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Abstract
This paper presents new algorithms for area coverage

by mobile robotic swarms in complex and unknown en-
vironments. The robots are silent and not aware of the
team’s size, do not discern between each other, lack ac-
cess to a positioning system, and cannot play distinct
roles and so should be driven by a common control rule.
On the positive side, they determine the relative posi-
tions of the objects, including the boundary of the han-
dled area and obstacles, within a given finite sensing
range and have access to a common direction. The pro-
posed algorithms are attributed the physics-inspired vir-
tual force-based (VFB) approach. To highlight their ben-
efits, the paper reports on comparative analysis of seven
methods, including the above two ones and an essential
group of well-established algorithms that follow VFB
approach and are suited to handle the examined scenario.
The analysis is carried out using a whole range of vari-
ous metrics, which capture different aspects of the per-
formance quality. Moreover, a new criterion of coverage
uniformity is introduced and justified. Extensive com-
puter simulations in complex scenes have shown that the
proposed algorithms demonstrate the best performance
in terms of coverage uniformity and percentage.

1 Introduction
Rapid advances in robotics, computing, and commu-

nications have enabled practical deployment of self-
organized networks using inexpensive robotic devices.
These devices cooperate through sensing or communi-
cation to accomplish common tasks such as monitor-
ing, processing, or ensuring communication connectiv-
ity [Savkin et al., 2015,Cortés and Egerstedt, 2017,Wang
et al., 2018]. Applications include target detection and
tracking; surveillance and rescue operations (e.g., de-

tecting individuals trapped in fires at burning buildings);
autonomous deployment of ad-hoc wireless communi-
cation or sensor networks; mini-satellite control in low
earth orbit [Somov et al., 2023]; precision farming; vir-
tual antenna array construction [Wang et al., 2018]; un-
derwater pollution source identification; and quadcopter
synchronization [Sharma and Lather, 2024]. The in-
troduction of 5G and IoT technologies significantly en-
hances robotic networks’ capabilities in coverage mis-
sions.

In resource-constrained networks, nodes face limita-
tions in detection range, communication, and operational
capabilities. Effective performance requires strategic
placement to ensure full area coverage. Due to a range of
factors, including poor knowledge on the area, its inac-
cessibility or dangerousness, a critical option is sensor-
based self-distribution of mobile nodes. Algorithmic ho-
mogeneity—where nodes execute identical rules with-
out peer differentiation—offers benefits including fault
tolerance, scalability, and cost-effectiveness, aligning
with current swarm robotics research [Muhsen et al.,
2024]. Energy efficiency necessitates halting nodes post-
coverage while maintaining self-reorganization capacity
for node failures.

Distributed algorithms for self-spreading of homoge-
neous robotic teams have gained significant attention
in recent decades. For detailed overviews and tax-
onomies, we refer readers to [Sadeghi Ghahroudi et al.,
2023, Muhsen et al., 2024]. Briefly, a large category
consists of metaheuristic methods inspired by animal ag-
gregation phenomena and swarm intelligence [Houssein
et al., 2024, Muhsen et al., 2024]. Representative exam-
ples include ant colony optimization, particle swarm op-
timization, bacterial foraging optimization, and bee al-
gorithms. Other approaches borrow concepts from im-
munology, genetics, and evolutionary biology. Within
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this category, stochastic mechanisms are common, and
research objectives often exclude requirements for even-
tual node stoppage and complete static coverage forma-
tion.

Another category comprises physicomimetics-based
methods. Dominated by deterministic techniques, these
approaches draw significant inspiration from poten-
tial force fields and molecular equilibrium phenomena
[Sadeghi Ghahroudi et al., 2023, Muhsen et al., 2024].
Although classically understood in terms of forces, many
methods are ultimately formulated using velocity or
single-step displacement vectors (see e.g., [Ma et al.,
2008]). The key feature is that each node determinis-
tically calculates a movement vector based on local in-
formation to determine its immediate motion.

A third abundant category is distinguished by its clear-
cut reliance on concepts and techniques of geometry
[Sadeghi Ghahroudi et al., 2023, Muhsen et al., 2024].
Using a Voronoi tessellation is a popular approach here.
Another approach is based on access of all nodes to a
common global geometric structure, e.g., a regular grid
or cell decomposition. For further discussion of the
area, we refer the reader to the specialized surveys, see
e.g., [Priyadarshi et al., 2022, Sadeghi Ghahroudi et al.,
2023, Muhsen et al., 2024] and the literature therein.

These algorithms pursue diverse objectives, such as
filling coverage holes. Our focus is robots starting from
a small disembarkation point that must self-distribute to
cover large complex areas and ultimately halt. This is
particularly critical for GPS/LPS-denied environments
lacking communication and prior scene knowledge.

On the one hand, these limitations narrow down the di-
versity of the relevant algorithms. On the other hand, the
remaining group is still ample and ever-growing. This
is by itself a sign of a lack of an absolute leader. Also,
choice from so many options is no easy task, especially
since a rigorous analysis of convergence is typically an
intricate matter in this field so that computer simulations
and sometimes real-life experiments come to the fore.

Motivated by the foregoing, this paper pursues and of-
fers the following objectives and contributions.

i) We report on the findings from our comparative
analysis of an essential group of deterministic algo-
rithms of nodes self-spreading that are well suited to
handle the outlined scenario of our interest and can be
attributed to the VFB approach. Partly based on the
analysis from [Sadeghi Ghahroudi et al., 2023], we se-
lect the algorithms DSSA [Heo and Varshney, 2003],
SSND [Ghahroudi et al., 2019], SWARM [Mathews
et al., 2012], VFA-SF [Deng et al., 2019], and SODA
[Ghahroudi et al., 2018] on the ground that they embody
key and somewhat keystone ideas of the group.

In the documents known to the authors, pair-wise
and sometimes triple-wise comparisons were addressed.
This hampers capturing the whole picture and selecting
an algorithm whose individual combination of strengths
and weaknesses best fits a particular scenario at hands.

ii) Being motivated by the results from i) and concerns

about the distribution uniformity, we offer two new VFB
algorithms and include them in the set analysed in i).

According to our study, they overall tend to perform
better w.r.t. deployment uniformity in terms of both area
coverage and distances travelled and also w.r.t. the cov-
erage percentage. They demonstrate a better coverage
quality in complex scenes, enabling the network to cover
the entirety of the area in scenarios where the competi-
tors leave considerable subareas uncovered. Also, the
rules regulating the phases of the network self-spreading
and stoppage, respectively, are identical for the new al-
gorithms. The benefit from this is that if an already built
static coverage is violated, the nodes automatically re-
sume moving in order to fix the damage.

iii) For the integrity of comparison, we simultane-
ously use the most of the performance metrics com-
monly found in the literature. They capture different
aspects of the quality of service: time elapsed until the
halt of the network, eventual coverage percentage, en-
ergy consumption, mean distance traveled by the nodes,
and the uniformity of the distances.

To the best of the knowledge of the authors, compara-
tive analysis was previously performed by using only a
few, typically one, criterion. This did not lay ground for
a clear picture when selecting a particular method.

Also, we offer, advocate, and use a new and comple-
mentary criterion: the area coverage uniformity. It as-
sesses the degree of uniformity in the distribution of the
network resources over the area. This may be of interest
to ensure, e.g., equal tolerance of various parts of the net-
work to faults and so robustness of the overall network
to faults in unknown and equiprobable parts.

iv) We test the algorithms in complex environments
cluttered with obstacles.

Previously, node deployments were largely tested in
convex and simple, so to say, prototypical areas without
obstacles. There are not so much algorithms for cover-
age of complex areas with obstacles; see, e.g., [Bartolini
et al., 2017, Eledlebi et al., 2022]). Mostly, they are spe-
cially fitted to this case and do not meet all limitations
that define the scenario studied in this paper. As is em-
phasized in, e.g., [Ghahroudi et al., 2022], broad com-
parison of area coverage methods in complex scenes ba-
sically lies in an uncharted territory.

The implicit focus of this article is on missions where
a moderate swarm’s size of about dozens of robots is
enough, like in some missions on precision farming in
agriculture [Mahbub, 2020], or underwater surveillance
[Ferri et al., 2017], or building virtual antenna arrays
[Wang et al., 2018]. As a result, exactly such sizes are
considered in our experiments.

For the convenience of the reader, the paper offers
pseudocodes of all compared algorithms.

The body of the paper is organised as follows. In Sec.
2, we formulate the problem. Section 3 introduces the
proposed algorithms, whereas Section 4 discusses vari-
ous performance metrics. Section 5 reports on the results
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Figure 1. (a) Zone Mi and frame Fi; (b) Building semi-reflections.

of computer simulation tests and based on them, offers
a comparative analysis of several algorithms. Section 6
offers brief conclusions and describes future work.

2 Problem statement
A team of N point-wise mobile robots operates in a

plane R2. The position of robot i is denoted by ri ∈
R2. Unless otherwise stated, we assume robots with
continuous-time simple integrator kinematics:

ṙi(t) = ui(t) ∀t ≥ 0, i = 1, . . . , N. (1)

Here ui(t) is the control input built by robot i at time t.
Any robot i has its own monitoring zone Mi: robot i

can detect objects from Mi and determine their relative
positions. This zone is the disc centered at ri and with a
radius of Rsen. The robots are anonymous to each other,
i.e., they cannot distinguish among the peers.

The team should be spatially distributed in such a way
that every point from a certain a priori unknown region
R ⊂ R2 is covered by the monitoring zone of some
robot. More precisely, a motion control rule is to be
designed such that when being individually run by ev-
ery robot, it eventually creates a situation where the just
stated objective is attained and all robots halt. Any robot
has the capacity to detect the edge of R within the mon-
itoring zone; the robots are initially in R.

In practice, there are scenarios where robot i somehow
influences close objects or communicates with them, and
it is needed that eventually any point of R is affected by
or communicates with some robot. The model employed
in this paper assumes that the distances of monitoring,
influence, and communication (if applicable) are equal;
otherwise, they are to be artificially reduced to the least
of them prior to the use of the algorithms to be discussed.

The following notations are further adopted:
• |E|, number of elements (the size) of a finite set E;
• ∥ · ∥, ⟨·; ·⟩, standard norm and inner product in R2;
• S(E), area of the measurable set E ⊂ R2;
• s, number of the angularly equal sectors Sk

i in Mi;
• ⊕,⊖, addition and subtraction modulo s;
• e⃗(α), unit vector with the polar angle α;
• Ci := {p : ∥p− ri∥ = Rsen}, circle bounding Mi;
• s⃗k := e⃗ [2πk/s], unit vector along the ray separating

the sectors Sk
i and Sk⊖1

i ;
• m⃗k = Rsen e⃗ [

2πk+π
s

]
, vector bisecting Sk

i ;
• tki := ri + m⃗k, so-called top of the sector Sk

i ;
• seci(p), index k of the sector Sk

i containing p ∈ Mi.

If point p lies on the border of two sectors, seci(p) is
the index of the counterclockwise one.

3 Proposed algorithms
They assume that the robots have access to a common

direction, which can be acquired, e.g., by using a com-
pass. Any robot i uses this direction as that of the x-axis
to build a right-handed Cartesian frame Fi centered at
ri. Also, robot i partitions its monitoring zone into s an-
gularly equal sectors S0

i , . . . , S
s−1
i rooted at ri and la-

beled counterclockwise; see Fig. 1(a), where s = 6. The
design parameter s = 3, 4, . . . is common for all robots,
and the sector S0

i is clockwise edged by the x-axis.
Our algorithms use the following two parameters:

C > 0, gain of the control loop;
s ≥ 3, number of the sectors.

3.1 Sectoring algorithm (SA)
At any time t ≥ 0 any robot i does the following:

s.1) Finds the locations of visible robots (neighbors):

Ni := {rj : 0 < ∥rj − ri∥ ≤ Rsen} ; (2)

s.2) Partitions Ni into sectorial bins B0
i , . . . , B

s−1
i :

Bk
i = {rj : rj ∈ Ni and seci(rj) = k} ; (3)

s.3) If a bin Bk
i is empty, concocts a fictitious robot at

the “top” tki of the sector Sk
i and “puts” tki into Bk

i ;
s.4) Selects the nearest neighbor in every sectorial bin:

pk
i = argmin

p∈Bk
i

∥p− ri∥ (4)

and determines its relative position: nk
i := pk

i −ri;
s.5) Finds the mean distance to the nearest neighbors:

Di := s−1
s−1∑
k=0

∥nk
i ∥; (5)

s.6) Computes the current control:

ui := C ·
s−1∑
k=0

nk
i

∥nk
i ∥

· ∥n
k
i ∥ −Di

Di
. (6)

If in s.4), a robot faces many nearest neighbors, it tries
to make a choice so that the result depends on time con-
tinuously, and chooses at random in the case of failure.

In (6), the unit vector nk
i

∥nk
i ∥

is aimed at the nearest

neighbor in the sector Sk
i . The entire k-th addend tries to

drag the robot either toward the nearest neighbor or away
from it depending on whether the distance to this neigh-
bor is above or below the mean of such distances over all
beans. The “drag strength” is proportional to the relative
deviation of this distance from the mean value. Finally,
averaging of the results over all bins is employed.
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3.2 Continuous sectoring algorithm (CSA)
SA employs a discontinuous regulation rule. Poten-

tially (but not necessarily), this creates risks of un-
wanted complications: chattering in possible sliding-
mode regimes and excessive activity in the control loop.

CSA modifies SA in order to reduce the exposure to
losses of continuity. As will be shown, not only this goal
is achieved but also some extra benefits result from this
modification. However, the price for these is a modestly
increased computational complexity. So in practice, it is
recommended to replace SA with CSA only if the above
complications are proven to be a real concern.

The following events may (not inevitably) cause abrupt
jumps of the control signal when executing SA :

✧ neighbors leave the monitoring zone;
✧ neighbors move from one sector to another;
✧ Within the same bin, the status of the nearest neigh-

bor passes from one robot to another so that the bearing
of the nearest neighbor instantaneously alters.

The measures taken to inhibit jumps are as follows:
❍ Any robot is complemented by its two reflections

about the boundary rays of the hosting sector;
❍ The concept of a “shadow” of a point is introduced

so that the shadow evolves continuously in some cases
where the parent point jumps;

❍ The set (2) of neighbors is replaced by the set of
their shadows and the shadows of their reflections;

❍ The true nearest neighbor (4) is replaced by some-
thing similar that continuously evolves with time.

To come into details, we start with two procedures that
are to be executed by any robot i, preliminarily denoting

sec+i (p) := seci(p)⊕ 1, sec−i (p) := seci(p)⊖ 1.

Building the reflections of a point p ∈ Mi,p ̸= ri.
The sector Si(p) := S

seci(p)
i hosting p is identified and

the following steps are performed (see Fig. 1(b)):
Step 1: The distances D± from point p to the boundary
rays of Si(p) are computed:

D+ :=

√
∥p− ri∥2 −

〈
s⃗sec+(p);p− ri

〉2︸ ︷︷ ︸
minς≥0∥ri+ςs⃗sec+(p)−p∥

,

D− :=

√
∥p− ri∥2 −

〈
s⃗sec(p);p− ri

〉2
;

Step 2: They are converted into the relative values:
θ± := D±

D++D− ≥ 0, θ− + θ+ = 1;
Step 3: The radius-vectors of the semi-reflections of p
are build via the convex combination of a specially cho-
sen bisector and “boundary” vectors:

R̃±
i (p) = θ± · m⃗sec±(p) + θ∓ · ζ⃗±, where

ζ⃗+ := ∥p− ri∥ · s⃗sec+(p), ζ⃗− := ∥p− ri∥ · s⃗sec(p);

Step 4: Two reflections of p are found:

R±
i (p) = ri +

R̃±
i

∥R̃±
i ∥

·max
{
∥p− ri∥, ∥R̃±

i ∥
}
. (7)

It is easy to see by inspection that the following holds.

Remark 1. As point p ̸= ri ranges over Sk
i , its reflec-

tion R+
i (p) runs in the adjacent half-sector of Sk⊕1

i .
Points p and R+

i (p) fuse as p goes to the counterclock-
wise boundary ray of Sk

i ; see Fig. 2(a). As p approaches
the other boundary ray, the reflection R+

i (p) goes to the
top tki of Sk⊕1

i . Finally, R+
i (p) is a Lipschitz continuous

function of p ̸= ri. Similar properties hold for R−
i (p).

Building the shadow of a point p ∈ Mi,p ̸= ri:
Step 1: The unit vector n⃗ is built that is normal to the
bisector of Sseci(p)

i and is oriented counterclockwise;
Step 2: For p, the signed distance Dbis to this bisector
and the distance Dout to the border of Mi are calculated:

Dbis := ⟨n⃗i(p);p− ri⟩ , Dout := Rsen − ∥p− ri∥;

Step 3: The mismatch µ := |Dbis| −Dout is evaluated;
Step 4: The vector of direction to the shadow is found:

S̃i(p) := p−ri−

{
µ · n⃗i(p)sgnDbis if |Dbis| > Dout,

0 otherwise;

Step 5: The shadow of p is build via going from ri in
the just found direction to a position equidistant with p:

Si(p) = ri +
S̃i(p)

∥S̃i(p)∥
∥p− ri∥. (8)

It is easy to see that the following is true.

(a)

bi
se

ct

outer circle

equidistant
from the circle 

and bisect

the top of 
the sector

(b)

Figure 2. (a) Behavior of the reflections; (b) Building the shadows.

Remark 2. The shadow Si(p) is a Lipschitz continuous
function of p ∈ Sk

i \ ri and lies no farther from the
bisect bi of Sk

i than p does. If p is closer to the bisect
than to the border Ci of Mi (such p’s form the light red
set in Fig. 2(b)), then Si(p) = p. Otherwise, p first
moves closer to bi along the normal n⃗ until its distance
to bi becomes equal to the original distance from p to
Ci; in doing so, p goes away from Ci. Then the radius
vector of p is scaled to restore the initial distance to Ci.
If originally p ∈ Ci, then Si(p) is the top of the sector.
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Appointing to the role of the nearest neighbor.
Given a finite nonempty set P ⊂ Sk

i of contenders, the
role is entrusted to a point, which continuously depends
on the elements of P but may lie outside P . If P ⊂ Ci,
the role is given to the top tki (see Fig. 2(b)). Otherwise,

nn.1) The weight of every point p ∈ P is first found:

wi(p|P ) :=
(Rsen − ∥p− ri∥)2∑

p′∈P (Rsen − ∥p′ − ri∥)2
; (9)

nn.2) The relative location of the appointed “nearest
neighbor” is defined as the convex combination

ni(P ) :=
∑
p∈P

wi(p|P )(p− ri). (10)

The closer p to robot i, the larger its weight (9). Thus
contribution of the close neighbors is prioritized, while
neglecting neither member of P .

Description of CSA . This algorithm uses the param-
eters C and s of SA .

At any time t ≥ 0 any robot i does the following:

c.1) Replaces every element of the set (2) by its shadow
and the shadows of its reflections, thus forming

Ni :=
{
Si(rj), Si

[
R±

i (rj)
]
: j ∈ Ni

}
; (11)

c.2) Like in (3), distributes Ni into s sectorial bins Bk
i ;

c.3) Puts the top of the sector into every empty bin;
c.4) In every bin Bk

i , finds the radius vector nk
i :=

ni(B
k
i ) of the “appointed” nearest neighbor (10);

c.5) Completes computation of the control ui just as
SA does, i.e., in accordance with (5) and (6).

The following proposition shows that CSA does get rid
of the discontinuities that are characteristic for SA .

Proposition 3.1. Suppose that s ≥ 3. For any robot
i, the control input ui generated by CSA is a Lipschitz
continuous function of the team’s state R := {ri}Ni=1.

Proof. Due to (5) and (6), it suffices to show that for any
k, the output nk

i of the step c.4) a) is nonzero and b) is a
Lipschitz continuous functions of R.

a) Since rj ̸= ri ∀j ∈ Ni by (2), all elements of
the set (11) differ from ri by (7) and (8). Due to c.2)
and c.3), any sectorial bin is nonempty, contains only
nonzero vectors, and lies in a sector whose angular span
does not exceed 120◦ (so long as s ≥ 3). So the convex
combination (10) (with P := Bk

i ) is nonzero.
b) The rules nn.1), nn.2) and Rem. 1, 2 imply that nk

i

is a Lipschitz continuous function of R near any state at
which none of the following circumstances holds:

1. Some robot rj lies on the boundary circle Ci;
2. Some robot rj lies on a boundary radius of a sector;
3. An element of the set (11) lies on such a radius.

It remains to study nk
i (·) near states R∗ at which 1), or

2), or 3) holds. We’ll examine these cases separately.
1) As R wanders near R∗, the set (2) may change via

either accepting j or withdrawing it. When this happens,
rj ∈ Ci. Then Ci contains any reflection rf of rj and
by Rem. 1, the shadows of rf and rj are the tops of the
respective sectors. In (10) (with P := Bk

i ), only these
shadows may jump. By (9), their weights are zero for
R = R∗ and smoothly depend on R if rj goes to or
from Ci. Hence Lipschitz continuity is not violated.

2) Building the shadow of p uses the bisect of the sec-
tor Sseci(p)

i containing p. If p lies on the common radius
of two sectors Sk

i and Sk⊕1
i , then seci(p) = k ⊕ 1. All

steps of shadow-building are well defined if using the bi-
sect of the other sector Sk

i . We denote their result and the
true shadow by Ski (p) and Sk⊕1

i (p), respectively. Then
Ski (p) is a Lipschitz continuous function of p ∈ Sk

i \ ri.
Let R wanders near R∗ = {r∗j}. Robot j may move

between two adjacent sectors (say Sk
i and Sk⊕1

i ), going
through a point r∗j of their common radius. Due to 1) of
the proof, it suffices to focus on the case where r∗j ̸∈ Ci.

Let rj ∈ Sk
i goes to r∗j . Then it is easy to see that

R+
i (rj) → r∗j and R+

i (rj) ∈ Sk⊕1
i by Rem. 1;

R−
i (rj) → tk⊖1

i and R−
i (rj) ∈ Sk⊖1

i by Rem. 1;
Si(rj) = Ski (rj) → Ski (r

∗
j );

Si
[
R+

i (rj)
]
= Sk⊕1

i

[
R+

i (rj)
]
→ Sk⊕1

i (r∗j );
Si
[
R−

i (rj)
]
= Sk⊖1

i

[
R−

i (rj)
]
→ tk⊖1

i ;

Meanwhile, as rj goes to r∗j while remaining in Sk⊕1
i ,

R−
i (rj) → r∗j and R−

i (rj) ∈ Sk
i by Rem. 1;

R+
i (rj) → tk⊕2

i and R+
i (rj) ∈ Sk⊕2

i by Rem. 1;
Si(rj) = Sk⊕1

i (rj) → Sk⊕1
i (r∗j );

Si
[
R+

i (rj)
]
= Sk⊕2

i

[
R+

i (rj)
]
→ tk⊕2

i ;
Si
[
R−

i (rj)
]
= Ski

[
R−

i (rj)
]
→ Ski (r

∗
j ).

Thus as rj → r∗j , the set (11) converges to one of two
limit sets, depending on the “side” from which rj goes
to r∗j . These limit sets have common points Ski (r

∗
j ) and

Sk⊕1
i (r∗j ) and may differ only by elements of the form

tk⊖1
i , tk⊕2

i . Since in (10), the latter elements are taken
with the zero weights (9) and the weights are Lipschitz
continuous functions of the point, we infer that nk

i is
such a function of the state R.

3) It suffices to note that this situation cannot occur if
both 1) and 2) do not hold.

4 Performance metrics
There are practical reasons to evaluate the quality of

area coverage from a variety of aspects. So it does not
come as a surprise that many performance metrics have
been proposed in the literature. We employ not a single
but a whole series of them, thus attempting to carry out
multifaceted analysis of the concerned algorithms.

Elapsed time [Heo and Varshney, 2003] The time
elapsed until all robots halt.



CYBERNETICS AND PHYSICS, VOL. 14, NO. 1, 2025 57

Coverage percentage [Heo and Varshney, 2003] is
the portion of the area covered by the robots altogether:

Coverage percentage :=
S(

⋃N
i=1 Mi)

S(R)
. (12)

Mean distance [Heo and Varshney, 2003] results
from averaging the distances traveled by the robots.

Distances uniformity [Heo and Varshney, 2003] this
index results from averaging (over all robots) the disper-
sion of the distances to the robot’s neighbors:

Distances uniformity :=

:=
1

N

N∑
i=1

√
1

|Ni|
∑
j∈Ni

(dij −Mi)2,

where dij := ∥ri − rj∥, Mi :=
1

|Ni|
∑
j∈Ni

dij .

Energy consumption [Ghahroudi et al., 2019] is the
total energy spent by all robots provided that one unit of
energy is spent to move a robot by one unit of length.

We also introduce a new criterion to assess the amount
of variation in the number of robots that detect a partic-
ular point, where the variation is registered as the point
runs all over the region R to be covered.

Area coverage uniformity. We denote by C(r) =
|{j : r ∈ Mj}| the number of robots that detect r
(C(r) := 0 if there are no such robots), and put

Area uniform :=

√
1

S(R)

∫
R
[C(r)− Cmean]2 dr,

Where Cmean := 1
S(R)

∫
R C(r) dr. The index

Cmean evaluates the mean number of robots that must
be disabled to reduce coverage percentage. A high
Area uniform value indicates the presence of weak
spots in the network - areas with either low or high robot
concentrations. Low-concentration spots are more vul-
nerable: disabling fewer robots in these areas can com-
promise coverage of R. High-concentration spots are
undesirable as they present attractive targets for attack-
ers capable of disabling unlimited robots within a spe-
cific radius.

Thus, Area uniform focuses on vulnerability issues.
Uniformity of the team’s distribution between given sub-
regions can be assessed by the index called the deploy-
ment entropy. Unlike the former, the latter depends on
partition of the scene into cells, which is typically not a
part of the scenario but is an artifice of the researcher.

5 Analysis of the performance of the algorithms
To highlight motivation and demonstrate benefits of

the control protocols proposed in Sec. 3.1 and 3.2, we
compare their performance with that of several well es-
tablished algorithms applicable in the scenario consid-
ered in this paper. For the convenience of the reader,
we start by outlining these algorithms; for more details
about them, we refer the reader to the original works.

5.1 VFB algorithms of area coverage.
Distributed Self Spreading Algorithm (DSSA) [Heo

and Varshney, 2003] handles the discrete-time model:

ri(t+ 1) = ri(t) + ui(t), t = 0, 1, . . . . (13)

Its parameters: Olim, Slim – bounds on the numbers of
the so-called oscillatory and “marking time” steps; e –
threshold used to judge the type of the step.

Any robot i at t = 0 starts counting the numbers of
oscillatory and “marking time” steps: Oi := 0, Si := 0.

At any time t this robot does the following:

1. Sets the expected nodes’ density: µ =
N ·π·R2

sen
S(R) ;

2. Finds the number Di(t) = |Ni(t)| of the neighbors,
where the set of them includes i and is defined by

Ni(t) := {j : ∥rj(t)− ri(t)∥ < Rsen}; (14)

3. Finds a virtual force from every neighbor j ∈ Ni(t):

Fij(t) :=
Di(t)

µ2
(∥rij(t)∥ −Rsen)

rij(t)

∥rij(t)∥
, (15)

where rij(t) := rj(t)− ri(t);

4. Finds the “precontrol”: ũi(t) =
∑

j∈Ni(t)
Fij(t);

5. Checks the prospective step for its oscillatory status:
if |ri(t−1)−ri(t)− ũi(t)| < e, then Oi := Oi+1;
if Oi ≥ Olim, then ui(t) :=

ũi(t)
2 and goes on to 8);

6. Checks this step for its “marking time” status:
if |ũi(t)| < e, then Si := Si + 1
if Si ≥ Slim, then ui(t) := 0 and moves on to 8);

7. ui(t) := ũi(t), upd. ri(t+ 1), t := t+1, goes to 2);
8. Updates ri(t+ 1), t := t+ 1, and halts.

Further, the argument t is omitted for brevity.

Self-organizing node deployment algorithm (SODA)
[Ghahroudi et al., 2018] also handles the model (13).
SODA is identical to DSSA, except for one point: in
(15), min{Di, µ}

µ2 is put in place of Di

µ2 .

Smart self-organizing node deployment algorithm
(SSND) [Ghahroudi et al., 2019] comes to execution
of DSSA for only a time-varying subset of nodes that
is formed via computing a special variable Eligi (called
eligibility), with using a free parameter α > 0.

Any robot i at t = 0 initializes counting mi := 0 the
number of times when i was elected to move.

At any time t this robot does the following:

1. Executes DSSA to calculate ũi;
2. Finds |N lf

i |, where N lf
i := {j : j ∈ Ni, ũi ≥ ũj};

3. Calculates the “degree of eligibility”: Eligi :=
α·(|N lf

i |−mi)−|µ−Di|
N , where µ and Di are defined

in 1) and 2) of DSSA;
4. If Eligi ≥ maxj∈Ni Eligj , then mi := mi + 1

and robot i moves according to the instructions of
DSSA; otherwise, the robot stands still.
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SWARM [Mathews et al., 2012] (biologically in-
spired swarm robotic network coverage algorithm uses
the model (13) and parameters w1, w2, w3 such that

w1 + w2 + w3 = 1, w1 ≥ 0, w2 ≥ 0, w3 ≥ 0.

At any time t ≥ 0 any robot i does the following:

1. Finds the size |Ni| of the set (14);
2. Forms a finite set Oi of points uniformly distributed

along the boundaries of the visible obstacles;
3. Calculates F sep

i := 1
|Ni| ·

∑
j∈Ni

√
3(rj−ri)

2|rj−ri|3 , F coh
i :=(∑

j∈Ni
rj

)
−ri, F

alig
i := 1

|Ni| ·
∑

j∈Ni
uj(t−1),

F obst
i := 1

|Oi| ·
∑

p∈Oi

√
3(p−ri)

2|p−ri|2 ;
4. Computes a “virtual force” ui = w1 ·(F sep

i +F obs
i )+

w2 · F coh
i + w3 · F alig

i in (13);
5. Updates ri(t+ 1), t := t+ 1, and returns to 1).

Virtual Spring Force Algorithm (VFA-SF) [Deng
et al., 2019] handles a continuous-time model and mo-
bile robots with the double integrator kinematics

d2ri(t)

dt2
= ui(t) ∀t ≥ 0.

The method uses the following notations and parameters:
♦ κ > 0, Dm > 0, parameters of a virtual spring;
♦ dij(t) := ∥rj − ri∥, rij := κ(rj − ri)/dij ;
♦ γ ≥ 0, damping (friction) parameter;
♦ Fcentri, centripetal force parameter.

At any time t any robot i does the following:

1. Finds the (unordered) set of neighbors (14);
2. Forms the set Φi(t) of all neighbors j ∈ Ni(t) s.t.

either ∥rj − ri∥ ≤ ∥rj′ − ri∥ ∀j′ ∈ Ni(t) or
angle between rj′ − ri and rj − ri exceeds 60◦;

3. Defines the control input as a virtual force:

ui(t) := F e
i (t) + F f

i (t) + F ce
i (t), where

F e
i (t) =

∑
j∈Φi

(dij −Dm)rij , F
ce
i (t) = −Fcentri · ri,

F f
i (t) =

{
−F e

i − F ce
i if dri

dt ≈ 0, F e
i + F ce

i ≈ 0,

−γ dri

dt otherwise.

5.2 Experimental setup
In our tests, robots are initially distributed randomly

within a 1 m radius disc. For each of the four examined
scenes and seven algorithms, we perform nine test se-
ries. The number of robots varies from 10 to 50 in steps
of 5 across series. Each series consists of 100 tests with
different initial robot deployments. Performance index
values are averaged across all tests within a series, with
results shown in Fig. 4, 5, and 6. Series are identified by
the number of robots plotted on the abscissa axis, yield-
ing 6300 total tests per scene-algorithm combination.

Scene boundaries and obstacles are modeled as fi-
nite chains of evenly distributed “fictitious” stationary

robots. The motion of actual robots is affected by these
fictitious counterparts since actual robots perceive and
process fictitious robots identically to other robots.

Robot speed is upper bounded at v = 4.0 m/s. For
continuous-time algorithms, speed is saturated at this
value when exceeded. For discrete-time algorithms, the
time step corresponds to τ = 20.0 ms of real time, sat-
urating ui from (13) at v · τ = 0.08 m. Vector v⃗ satura-
tion at level L > 0 is defined as v⃗ when ∥v⃗∥ ≤ L, and
Lv⃗/∥v⃗∥ otherwise.

In all tests, Rsen = 2.0 m. The parameters of the algo-
rithms are as follows (except for SA and CSA, they are
taken from the original works):

SA and CSA DSSA, SODA, SSND
s = 6, Olim = Slim = 10, e = 0.0052 m,

C = 10 (for CSA), α = 1 (for SSND)
C = 6 (for SA)

SWARM VFA-SF
w1 = w2 = 0.4, κ = 15, Dm = Rsen/

√
3, γ = 7.75,

w3 = 0.2 Fcentri = 0.005

The algorithms SODA, DSSA, and SSND are close to
each other. So in some tests, the difference in their per-
formance is hardly visible. This motivated us not to draw
the graphs related to all of these methods in some of the
subsequent Fig. 4, 5, 6, 7. In such cases, the retained
graph from this group should be viewed as the substi-
tute for the absent ones. In these figures, the distances
are measured in meters, time in seconds, and energy in
conditional units (as is commented in Sec. 4).

Multimedia of typical tests and complementary
material are available at https://drive.google.com/drive/folders/1x 9HW-

35Qo9lj3xcoB6eFlb7fy8U9Tso?usp=sharing

(a) Buttefly-like scene (b) Circular corri-
dor

(c) Zigzag-shaped
corridor

Figure 3. Simulation scenes

5.3 Simulation tests: a butterfly-like scene
It is illustrated in Fig. 3(a) and models the situation of

a narrow passage between two chambers. In Fig. 3(a),
like in the subsequent Fig. 3(b) and 3(c), the initial lo-
cations of the robots are shown as thick dots, the disc of
their initial distribution is depicted in light red, and a lot
of tiny circles gives the picture of the boundaries of the
monitoring zones of all robots at their initial deployment.
In Fig. 3(a), the robotic team starts in the left chamber
and has to spread over the union of the chambers, thus
having to partly penetrate through the narrow passage.
The scene in Fig. 3(a) is used in an attempt to assess the
capacity of the algorithms to “past bottlenecks” in the
environment.
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Figure 5. Performance in the circular corridor

Figure 4. Performance in the buttefly-like scene

By Fig. 4, CSA and SA dominate for large teams
(≥30), with CSA superior at N ∈ [20, 28] and demon-
strate near-perfect 100% coverage at max size vs. ≈85%
for others

Other methods: VFA-SF is competitive for N ≤
45 (matches SA at N ≤ 25), but overtaken by
SODA/DSSA for N > 45; SODA/DSSA/SSND have
similar performance for N ≤ 42 (shared formula (15)),
but SSND declines for large N ; SWARM is non-
convergent (outsider)

Coverage uniformity (lower=better):

Leaders: SA, CSA, VFA-SF
Intermediate: SODA, DSSA, SSND (gap ↑ with
size)
Outsider: SWARM

Convergence (all tests stop at 32 sec):

Convergent: CSA, SA (SA fastest for N ≤ 35)
Non-convergent: SODA, SSND (small teams);
VFA-SF (large teams); SWARM (all sizes)

SODA/SSND stop earlier for large teams (explained by
poorer coverage).

Distance analysis:

Max travel distance: CSA/SA (due to uniform cov-
erage strategy)
Distance uniformity: CSA, SA, VFA-SF (mid-rank)
SWARM leads distance uniformity but has poor
coverage

Multimedia of typical tests in the
butterfly-like scene are available at
https://drive.google.com/drive/folders/1EaQyaH3X2QzNmDpbWETiw2caB4vbjOeu

5.4 Simulation tests: a circular corridor
In the scene from Fig. 3(b), the robots should move

along a circular corridor into two directions, eventually
meet somewhere at its middle, and cooperatively cover
its entirety. The objective of this experiment is to assess
the capacity of the algorithms to seep into all passages, to
flow around obstacles, and to unite the robots into an uni-
form ensemble after various sub-groups of robots meet
“on a collision course”.

By Fig. 5, CSA and SA maintain leadership in cov-
erage percentage and uniformity across all team sizes,
achieving near-perfect 100% coverage at smaller sizes
than in Fig. 4. Unlike previous results, SODA, DSSA,
and SSND now provide comparable performance for
large teams, while SWARM remains weakest and VFA-
SF shows poorer uniformity.

Convergence analysis reveals:

SWARM fails to converge for any team size
SSND, DSSA, VFA-SF, and (unlike before) SODA
struggle with large teams
CSA and SA converge for all sizes, dominating for
N ≥ 30
CSA’s slower convergence for large N reflects its
cautious control strategy

For distance uniformity, algorithms split into two
groups: CSA, SA, and SWARM perform best, with
CSA leading for N ≤ 42 and SWARM for larger teams
(unlike Sec. 5.3); others show uniformly worse perfor-
mance.

As in Sec. 5.3, SWARM and VFA-SF’s lower cover-
age corresponds to shorter travel distances.

Multimedia of typical tests in the circular corridor are
available at https://drive.google.com/drive/folders/1LjTbvcZ-yPsCJe8F2XocuoZRjxuq2-tL

5.5 Simulation tests: a zigzag-shaped corridor
Fig. 3(c) is concerned with an attempt to assess the al-

gorithms when driving the robots through narrow pas-
sages with sharp bends in alternating directions. The
tests are ended at 48 sec.

Figure 6. Performance in the zigzag-shaped corridor

According to Fig. 6:

CSA and SA dominate coverage percentage and
uniformity across all team sizes
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Other methods (SODA, DSSA, SSND, VFA-SF)
show comparable coverage for N ≤ 40: for N >
40: SODA/DSSA lead, SSND lags; VFA-SF leads
coverage uniformity for N ≥ 20
SWARM performs worst in both metrics

Convergence behavior:

SWARM, SODA, DSSA, SSND fail to converge
Convergent methods: SA, CSA, VFA-SF
VFA-SF converges fastest for N ≤ 40 (correlates
with poorer coverage)
Surprisingly, SA/CSA converge faster than VFA-SF
for N > 40

Distance analysis:

CSA/SA excel in distance uniformity
Their longer travel distances correlate with superior
coverage
For N ≥ 25: CSA leads coverage, while SA excels
in energy/distance efficiency

Multimedia of typical tests in the
zigzag shaped corridor are available at
https://drive.google.com/drive/folders/1w9qb8yfQKQfqWiFuWDrho3CUfpP8BkXV

5.6 Simulation tests: averaging over all scenes

Figure 7. Performance indices averaged over all scenes

The previous analysis, particularly its comparative
component, shows that the strengths and weaknesses of
the methods depend, to some extent, on scene charac-
teristics. To provide a comprehensive overview, Fig. 7
displays performance index values averaged across all
examined scenes.

Regarding coverage percentage, coverage uniformity,
and distance uniformity, averaging transforms the estab-
lished leadership of SA and CSA in individual scenes
into clear dominance over competitors. CSA gener-
ally outperforms SA slightly in coverage percentage and
significantly in distance uniformity, while both meth-
ods perform similarly in coverage uniformity. However,
CSA is less efficient (up to twice as slow) in conver-
gence time. Given the previously discussed advantages,
this can be viewed as a reasonable trade-off for superior
coverage quality.

The mean distance traveled by robots under SA and
CSA exceeds that of other methods, correlating with bet-
ter coverage quality: these methods drive robots to all

critical scene areas, both near and distant, while others
may miss certain regions. In energy consumption, SA
and CSA share leadership with VFA-SF.

5.7 Testing SA and CSA in a more entangled scene

(a) t = 0 s (b) t = 60 s (c) t = 200 s

Figure 8. Behavior of the team driven by CSA

The scenes from Sec. 5.3—5.5 are pretty much mod-
els of prototypical features of real environments. In this
section, we present an evidence that SA and CSA are ca-
pable of successfully handling rather entangled scenes,
which look like a piece of the layout of a real building.
The scene consists of four chambers, one in the form
of a circular corridor, and three straight corridors. In this
scene, SA and CSA are tested with 150 robots, eight sec-
tors s = 8 in Fig. 1(a), and the gain C = 6 in (6).

According to Fig. 8(a), the team is initially disem-
barked within a disc with a radius of 3 m, which lies
in the upper-left chamber. By Fig. 8(b),only the right
chambers are not completely covered by the monitoring
zones of the robots at t = 60 sec. Fig. 8(c) demonstrates
that it takes only 200 sec to completely cover the entire
scene (with miserable omissions in the right chambers).

(a) t = 0 s (b) t = 24 s (c) t = 96 s

Figure 9. Behavior of the team driven by SA

Fig. 9 demonstrates the behavior of the team driven
by SA and shows that SA is twice as fast as CSA in
achieving similar both intermediate and ultimate results.

6 Conclusion and future work
An evidence is obtained that if coverage or distances

uniformity, or coverage percentage are among the key is-
sues, the algorithms SA and CSA can be recommended
for use. They are also worth thinking about in the face
of complex environments. On average, CSA provides
better coverage percentage and distances uniformity than
SA, though CSA is designed with the immediate purpose
to take measures against abrupt jumps of the control sig-
nal. Meanwhile, CSA lags behind SA w.r.t. energy con-
sumption and speed, and is more challenging for instal-
lation. When choosing between SA and CSA in practi-
cal setting, it is prudent to start with SA and, only if the
outcome of SA is not good enough, to turn to CSA.

Our comparative analysis in complex scenes also com-
prised the algorithms DSSA [Heo and Varshney, 2003],
SODA [Ghahroudi et al., 2018], SSND [Ghahroudi
et al., 2019], SWARM [Mathews et al., 2012], and VFA-
SF [Deng et al., 2019]. Compared with CSA and SA, the
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methods DSSA and SODA are less demanding on the
sensor equipment since they do not need access of all
robots to a common direction by using, e.g., a compass.
VFA-SF favorably stands out in that it uses the double
integrator model of the robots, which is a more authentic
model of many real-life systems than the discrete-time
models (like those used in DSSA, SODA, SSND and
SWARM) or first-order continuous-time models (like
that used in SA and CSA).

Our future work envisions comparative analysis
involving basic Voronoi tessellation-based methods.
While this paper assumes all robots access a common
fixed reference direction, the proposed algorithms re-
main directly applicable when each robot has an indi-
vidual direction. Studying the algorithm’s performance
under these conditions is underway. Additional ongo-
ing research includes detailed testing of the algorithms
on large-scale robotic teams, with sizes inspired by real-
world wireless sensor network deployments. Future
work will also extend the proposed algorithms to 3D
missions and second-order kinematic robots.
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