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Brazil

viana@fisica.ufpr.br

Andressa Antonini Bertolazzo
Institute of Physics

Federal University of Rio Grande do Sul
Brazil

andressaab@gmail.com

Abstract
In this paper we study how deterministic features pre-

sented by a system can be used to perform direct trans-
port in aquasi-symmetric potential and weak dissipa-
tive system. We show that the presence of nonhyper-
bolic regions around acceleration areas of the phase
space plays an important role in the acceleration of par-
ticles giving rise to direct transport in the system. Such
effect can be observed for a large interval of the weak
asymmetric potential parameter allowing the possibil-
ity to obtain useful work from unbiased nonequilib-
rium fluctuation in real systems even in a presence of a
quasi-symmetric potential.
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1 Introduction
Anomalous transport is an emerging field in physics

and, generally speaking, refers to nonequilibrium pro-
cesses that cannot be described by using standard meth-
ods of statistical physics. Anomalous transport occurs
in a wide realm of physical systems ranging from a
microscopic level (such as conducting electrons) to a
macroscopic scale (as in global atmospheric events).
One of the phenomena in this category is anomalous
diffusion, for which the mean-squared-displacement
increases with time as a power-lawtµ, whereµ 6= 1 [1].
In some cases even analytical results for the anomalous
diffusion can be obtained [2]
There is a growing interest in anomalous transport

properties of nonlinear systems presenting nonequilib-
rium fluctuations, theratchet systems [3; 4; 5; 6]. For
these systems the second principle of thermodynam-
ics does not prohibit the transport provided we do not

have any space or time symmetries forbidding it [4; 7].
Ratchet systems occur in a variety of physical prob-
lems, like unidirectional transport in molecular motors
[8; 9], micro particles segregation in colloidal solutions
[10] and transport in quantum and nanoscale systems
[4; 11; 8]. Recently transport in spatially periodic po-
tential influenced by periodic un-biased external forces
was proved to be possible for the cases of large (phase
space without islands) and small external force ampli-
tude(phase space with islands) [12].
In this paper we show that it is not necessary to have

strong asymmetry, in the sense that sizeable ratchet
currents can be obtained in weakly dissipative systems
with slightly asymmetric potentials. In fact, we claim
that the presence of ratchet currents is influenced not
so much by the potential asymmetry, but rather by
the existence ofstrongly nonhyperbolic regions in the
phase space of weakly dissipative systems. By a hy-
perbolic regionS we mean a set for which the tangent
phase space in each point splits continuously into sta-
ble (SM) and an unstable (UM) manifolds which are
invariant under the system dynamics: infinitesimal dis-
placements in the stable (unstable) direction decay ex-
ponentially as time increases forward (backward) [13].
In addition, it is required that the angles between the
stable and unstable directions are uniformly bounded
away from zero. On the other hand, the nonhyperbolic
term will be used here to denote regions where we ob-
serve (almost) tangencies between stable and unstable
manifolds of saddle points embedded in the chaotic re-
gion.

2 The Model
Chaotic orbits of dissipative two-dimensional map-

pings are often nonhyperbolic since the SM and UM



are tangent in infinitely many points. As a representa-
tive illustration of this effect we consider a periodically
kicked rotor subjected to a harmonic potential function,
whose dynamics is two-dimensional. The dynamics of
a periodically kicked rotor with small dissipation and
potential asymmetry can be described in a cylindrical
phase space(−∞×∞)× [0, 2π), whose discrete-time
variablespn and xn are respectively the momentum
and the angular position of the rotor just after thenth
kick, with the dynamics given by the following dissi-
pative asymmetric kicked rotor map (DAKRM) [4]:

pn+1 = (1− γ)pn +K[sin(xn) + a sin(2xn + π/2)],(1)

xn+1 = xn + pn+1, (2)

whereK is related to the kick strength,0 ≤ γ ≤ 1
is a dissipation coefficient, anda is the symmetry-
breaking parameter of the system. The conservative
(γ = 0) and symmetric (a = 0) limits yield the
well-known Chirikov-Taylor map [14]. In the follow-
ing we will keep the dissipation small enough (namely
γ = 2 × 10−4) in order to highlight the effect of the
periodic islands of the conservative case. Moreover,
the asymmetry parametera will be kept small so as to
emphasize the role of the nonhyperbolic phase space
regions on the anomalous transport.
The conservative and asymmetric (a 6= 0) case has

two fixed points (we callP1) given by

pR,L = 0, (3)

xR,L = π − sin−1 ΘR,L(a,K), (4)

where

ΘR,L(a,K) =
(

1−
√

1 + 8a2 ± 16πa/K
)

/4a.

(5)
In Eq. 5,+ and− mean right and left respectively and
are marginally stable centers in the following parame-
ter intervals:0 < a < 1/4, and6.40 < K < 7.20.
These twoP1 points are the centers of two resonant
islands that are actually accelerator modes. There are
also two (left and right) period-3 fixed points (P3) re-
lated to secondary resonances around theP1 islands.
In the weak dissipative case, the twoP1 points become

stable foci, their basins of attraction present a complex
structure. The chaotic region in the conservative map
becomes a chaotic transient in the weakly dissipative
situation. AtK ≈ 6.92 the rightP3 points collides
with the right fixed point(pR, xR) by a bifurcation. At
the bifurcation point the attraction basin ofP1 engulfs
the SM of theP3 and turns to be accessible to points in
a large phase space region.

3 The nonhyperbolicity role in the transport
The vicinity of the fixed points plays a key role in the

anomalous transport mechanism, in the same way as

Figure 1. (color online) 2-D histograms (top) and momentum prob-

ability distributions (bottom) for the DAKRM withγ = 0.0002,

a = 0.005, andK = 6.40 panels (a,e);K = 6.92 panels

(b,f);K = 6.96 panels (c,g);K = 7.00 panels (d,h).

the islands do for the conservative case. More pre-
cisely, the wide accessibility of this vicinity near the
bifurcation is responsible for large ratchet currents,
just as the role of the accelerator modes in the non-
dissipative map. Figs. 1(a-d) depict 2-D histograms
for 5000 orbits (each orbit containing10 points) of the
DAKRM from initial conditions chosen in the phase
plane region0 < x < 2π, −π < p < π, as well as
the corresponding momentum probability distributions
σ(p) (Figs. 1(e-h)). ForK = 6.40 there is a quasi-
symmetric situation, the neighborhood of the twoP1

fixed points (left and right) being seldom visited [Fig.
1(a)]. Since the left (right) region is responsible for
a positive (negative) increase of the transport, we ob-
serve that for this parameter value the momentum dis-
tribution function is nearly symmetric, with a Gaussian
shape [Fig. 1(e)], resulting in a null transport.
Symmetry-breaking effects start to be noticeable after
K = 6.40 and reach its maximum at the bifurcation
K ≈ 6.92, where only the vicinity of the leftP1 is
scarcely visited by orbits of the map [Fig. 1(b)]. This
effect is triggered by the bifurcation whereby the right
P3 fixed point collides with the rightP1 point and turns
its vicinity easily accessible (not shielded), what is re-
flected in the asymmetric left tail in the momentum dis-
tribution function [Fig. 1(f)]. The vicinity of the leftP1

is not yet affected since the collision process did not
occur yet for leftP1 andP3. As a result, a net trans-
port current is generated. However, this is more an ef-
fect of the bifurcation (due to nonhyperbolicity) than of
the symmetry-breaking itself. In other words, if there
is weak symmetry-breaking but no bifurcation (and no
shield process), the ratchet effect will not occur, at least
with the magnitude we observed in this example.
Not too far from the bifurcation (K = 6.96) the

vicinities of bothP1 fixed points become now almost
equally visited [Fig. 1(c)] generating negative and pos-
itive currents, but no net currents. For this case the mo-
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Figure 2. (color online) Ensemble averaged net current for different

values of the nonlinearity and asymmetry parameters of the DAKRM

with γ = 0.0002.

mentum distribution function is again approximately
symmetric [Fig. 1(g)] but presenting right and left tails.
The situation changes again after the leftP1 andP3

fixed points collision [Fig. 1(d)], through the same bi-
furcation mechanism described for their right counter-
parts. The increase in the accessibility of the vicinity
of the left P1 point leads to an asymmetric momen-
tum distribution function [Fig. 1(h)], restoring a net
transport current. In this last case is noticeable that
the seldom visited region is very small, nevertheless
it is enough to inhibit negative currents. Once again
the nonhyperbolicity of right region seems to be more
important than the asymmetric situation itself.
The variation of the average net transport currentp

with the nonlinearity parameterK is depicted in Fig. 2
for different values of the asymmetry parameter. The
net current is ensemble-averaged over a large number
(106) of initial conditions, each of them being followed
by a short time(t = 103) to prevent the system to set-
tle down into any fixed point. On varyingK we ob-
tain a series of positive and negative net transport cur-
rents resulting from the ratchet effect. Curiously the
net current fluctuates less for both very small and large
asymmetry, being more sensitive toK for intermedi-
ate values ofa. As we have seen, the appearance of
net currents is due to the fact that the left and rightP3

fixed points (that bifurcate in pairs for the symmetric
case) start to bifurcate atdifferent values ofK. For the
interval 6.40 < K < 7.00, corresponding to Fig. 1,
the rightP3 fixed point bifurcates before the left one,
generating a sequence of negative and positive net cur-
rents with very large peak values. ForK = 6.92 the
maximum amplitude of the net transport current for
a = 0.005 is at least three times larger than for the
a = 0.5 (high asymmetry case). Nevertheless appre-
ciable net currents can also be acquired for asymmetry
parameter as small asa = 0.0005 or even smaller, al-
though the peak values decrease considerably. Such
decrease in the net transport current for small values of
a is expected since for the case ofa = 0 no transport
can be observed due to the symmetry of the standard
map. We emphasize that the transport mechanism is a
property of the phase space and is not related to any
asymptotic state of the system.
By the way of contrast, with a higher asymmetry value

as those in Ref. [4] such large net currents are observed

only for larger nonlinearities(8.5 < K < 10), hence
they are not primarily related to the bifurcations we
present. In such case the role of the potential asym-
metry overcomes the bifurcation mechanism presented
here. The sensitive dependence of the net transport cur-
rent on the nonlinearity parameter in the weak asym-
metry case reminds us of a similar behavior for the
diffusion coefficient of the conservative and symmet-
ric (Chirikov-Taylor) map, caused by the existence of
accelerator modes [2].
In order to test the robustness of the problem we

have simulated the effect of noise in the dynamics. A
small amount of white noise distributed in the interval
(0, 0.1) was introduced in thex dynamics. The results
are displayed in Fig. 2(a). The effect of the nonhyper-
bolicity in the transport is still observed.
The existence of nonhyperbolic regions in phase

space, however small they may be, constitutes adeter-
ministic mechanism underlying anomalous transport in
the production of net currents through a ratchet effect.
In order to quantify the degree of nonhyperbolicity re-
lated to the phenomena we describe in this paper, let
us consider an initial condition(p0, x0) and a unit vec-
tor v, whose temporal evolution is given byvn+1 =
J (pn, xn)vn/|J (pn, xn)vn|, whereJ (pn, xn) is the
Jacobian matrix of the DAKRM. Forn large enough,v
is parallel to the Lyapunov vectoru(p, x) associated to
the maximum Lyapunov exponentλu of the map orbit
beginning with(p0, x0). Similarly a backward itera-
tion of the same orbit gives us a new vectorvn that
is parallel to the directions(p, x), the Lyapunov vec-
tor associated to the minimum Lyapunov exponentλs

[15; 16]. For regions whereλs < 0 < λu the vec-
torsu(p, x) ands(p, x) are tangent to the UM and SM,
respectively, of a point(p, x).
The nonhyperbolic degree of a regionS can be stud-

ied computing the angles between the two manifolds
θ(p, x) = cos−1(|u · s|), for (p, x) ∈ S [16]. There-
fore,θ(p, x) = 0 denotes a tangency between UM and
SM at (p, x). Let SR,L

ǫ = {(p, x) ∈ Ω : |(p − x) −
(pR,L, xR,L)| < ǫ} be aǫ-radius neighborhood of right
and leftP1 fixed points. Results forθ(p, x) and its dis-
tribution functionρ(θ) calculated in both regions are
shown in Fig. 3 for four values of the nonlinear pa-
rameterK. The dark region in Fig. 3 correspond to
strongly nonhyperbolic region bounding the accelera-
tion region.
For K = 6.40, near the fixed points(pR,L, xR,L)

there is a strong nonhyperbolic region which shields
the acceleration area [Figs. 3(a-b)]. In fact, almost all
θ values for the right area (dotted red (gray) curve) and
left (solid blue (dark gray) curve) are confined in the
intervalθ < π/16, characterizing a strongly nonhyper-
bolic region around both fixed points [Fig. 3(c)]. By
way of contrast, whenK = 6.92, only the left fixed
point neighborhood is shielded, resulting in a large neg-
ative transport since only the right acceleration region
is regularly visited [Figs. 3(d-e)]. The rightP1 and
P3 fixed points suffer a bifurcation and all tangencies



Figure 3. (color online)θ(p, x) values evaluated from105 initial

conditions uniformly distributed around (0.2 radius)SR,L
ǫ and the

distribution function ofθ. Blue (dark gay) triangles are right and left

P3 fixed points (inexistent in (a),(b) and (d) panels).

of SM and UM disappear from the right area, allow-
ing the trajectories to visit the acceleration region. Ac-
cordingly Fig. 3(f) presents different distributions of
θ values for left and right regions. The dotted red
(gray) curve (right) presents a distribution peak around
θ = π/8 considerably greater than the solid blue (dark
gray) one, leading to absence of shielding in the right
region.
In the case ofK = 6.96 neither of the areas sur-

rounding the fixed points areeffectively shielded by
the tangencies of manifolds, resulting in large positive
and negative transport currents, but no net current at
all [Figs. 3(g-i)]. This situation, however, is different
from the one displayed by Figs. 3(a-c), where the re-
gions surrounding both fixed points were scarcely vis-
ited, hence there is no net current since the positive
and negative currents are very small. Finally, for a
higher value ofK, only the right acceleration region is
shielded, resulting in a positive transport current [Figs.
3(j-k)]. The distributionρ(θ) presents a peak near zero
for the dotted red (gray) curve, confirming the exis-
tence of a shielded right area [Fig. 3(l)].
The source of nonhyperbolicity in these regions is the

tangencies between SM and UM of saddle orbits em-
bedded in the chaotic region therein. For perpendic-
ular manifold crossings an area near the acceleration

region (P1 vicinity) will map another area inside the
acceleration region. However if we have tangencies of
manifolds, the outer area (outerP3 vicinity) that maps
an inner one tends to zero forbidding the trajectory to
visit the acceleration area [15]. The scenario can be re-
garded as a counterpart of the Poincaré-Birkhoff’ theo-
rem that describes the torus breakdown of a conserva-
tive two-degree of freedom map.

4 Conclusions
In conclusion we have shown that anomalous trans-

port displayed by aquasi-symmetric potential and
weakly dissipative system is strongly related to the
topology of the acceleration regions around fixed points
displayed by the system. The presence of nonhy-
perbolic regions caused by almost parallel UM and
SM can inhibit a chaotic trajectory to visit the neigh-
borhood of the acceleration region surrounding fixed
points of the system. This mechanism is closely related
to the scenario described by the Poincaré-Birkhoff the-
orem in area-preserving two-dimensional maps. This
dynamical phenomenon yields large net transport cur-
rent in some direction even though the potential has an
extremely small degree of symmetry-breaking. Hence
such net currents can yield useful work from unbiased
nonequilibrium fluctuation even withquasi-symmetric
potentials, which enlarges the realm of dynamical sys-
tems displaying the ratchet effect.
This work is partially supported by CNPq, CAPES,
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