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Abstract— We study the self-organization and optimization of
conflicting material flows on complex networks as it may take
place in the case of vehicular traffic or the supply of goods
in a production network. A decentralized control is used to
approach a demand-driven switching between ”on” and ”off”
states of the flow in a particular direction at intersections or
merges represented by nodes in the corresponding networks.
Whereas intrinsic oscillatory instabilities of material flows in
networks usually have negative effects on the performance
of the overall system, these self-organized oscillations allow
to optimally use the available transportation capacity of the
network. Under rather general conditions, our control approach
leads to phase synchronization of the switching dynamics at the
respective nodes, which is studied using a new framework for
measuring the strength and homogeneity of frequency locking
in networks of oscillatory components.

I. INTRODUCTION

Network structures can be found in numerous complex
systems in nature and society. In many of these networks,
the flows of material or information between the respective
nodes represent the essential dynamics of the system [1].
This applies in particular to traffic, production, telecom-
munication, supply, or biological networks [2][3]. However,
such flows are typically characterized by a large number of
interacting transportation processes. Therefore, the aim of an
efficient organization and control of the network dynamics
is to minimize the total amount of time required for all
these processes. Typically, such an optimization is difficult
and demanding, as the topology of the underlying networks
is composed of a potentially large number of merges and
intersections at which there are conflicts between the flows
on different routes [4][5]. To avoid physical collisions, these
flows have to be controlled by devices like traffic lights,
which lead to an oscillatory switching between “service”
and “no-service” states for different links at the respective
node. The operation strategy of these devices is decisive for
maximizing the system performance.

One traditional strategy for the optimization of material
flows is a central control of the flows in the whole network.
However, in large networks, there is a large amount of
(particularly delayed) information which makes a central
organization of all flows a complicated problem. In contrast
to this, decentralized control strategies [5][6] are much more

The authors of this paper gratefully acknowledge financial support of the
German Research Foundation (project no. He 2789/5-1,8-1).

The presented research has been carried out at the Institute of Traffic
and Economy, Dresden University of Technology, Andreas-Schubert-Str. 23,
01062 Dresden, Germany. D. Helbing works as Professor of Sociology, in
particular of Modeling and Simulation at the Swiss Federal Institute of
Technology, Universitätstr. 41, 8092 Zürich, Switzerland. A. Hofleitner is a
master’s student at École Polytechnique, 91128 Palaiseau Cedex, France.

flexible to react to local changes of the current state of the
system and may therefore lead to an even better performance
than centralized ones.

Unlike the controlled oscillations which are ”triggered”
by the action of traffic lights and similar devices, material
flows in many real-world networks show already an intrinsic
oscillatory behavior. There are different possible reasons for
this kind of dynamical behavior, including a varying external
demand or supply of material (forced oscillations) as well as
symmetry breaking bifurcations or instabilities due to the
presence of feedback loops [7] (self-sustained oscillations).
In the latter case, the instabilities of the stationary system
may have severe consequences for the overall performance
of the entire network. The resulting oscillations may be
further amplified by phenomena like the Bullwhip effect
in production systems, which may finally lead to a highly
irregular system behavior [7].

In this paper, we demonstrate how a suitable decentral-
ized control can be used to reach controlled oscillations of
material flows at the intersections within a transportation
network. For this purpose, we study if the self-organized
oscillations yield an optimal control of the material flows,
and try to understand the importance of phase synchro-
nization (a) between neighboring nodes and (b) within the
entire network for an optimization of the overall capac-
ity of the system. In Sec. 2, we present a basic model
for a self-organized control of conflicting material flows.
Possible approaches to phase synchronization analysis in
complex networks are summarized in Sec. 3. In Sec. 4,
we present some examples for the occurrence of frequency
locking of the material flow dynamics in the presence of
periodic external forcings. Subsequently, the occurrence of
self-sustained phase synchronization phenomena in networks
in the presence of a decentralized control is studied in Sec. 5.
Finally, we discuss the general relationship between the self-
organized optimization of material flows in networks and the
occurrence of phase synchronization.

II. SELF-ORGANIZED NETWORK FLOWS

To describe the behavior of material flows at intersections,
we assume that the effects of acceleration or deceleration
near intersections are small enough to be negligible (corre-
sponding to an adiabatic speed adjustment). Moreover, all
links in the considered networks have an infinite (or at least
sufficiently high) storage capacity, i.e., there is no possibility
of complete congestion in our simplified model.

In this contribution, we will use the following notations:
Ni is the amount of queued material on the incoming link



i. Ai and Oi are the respective actual arrival and departure
flows at the upstream and downstream ends of the queue on
this link, respectively. They are bounded by the maximum
flow Q̂. For simplicity, we assume all flows to be continuous
(the consideration of discrete packages or vehicles [8] does
not lead to a fundamentally different behavior under rather
general flow conditions).

In the following, we will describe a basic model for
the simplest case of two intersecting unidirectional links
where the possibility of turning is not explicitly taken into
account. The evolution of the different flows through an
intersection is controlled by a permeability function γ whose
shape and parameters are responsible for a switching between
conditions where material flows are only possible in one of
the different directions. This permeability function represents
a traffic light in the case of traffic networks. In order to
implement a demand-dependent self-organized control of the
flows, the difference between the currently delayed material
on both incoming links, ∆N = N2−N1, and the difference
between the respective outflows, ∆O = O2 −O1, are taken
into account. Moreover, there has to be a sharp switching
between conditions with (γ1, γ2) = (1, 0) and (0, 1) such
that values of γi /∈ {0, 1} do practically not occur or are
restricted to some short, deterministic time interval (“amber
light”).

Helbing et al. [5] have already proposed a permeability
function which fulfills the above requirements and leads to a
preference of those links on which either (a) a higher number
of material is already accumulated or (b) a large outflow
takes place. To further simplify the shape of the permeability
function, one may use the following setting:

γ1(t) =


1, E(t) > ∆E/2
0, E(t) < −∆E/2(
E(t)
∆E + 1

)
, else

(1)

and γ2(t) = 1 − γ1(t) where E(t) = ∆N(t) + α∆O(t).
Here, α determines the relative weight given to the current
outflows with respect to the amount of waiting material, and
∆E is the width of the transition region which determines
the switching period. If we are not interested in finite time
intervals necessary for switching, we may further modify this
setting such that a switching between the incoming links 1
and 2 (2 and 1) takes place immediately when E(t) falls
below the value of −∆E/2 (or rises above ∆E/2). The
resulting hysteresis effect (see Figure 1) gives rise to a certain
inertia of switching, i.e., if the conditions on both links are
comparable (E(t) ≈ 0), there is a stronger tendency to
remain in the current state than to switch into the other one.

With the definition of a suitable permeability function
γi(t) as described above, the temperal evolution of the
amount of delayed material Ni(t) and the outflow Oi(t) are
described by the following set of equations:

d

dt
Ni(t) = Ai(t)−Oi(t) (2)

Oi(t) = γi(t) max
{
Ai, Q̂ Θ(Ni)

}
, (3)

Fig. 1. Self-organized switching between two intersecting material flows
on link 1 (permeability function γ1(t) = 1, γ2(t) = 0) and 2 (γ1(t) =
0, γ2(t) = 1) in dependence on the evolution of the quantity E(t) which
balances the differences between the actual outflows ∆O(t) and the total
amounts of waiting material ∆N(t) on each link.

where Θ(·) is the Heavyside function.
In the case of bidirectional traffic or more than two

intersecting pairs of links, the above formalism can be easily
generalized. For this purpose, the terms in ∆N and ∆O have
to be replaced by sums over the respective values for all
incoming links for which the current permeability is 0 or 1,
respectively.

III. DETECTION AND QUANTIFICATION OF PHASE
SYNCHRONIZATION IN NETWORKS

A variety of different measures can be computed to detect
signatures of phase synchronization or, more general, phase
coherence between two oscillating systems j and k [9][10],
including the standard deviation and normalized Shannon
entropy of phase differences [11], the mutual information
between both phases [12], and the mean resultant length
rjk =

∣∣〈ei∆φjk(t)
〉
t

∣∣. Among these quantities, rjk is the
probably most important parameter as a measure of the dis-
persion of phase differences originated in circular statistics.
All approaches however quantify “only” the mutual synchro-
nization of pairs of oscillators, whereas a characterization of
the joint synchronization of an ensemble of N > 2 oscillating
systems requires that the states of all components are taken
into account.

As an alternative to the consideration of averages of
bivariate synchronization measures, the concept of synchro-
nization cluster analysis (SCA) has been recently introduced
[13][14][15]. In this framework, subsets of oscillating sys-
tems are interpreted as a synchronization cluster if they ex-
hibit a higher mean phase coherence between each other than
with the remaining oscillators. The original SCA approach
assumes the existence of only a single cluster whose strength
rC can be iteratively computed [13][14], which however
may not be the case for complex networks. A subsequent
extention of SCA which takes this problem into account an-



alyzes the eigenvalues λj and eigenvectors ~vj of the complete
matrix R = (rjk) of pairwise synchronization indices [15].
In this generalized SCA, the number of eigenvalues λi > 1,
Nc, serves as an indicator for the number of synchronization
clusters, whereas their actual values can be interpreted as the
respective cluster strengths. This interpretation however leads
to the conceptual problem that even in a non-synchronized
system, the method detects a number of synchronization
clusters although the notion of a synchronization cluster is
rather meaningless here.

Whereas SCA characterizes phase synchronization which
is by definition heterogeneously distributed, the use of av-
erages of bivariate synchronization indices corresponds to
the assumption of a homogeneous distribution. In order to
distinguish between these two cases, the eigenvalue decom-
position approach [15] may be extended by a subsequent
analysis of the whole range of eigenvalues of the bivariate
synchronization matrix R. For this purpose, the LVD (linear
variance decay) dimension density may be considered which
quantifies the average degree of collectiveness in the behavior
of a multi-component system [16]. Instead of the eigenvalues
λj themselves (which are normalized here to unit sum), the
LVD dimension approach models the decay of the associated
remaining variances νj = 1 −

∑j−1
k=1 λk (up to a given

fraction of the total variance) by an exponential function
νj = e−j/δLV DN . The coefficient δLVD of this model
measures the collectiveness of the dynamics, i.e., the strength
and homogeneity of phase synchronization.

IV. FREQUENCY LOCKING BY PERIODIC DEMANDS

In the case of vehicular traffic controlled by a traffic
light, the outflows Oi(t) on the different links are a periodic
function of the phase angle of the corresponding permeability
function with a period Ts [6]. If two or more intersections
form a traffic network, this periodicity also holds for the
inflows Ai(t) into the queues at the neighboring intersec-
tions. Consequently, for a single crossing of two material
flows, this specific situation can be modeled by a suitable
periodic modulation of the different inflows Ai(t). Lämmer
et al. [6] have already suggested that in this situation, a
suitable decentralized control can be used to achieve phase
synchronization of the switching at different intersections
within a traffic network. In the following, we will study two
practical examples for implementations of such decentral-
ized control strategies. It will be shown that in the cases
considered, periodic variations of the external demand lead
to frequency locking phenomena, which may be understood
as a phenomenon similar to phase synchronization in the
presence of a unidirectional coupling.

Let us first study the case of material flows across an
intersection as one part of a traffic system in the framework
of our model described in Sec. 2. For simplicity, we will
assume that the inflow in one direction is constant in time,
whereas that in the second direction varies periodically. As
it is shown in Figure 2, for some distinguished interval of
modulation period T , the switching period Ts of the self-
organized control locks to this external demand period in a

Fig. 2. Locking of the self-organized switching period Ts to the modulation
period T as a function of the amplitude δA1 of the sinusoidal modulation
of A1(t) = 〈A1〉 (1 + δA1 sin(2πt/T )) for average incoming flows
〈A1〉 = 0.5 and A2(t) ≡ 0.3. A similar behavior can be observed for other
parameter combinations as well as for an inflow A1(t) which is periodically
switched on and off.

1:1 way. If the amplitude of modulation increases, the width
of this locking window increases as well. Moreover, there
are other windows of non-trivial n:m frequency locking for
which a similar behavior can be found. The detailed position
and width of these locking intervals is determined by the
parameters α and ∆E of the permeability function γi(t) and
the average inflows 〈A1〉 and 〈A2〉. In general, the choice
of these parameters yields a naturally preferred switching
frequency in the case of constant inflows, whose existence
gives rise to the non-trivial locking intervals.

The material flows in production networks or, more gen-
eral, spatially extended logistic systems, may show some
structural similarities to flows of vehicular traffic. However,
there is one fundamental difference: In the case of traffic
networks, the demand for service at one intersection is
determined by the “production” of flow at the neighboring
intersections, which corresponds to a push system in the
context of production and logistics. In contrast to this, the
action of networks of production and logistics can often be
described as a pull system where the demand at one node
itself initiates inflows by ordering the corresponding goods.
Hence, whereas the basic structure of traffic and production
networks may be similar, the dynamics on these networks
may differ considerably.

Nonetheless, frequency locking phenomena of the flows at
different nodes can also take place in production networks
with a periodic demand or supply. Scholz-Reiter et al.
[17][18] studied a model in which the production rate Q of
manufacturers is successively adjusted to a variable optimum
value which is determined by the current demand and the
amount of available products. It has been shown that in this
model, a temporally varying demand and a finite adaptation
time τ−1 lead to different lockings between production rate
and demand, which depend on the respective values of τ .



Fig. 3. Locking of the mean period
〈
TQ

〉
of the production rate Q to the

period T of the external demand oscillations in dependence of the adaptation
rate τ . The model and the specific parameter setting are described in more
detail in [17][18]. In particular, the values τ = 0.2 and τ = 1 lead to a 3:2
and 1:1 locking, respectively, as already found by Scholz-Reiter et al.. In
between, there is a range of adaptation times which lead to a 2:1 locking.

For large values of τ , the production rates of downstream
producers are adjusted fast enough such that there will be
no significant shortage of goods. As a consequence, the
production rates of all manufacturers oscillate with the same
frequency, which equals the frequency of the external market
demand. Decreasing the adaptation rate τ causes shortages,
which may lead to a doubling of the oscillation frequency of
the production rates (2:1 locking, see Figure 3). If τ is further
decreased, this shortage becomes increasingly significant,
such that the production rate is dramatically reduced. Since
this case corresponds to a very slow adaptation, it will take
a long time until Q reaches its average level again. Because
of the reduced consumption of this producer, shortages will
occur less frequently, which leads firstly to a 3:2 locking
and, for even smaller values of τ , to a 1:1 locking again.

V. PHASE SYNCHRONIZATION DUE TO
SELF-ORGANIZATION OF MATERIAL FLOWS

All phenomena described in the previous sections do not
correspond to phase synchronization, as the observed fre-
quency locking is only due to a periodic external forcing, but
does not refer to two distinguished self-sustained oscillators
in the system. In the following, we will see that the self-
organized switching between flows in different directions
in our material flow model gives rise to similar locking
phenomena, even if the corresponding actual demand for
transportation capacity is assumed to be constant in time.

In order to investigate successive frequency adaptation
and locking in traffic networks, Lämmer et al. [6] studied
a paradigmatic model, in which the oscillatory switching of
the nodes was represented by a set of locally coupled phase
oscillators whose frequencies we adapted themselves up to
a maximum value given by the minimum cycle time. If a
network of such oscillators is considered, there is indeed

a successive adjustment of the oscillation frequencies of the
different nodes which finally leads to a state with a complete
frequency locking among all oscillators in the network.
Hence, this phase synchronization leads to a decentralized
coordination of the individual switching on a network-wide
scale. However, there is still no proof that the dynamics of
the phase oscillator model with adaptive frequencies gives
a proper representation of the self-organized switching of
material flows on a corresponding network. In the following,
we will therefore study how such a system would behave in
the case of the decentralized control strategy presented in
Sec. 2.

In order to keep the number of parameters of the analyzed
model in a suitable range, we make some simplifications:

1) We study a regular grid network, which consists only
of nodes of degree k = 4 (i.e., with four in- and
outgoing links which connect neighboring pairs of
nodes).

2) The distance between neighboring intersections is kept
constant, which means that the travel time td between
each pair of connected nodes is assumed to be the
same for all links without considering effects due to
the presence of a queue.

3) Left-hand turning is forbidden, whereas a fraction p
of the flow can turn to the right. For simplicity, this
fraction is taken to be the same for all links.

4) The sum of the maximum inflows into the two possi-
ble directions of the intersecting roads is sufficiently
smaller than the maximum link capacity. This prereq-
uisite is necessary to avoid an unlimited congestion of
the links in the considered network1.

With these assumptions, the dynamics of the queue at the
downstream end of link i is determined by the following
equations:

dNi
dt

= Ai(t)−Oi(t) (4)

Ai(t) =
∑
j 6=i

αjiOj(t− td) (5)

Oi(t) = γi(t) max{Ai(t), Q̂Θ(Ni(t))}, (6)

where αji is the fraction of the flow on link j which is
turning to link i (αji = p for right-hand turning, αji = 0 for
left-hand-turning, and αji = 1− p otherwise).

In order to evaluate the presence of phase coherence within
the considered ensemble of nodes with the methods described
in Sec. 3, an appropriate definition of a phase variable is
necessary. Without loss of generality, we define the initial
phase φj = 0 for node j corresponding to the time of the
first switching of its permeability function. In a similar way,
φj = (n − 1)π then corresponds to the time of the n-st
switching at this node. Between these switching times, the

1For convenience, we start all simulations with a state where there is
no flow on the links connecting the nodes of the networks. All flows are
induced by an external supply of material to every node at the boundary
of the network. This setting leads to a slow synchronization process, which
can therefore be studied more easily.



Fig. 4. Multivariate phase synchronization indicators calculated from the
switching intervals at the respective nodes in a regular 5× 5 grid network
for disjoint windows of 250 time steps obtained from one simulation:
average value of pairwise mean resultant lengths 〈rij〉, cluster strength rc,
number of clusters Nc, and average cluster strength 〈rci〉 (normalized by
the total number of nodes). The maximum link capacity has been set to
Q̂ = 1.0 for all roads in the network with travel times td = 30 and turning
probabilities p = 0.05. The external inflows have been initially taken from
a normal distribution with mean 〈A〉 = 0.3 and σA = 0.05 and then kept
constant over the entire simulation. The permeabilities have been randomly
initialized. For the parameters of the function E(t) which determines the
permeability (see Eq. (1)), we have used α = 0.1 and ∆E = 10 (solid
lines), 20 (dashed lines), and 50 (dotted lines). The behavior of the different
measures clearly indicates a successive transition towards a state with a
significant degree of phase synchronization.

phase variable is defined by linear interpolation. Although
this definition leads to an increase of the phase which may
be periodically modulated if the ”on” and ”off” times for one
specific direction are not symmetric, in the long-term limit,
these variables may be used for a phase synchronization
analysis.

In Figure 4, the transition from random initial conditions
to a phase synchronized network is illustrated for a regular
symmetric grid with 25 intersections. After a suitably long
time, the network reaches a state for which the different
multivariate phase synchronization indices become almost
stationary. This behavior indicates that the permeabilities
of all intersections switch with almost the same frequency,
which corresponds to a phase-synchronized system. A de-
tailed inspection shows that the corresponding transition is
accompanied by a successive decrease of the relative amount
of waiting material within the network, whose average value
becomes minimal when the synchronized state is reached.
(Note, however, that this quantity still oscillates with the
period of the self-organized switching.)

In addition to these general findings, Figure 4 suggests that
the parameter ∆E has a considerable influence on the time
scale required for synchronizing the network: For low val-
ues, the corresponding transition may be discontinuous and
requires much more time than for high parameter values. The
detailed behavior of the synchronization indicators suggests
that there is already a certain initial degree of synchronization

Fig. 5. Dependence of the asymptotic switching period Ts (upper panels)
and the relative amount of waiting material Nrel (defined as the ratio of the
absolute amount of queued material and the total amount of material within
the network, lower panels) on the turning probability p (left, ∆E = 20)
and the width of the transition region ∆E (right, p = 0.05) for the same
network as in Fig. 4. Dotted lines indicate error bars corresponding to the
standard deviation of Ts taken over all nodes of the network (〈Ts〉 ± σTs )
and the temporal variance of Nrel (〈Nrel〉 ± σNrel

), respectively.

from the beginning of the simulation, which is due to the fact
that an initial switching period is prescribed by the travel
time td between each pair of intersections, while there are
no initial flows in the interior of the network. The specific
setting of a regular grid with symmetric distances also leads
to a spatially homogeneous synchronization process, which
is reflected by almost constant values of the LVD dimension
density δLVD (not shown in Figure 4) and the fact that
the average bivariate phase synchronization indices and the
measures from synchronization cluster analysis show an
almost identical behavior.

In order to achieve a better understanding of the factors
which determine the performance of our control (for ex-
ample, the relative amount of waiting material), the degree
of phase synchronization in the system, and the average
switching frequencies, we have investigated the influence
of the turning probability p and the width of the transition
region ∆E on the corresponding quantities. On the one hand,
no systematic influence of both parameters on the asymptotic
values of the phase sychronization indicators was found. On
the other hand, the average switching period shows a clear
dependence on both p and ∆E, which is illustrated in Figure
5, whereas the relative amount of waiting material depends
only on ∆E in a monotonously increasing way.

Concerning the average switching period, one can clearly
distinguish two regimes in dependence on the turning prob-
ability: If only very few vehicles turn to the right, the
periodicity is rather large (regime I), whereas there is a
sharp transition towards significantly smaller values of Ts
(regime II), if the turning probability p exceeds a certain
threshold value. In this regime II, the actual value of p does
not play an important role for the switching period. It is likely



that the detailed location of the transition point depends on
the other parameters of the considered system as well, in
particular, ∆E, 〈A〉, and td. At least the first dependence
is reflected by the upper right panel of Figure 5: Whereas
one may expect a continuous increase of the switching
period Ts with ∆E, for a non-vanishing value of the turning
probability, there are some rather abrupt transitions whose
exact location and sharpness may vary between different
simulation runs. In particular, for ∆E ≈ 20 . . . 25, the jump
from values between 35 and 40 to values of above 60 does
probably reflect the transition from regime II to regime I.
The dynamical mechanism of this transition and a detailed
determination of the corresponding stability boundary will
be subject to future studies.

VI. CONCLUSIONS

We have studied a decentralized control approach for the
regulation of intersecting material flows in complex net-
works, which occur in many real-world systems like vehicu-
lar traffic or production systems. In particular, in the case of
traffic networks, our approach may be considered to represent
a self-organized traffic light control which allows a large
throughput with a relatively low amount of queued material.
We have demonstrated that the self-organized switching of
the permeability of the respective directions at the different
intersections leads to a phase synchronized dynamics, which
supports recent suggestions [6].

It has to be underlined that our self-organized control
does not require any periodicity of the external demand or
supply to reach a state with phase synchronized switching
of the permeabilities. However, it has still to be studied
whether a comparable degree of phase synchronization can
still be achieved in the case of spatially heterogeneous model
parameters (like varying travel times or turning probabilities),
an instationary external supply of (or demand for) material,
or an irregular network. In general, even under such more
realistic conditions, our decentralized control may allow to
optimize the flows in a way that maximizes the degree of
spatio-temporal organization.

In the presented study, we have focused our attention
to a proof of the presence of phase synchronization in
decentrally controlled material flows. However, several open
questions are still remaining. For example, if the studied
model is generalized to asymmetric grid networks where the
travel times td are not the same on every link, the spatial
heterogeneity might play a crucial role for the possibility of
synchronization and the optimization of material flows. In
addition to the already mentioned phase transition between
two different switching regimes, the dependence of (i) the
time required to approach the synchronized state and (ii)
the asymptotic values of the phase synchronization measures
on the size of the network and the distribution of the
inflows should be further studied to determine the respective
influences of all relevant model parameters. Finally, when
trying to adapt our results to more general networks, where
some of the nodes have a degree of k > 4, different strategies

are probably required to schedule and optimize the flows in
the different possible directions.
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