
The system settles to the stable period 1 limit cycle after a 
brief transient.  
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Figure 11. Values of a3 calculated to place the eigenvalues at a circle of 

radius 0.824-proportional control signal 
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Figure 12. Response of the controller when the input voltage is changed 

It is clear that all three controllers extend the range of 
period one operation. However the third controller which is 
based on additional control signal proportional to the 
output voltage has a higher steady-state error. 

 
6 Conclusion  

In this paper, the stability of the buck converter 
controlled by double-edged PWM waveform was analysed 
using the complete–cycle solution matrix. Based on the 
expression of the saltation matrices, we have proposed and 
demonstrated three controllers to control the first period 
doubling to extend the parameter range for stable period-1 
operation. The supervising control laws are based on 
suitably changing the switching manifolds so that the orbit 
will be stabilised without altering its location, i.e. by 
keeping the same average value. All controllers were 
analytically, numerically, and experimentally validated.  
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