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Abstract 
The problem of controlling chaos in Rayleigh-

Bénard convection in weakly elastic fluids is 
examined here. The nonlinear model presented in the 
article is based on the model proposed by Khayat. 
Chaotic behavior in this nonlinear system is 
controlled using backstepping design. By applying 
proposed controller, the dynamic of the system is 
stabilized on the desired trajectory. Simulation results 
show the high performance of the method for chaos 
elimination in this system. 
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1 Introduction 
Chaotic phenomena have been observed in numerous 

fields of science such as physics, chemistry, biology, 
and ecology. An interesting subject in chaos theory is 
to eliminate the chaotic behavior by means of control 
systems. In the recent years, chaos control has been 
used in many theoretical and engineering problems 
and many papers have been published over the past 
two decades about controlling chaos in systems 
ranging from economics to biology with various 
methods of control. The first document in control of 
chaotic systems, named OGY, returns to 1990s [Ott, 
Grebogi and York, 1990; T. Shinbort, Ott, Grebogi 
and Yorke,1990]. In this scheme, an analytical 
method using low energy control signals was 
introduced for stabilizing Unstable Periodic Orbits 
(UPO) in a chaotic attractor. The main disadvantage 
of this method is its dependency to time of filling the 
chaotic attractor by trajectories. Moreover, in this 
period of time, the Pyragas method, based on delayed 
feedback control, was presented [K. Pyragas,1992]. 

This approach also uses the recurrence of chaotic 
trajectories. Pyragas method has been extensively 
employed for stabilizing periodic solutions of 
nonlinear systems [Chen and Yu, 1999;Arecchi, 
Boccaletti, Ciofini, and Meucci, 1998]. Recently, 
different nonlinear control techniques are used for 
chaos control. Some of them are: controlling the 
chaos in Lorenz system, using feedback linearization 
[Hwang, Fung, Hsieh, and Li, 1999; Alasty and 
Salarieh, 2005], controlling the chaos by variable 
structure systems [Chen and Yu, 1999; Yu, 1997,  
Konishi, Hirai, Kokame, 1998; Tsai, Fuh, and 

Chang, 2002], and feedback linearization in discrete 
time systems, with assumption that the normal form 
are attainable [Fuh and Tsai, 2002; Liaw and Tung, 
1996]. Furthermore, fuzzy methods and neural 
networks have been applied for chaos control [Calvo 
and Cartwright, 1998; 
Guan and Chen, 2003; Ramesh and Narayanan, 

2001; Alasty, Salarieh, 2004; Alasty and Salarieh, 
2005; Poznyak, Yu and Sanchez, 1999]. One of these 
nonlinear methods is backstepping design, which is 
also employed to chaos suppression in articles.[ Lu 
and Zhang, 2001; Yassen,2006] 
It is known that, in some processes the objective is to 

suppress (laminarize) chaotic or turbulent motions 
and maintain a steady, time-dependent flow. This will 
help to make right predictions of flow and reduce 
undesirable temperature oscillations and fluctuations 
which may increase safety in operational condition 
and reduce drag.[Singer and Bau, 1991; Wagner, 
Bertozzi, Howle, 2003] Thus, the general problem of 
how one controls body force driven convection is an 
area of practical as well as scientific interest.  
In the field of heat transfer and fluids dynamics, one 

common example of a dynamical system that exhibits 
chaotic behavior under specific circumstances is the 
Rayleigh-Bénard convection. [Bénard, 1900; 



Rayleigh,1916] The phenomenon of thermal 
instability in a horizontal layer of viscous fluid heated 
from below was first observed by Bénard in 
1900.[Bénard, 1900] The problem was analyzed 
theoretically by Lord Rayleigh in 1916. [Rayleigh, 
1916] The Rayleigh-Bénard convection problem 
consists of a horizontal fluid layer subjected to 
heating uniformly underside and cooling uniformly on 
the upper side. The imposed temperature difference 
must exceed a finite critical value before the first 
signs of motion and convective heat transfer are 
detected and the fluid leaves the state of steady 
conduction. The onset of convection is expressed by 
the critical Rayleigh number (RaH). Immediately 
above RaH, the flow consists of counterrotating two-
dimensional rolls, the cross sections of which are 
almost square. This flow pattern is commonly 
recognized as Bénard Cells, or Bénard convection. 
The cellular flow becomes significantly more 
complicated as RaH exceeds by one or more orders of 
magnitude the critical value. The two-dimensional 
rolls break up to three-dimensional hexagonal cells. 
As the temperature difference increases, the cells 
become narrower and, eventually, the flow becomes 
oscillatory and turbulent [Bejan, 1984].  Here, the key 
parameter is the Rayleigh number, which is 
proportional to the temperature difference across the 
fluid layer. Small values of Ra correspond to simple 
often time-independent flows; intermediate values of 
Ra correspond to complex chaotic flows; and very 
large values of Ra correspond to strongly driven 
turbulent flow. The importance of this problem lies in 
the fact that this system can exhibit not only aperiodic 
time dynamics (chaos), but also spatiotemporal 
irregular behavior (turbulence), where the dynamics 
are aperiodic in time and space.  
The possibility of bifurcation and chaotic dynamics 

in this problem is greatly in interest. [Cross and 
Hohenberg, 1993; Khayat, 1995; Khayat 1994] This 
problem has been extensively studied for Newtonian 
fluids as the attempting to find the (two-dimensional) 
solution to the full conservation equations for a 
Newtonian fluid. Saltzman [Saltzman, 1962] and 
Lorenz [Lorenz, 1963] derived a set of ordinary 
differential equations by expanding the stream 
function and temperature in double Fourier series via 
Galerkin technique in space, with the coefficients 
being a function of time alone. From the infinite set of 
differential equations, keeping only one term for the 
stream function, and two terms for the temperature, 
Lorenz obtained a three-dimensional nonlinear 
system. In [Khayat 1994], the Galerkin method is 
used to derive a four-dimensional dynamical system 
which constitutes an extension of the Lorenz model to 
include viscoelastic fluids. A similar truncation 
procedure to the Fourier representation of the flow 
and temperature fields is adopted with the constitutive 
equation of the Oldroyd-B type. In [Khayat, 1995], a 
four-dimensional dynamical system was derived for 
an upper-convected Maxwellian fluid. The Upper 
Convected Maxwell model is a generalization of the 

Maxwell fluid using the Upper-convected time 
derivative, which is widely used in polymer rheology 
for the description of behavior of a viscoelastic fluid 
under large deformations. For the case of small 
deformation, the nonlinearities introduced by the 
Upper Convected Derivative disappear and the model 
becomes an ordinary model of Maxwell material.  
Maxwell's equation is obtained from the Oldroyd-B 
equation by setting fluid retardation to zero. These 
studies can be viewed as studies to check the 
influence of fluid elasticity on the transition to 
turbulence during thermal convection of a viscoelastic 
fluid. 
Active control of convection processes has attracted 

a great deal of research interest in recent years. 
[Singer and Bau, 1991; Wagner, Bertozzi, Howle, 
2003]. The very first work on actively controlling the 
Rayleigh-Bénard system, was performed by Tang & 
Bau.[Tang and Bau, 1993.] They considered control 
through perturbation of the lower boundary 
temperature in proportion to the temperature at the 
mid-height of the fluid layer. They also considered 
control actuation by generating a velocity profile at 
the lower boundary. On the other hand, imposing a 
given flux at a boundary is considered in theoretical 
and experimental to actively control the problem. 
[Wagner, Bertozzi, Howle, 2003, Tang, and Bau, 
1995; Howle, 1997; Howle, 1997]. In the 
experiments, shadowgraphic visualization is used to 
measure the wave pattern [Howle, 1997; Howle, 
1997]. A controller, then, used this wave pattern 
information as an input to the control law. 
In this paper, we consider the problem of controlling 

convection in the Rayleigh-Bénard system. A 
backstepping based controller is designed to stabilize 
the system on a desired trajectory. Simulation results 
show that the proposed techniques can be successfully 
implemented for chaos suppression in the system, 
even when the system is subjected into a disturbance. 
 

2 Problem Statement 
The dynamical system model of upper-convected 
Maxwellian fluid in problem of Rayleigh-Bénard 
convection can be obtained based on the model 
suggested in [Khayat, 1995].The governing equations 
for the fluid motion of Rayleigh-Bénard convection 
are the well known Boussinesq equations, a set of 
nonlinear partial differential equations which via 
applying Galerkin truncation yield the fluid velocity, 
pressure, and temperature as a time-based system of 
ordinary differential equations. This system can be 
written in scaled form as [Khayat, 1995]: 

( )

( )

PrX Y P

Y rX Y XZ
Z XY bZ
P X Pδ

= −

= − −

= −

= −

 
(1) 

Under certain conditions for the values of , Pr, rδ  
and b , the above described system exhibits chaotic 
behavior. It is to be noted that the system for 1r >  



has got three equilibrium points at ( )0,0,0,0 T
and 

( ), , 1, Trμ μ μ−  where ( )1b rμ = ± − .  

The main goal is to stabilize the system in Eq. (1) on 
any desired trajectory when chaotic motion emerges. 
It is assumed that every variable in Eq. (1) is 
measurable [Howle, 1997]. 
 

3 Chaos Control 
The implementation of nonlinear control techniques 
for suppressing chaotic dynamics in the system will 
be achieved by adding a feedback control forcing 
signal in the second equation in the system (1). The 
new equations of motion including the form of control 
force, u be written as: 

( )

( )

PrX Y P

Y rX Y XZ u
Z XY bZ

P X Pδ

= −

= − − +

= −

= −

 
(2) 

 

3.1 System Standardization 
In order to find the proper controller, we need to 
reformulate the system’s control state space equation 
into a suitable form. To this end, let define the state 
variables as follow: 

1 2 3 4, , ,x P x X x Y x Z= = = =  (3) 
Thus, the control system described in Eq. (2) can be 
rewritten as, 

( )
( )

1 2 1

2 3 1

3 2 3 2 4

4 2 3 4

Pr

x x x

x x x
x rx x x x u
x x x bx

δ= −

= −

= − − +

= −

 (4) 

 
2.2 BackStepping Design 
To stabilize the dynamic of the system on the desired 
trajectory ( )1dx t  using backstepping control, we start 
from the first equation in Eq. (4). Suppose a 
stabilizing function of 2 2x φ=  has to be designed as 

the state 2x assumed to be the control input. 
Therefore, one may define the Lyapunov function as, 

 ( )2
1 1 1

1
2 dV x x= −  (5) 

Its time derivative along the control system,  
( )( ) ( ) ( )( )1 1 1 1 1 1 1 2 1 1d d d dV x x x x x x x xδ φ= − − = − − − (6) 

will become negative by choosing the control function 

2φ as, 

( )1 1 1
2

1d dx x xδ
φ

δ
+ − +

=  (7) 

Assuming the new control signal for the second 
equation, 3 3x φ=  and defining new Lyapunov 
function as, 

( ) ( ) 2
2 1 1 1

2 1 2 2 1 2

11 1
2 2

d dx x x
V V x V x

δ
φ

δ
⎛ ⎞+ − +

= + − = + −⎜ ⎟
⎝ ⎠

 (8) 

one may readily find the first derivative as follows. 
( )( ) ( )( )

( )( ) ( ) ( )

( )( ) ( ) ( )( ) ( )

2 1 1 2 1 2 2 2 2

1 1 1
1 1 2 1 2 2 2

1 2 1 1
1 1 2 1 2 2 3 1

1

1
Pr

d

d d
d

d d
d

V x x x x x x

x x x
x x x x x x

x x x x
x x x x x x

δ φ φ

δ
δ φ

δ

δ δ
δ φ φ

δ

=− − − + − −

⎛ ⎞+ − +
=− − − + − −⎜ ⎟

⎝ ⎠
⎛ ⎞+ − − +

=− − − + − − −⎜ ⎟
⎝ ⎠

 

(9) 

By choosing 3φ as, 

( ) 1 1 1
1 2 1

3

21Pr 2 2 2

Pr

d d d
d

x x xx x xδ δ δ
δ δφ

+ +⎛ ⎞− + − + − + + +⎜ ⎟
⎝ ⎠=

 (10) 

the Eq. (9) becomes N.D. 
Now let define, 

( )2
3 2 3 3

1
2

V V xφ= + −  (11) 

then, 
( ) ( ) ( )( )

( )
( ) ( )

( )

2 2
3 1 1 2 2 3 3 3 3

1 1
1 2 2

2 3 3

2 3 2 4

Pr 1 2
[

Pr
]

d

d d

V x x x x x

x xx x
V x

rx x x x u

φ φ φ

δ δ φ
δφ

= − − − − + − −

+
− + + − + + +

= + −

− − − +

 (12) 

become N.D. by choosing the control law, u , as, 
( )

( )

2

2 4 1

2

2

1 1 1 1 1 1
3

13Pr 2 Pr 3 3 1 Pr
Pr Pr

Pr 3 3 Pr
Pr

3 32 Pr
Pr

d d d d d d

u x x x

x r

x x x x x xx

δδ δ δ
δ δ

δ δ δ

δ
δ δ

⎛ ⎞−+ − − +
= + − +⎜ ⎟

⎝ ⎠
⎛ ⎞− + −

+ − −⎜ ⎟
⎝ ⎠

+ + + +
+ − + + +

 

(13) 

Remark 1: The forth equation in Eq. (4) has been 
never used in controller design procedure. It is 
obvious as we can interpret it as the internal dynamics 
of the controlled system. 
Let define the controller input as, 

1 2 2 4 2u u u x x u= + = +  (14) 
Thus the dynamic equation of control system in its 
standard form would be, 

( )
( )

1 2 1

2 3 1

3 2 3 2

Pr

x x x

x x x
x rx x u

δ= −

= −

= − +

 (15) 

In the presented standard form, the dynamics of 

1 2,x x and 3x became decoupled from 4x . This will 
make the equation, 

4 2 3 4x x x bx= −  (16) 
representing the internal dynamics of the control 
system. The convergence of this dynamic is 
guaranteed as the parameter b is positive. Thus it will 
converge and stabilize as the 1x  and 3x  converge to 
their desired trajectory. 
Remark 2: As 1x is converging to 1dx one may 

conclude form Eq. (11) that 2x and 3x is converging 

to 2φ and 3φ  respectively. Thus, 

   
1

2 1 2

1 1
3 1 3

3
Pr

d
d r

d d
d r

xx x x

x xx x x

δ

δ

→ + =

+
→ + =

 (17) 

Also according to Eq. (16) one may obtain, 



   ( ) ( ) ( ) ( )4 4 2 30
0

t b tbt
r rx x e e x x dτ τ τ τ− −−= + ∫  (18) 

So as b is positive, 
   

( ) ( ) ( ) ( ) ( )4 2 30
;

t b t
r rx t t e x x dτχ χ τ τ τ− −→ = ∫  (19) 

Remark 3: Suppose that 1dx  is C∞ and bounded 
such as, 
   1 1 1 1 1 1, ,d d dx x xα β γ≤ ≤ ≤  (20) 
Thus from Eq. (17) and using the triangular inequality 
one may obtain, 
   1 1

2 1 1 2

1 1 1
3 1 1 3

3 3
Pr Pr

d
r d

d d
r d

x
x x

x x
x x

β α α
δ δ

γ β α α
δ δ

≤ + ≤ + =

+ +
≤ + ≤ + =

 
(21) 

Also one may conclude from Eqs. (19) and (21) that, 
( ) ( ) ( ) ( ) ( )

2 3 2 3 2 30 0

1 btt tb t b t
r r

et e x x d e d
b

τ τχ τ τ τ α α τ α α
−

− − − − −
= ≤ =∫ ∫ (22) 

Thus the bound is decreasing to 2 3

b
α α

as times goes 

on. 
Remark 4: Suppose that 1dx  is constant, i.e.  
   1dx ψ=  (23) 
Thus from Eqs. (17) and (19), one may conclude that, 

   

( )

2 1

3 1
2

2
4 0

d

d

t b t

x x
x x

x e d
b

τ

ψ
ψ

ψψ τ− −

→ =
→ =

→ =∫

 
(24) 

where all are constants. 
 

2.3 BackStepping Design in the presence of 
Uncertainty 
In the previous sub-section we derive the 
backstepping controller which stabilize the control 
system on desired trajectory for the state variable 1x . 
In this section the controlled system in Eq. (4) is 
assumed with bounded disturbance. The new 
equations of motion including the form of control 
force, u, and with external disturbance can be written 
as: 

   

( )
( )

1 2 1

2 3 1

3 2 3 2 4

4 2 3 4

Pr

x x x

x x x
x rx x x x d u
x x x bx

δ= −

= −

= − − + +

= −

 (25) 

where d denotes the bounded disturbance, i.e. 
   d σ≤  (26) 
It is to be noted that,σ is a positive known constant. 
The procedure of previous section can be applied 
here. One may find the virtual control actions 2φ and 

3φ as described in Eqs. (7) and (10). Lets again 
consider Eq. (11). 

( )2
3 2 3 3

1
2

V V xφ= + −  (27) 

Its time derivative along the control system in Eq. 

(25) can be derived as, 
( ) ( ) ( )( )

( )
( ) ( )

( )

2 2
3 1 1 2 2 3 3 3 3

1 1
1 2 2

2 3 3

2 3 2 4

Pr 1 2
[

Pr
]

d

d d

V x x x x x

x xx x
V x

rx x x x d u

φ φ φ

δ δ φ
δφ

= − − − − + − −

+
− + + − + + +

= + −

− − − + +

 (28) 

Lets consider the control action for un-disturbance 
system using Eq. (13) as, 

( )

( )

2

2 4 1

2

2

1 1 1 1 1 1
3

13Pr 2 Pr 3 3 1 Pr
Pr Pr

Pr 3 3 Pr
Pr

3 32 Pr
Pr

ud

d d d d d d

u x x x

x r

x x x x x xx

δδ δ δ
δ δ

δ δ δ

δ
δ δ

⎛ ⎞−+ − − +
= + − +⎜ ⎟

⎝ ⎠
⎛ ⎞− + −

+ − −⎜ ⎟
⎝ ⎠

+ + + +
+ − + + +

 

(29) 

Define the control action for System in Eq. (25) as, 
ud du u u= +  (30) 

Substituting Eq. (30) in Eq. (28) one may obtain, 
( ) ( ) ( ) ( )( )2 2 2

3 1 1 2 2 3 3 3 3d dV x x x x x u dφ φ φ= − − − − − − + − +  (31) 
Defining, 

( ) ( )3 3sgndu xσ θ φ= − + −  (32) 
which θ   is a positive constant. 
Substituting in Eq. (31) results in: 

( ) ( ) ( ) ( )( )
( ) ( ) ( )

2 2 2
3 1 1 2 2 3 3 3 3

2 2 2
1 1 2 2 3 3 3 3

d d

d

V x x x x x u d

x x x x x

φ φ φ

φ φ θ φ

= − − − − − − + − +

≤ − − − − − − − −

 
(33) 

Thus considering Eqs. (29) and (32) the control law 
can be summarized as: 

( )

( )

( )
( ) ( )

2

2 4 1

2

2 3

1 1 1 1 1 1

1 1 1 1
1 2

3

13Pr 2 Pr 3 3 1 Pr
Pr Pr

Pr 3 3 Pr 2
Pr

3 3 Pr
Pr

2Pr 2 2
sgn

Pr

d d d d d d

d d d

u x x x

x r x

x x x x x x

x x x xx x
x

δδ δ δ
δ δ

δ δ δ δ

δ δ

δ δ
δσ θ

⎛ ⎞−+ − − +
= + − +⎜ ⎟

⎝ ⎠
⎛ ⎞− + −

+ − − + − +⎜ ⎟
⎝ ⎠
+ + + +

+ +

− + + +⎛ ⎞− + + − + +⎜ ⎟
− + −⎜ ⎟

⎜ ⎟
⎝ ⎠

 

(34) 

Remark 5: Although the stability of the proposed 
control technique has been proved theoretically, there 
are some technical problems such as strong chattering 
in implementation of control law due to use of sign 
function in Eq.(32). To overcome this problem one 
can use the saturation function instead of sign 
function: 

( ) ( )
1S S

Ssat
Ssign otherwise

φ φ
φ

φ

⎧ <⎪
= ⎨
⎪
⎩

 
(35) 

where φ is a positive small number. In this case, some 
steady state error is generated which implies that there 
exists some error between the stabilized trajectory and 
the actual one. By decreasing φ to zero, the mentioned 
error will converge to zero. 
 

4 Simulation Results 
The above described control scheme is now used to 
control the states of a chaotic system. The 
aforementioned system in Eq. (1) exhibits chaotic 
behavior with the following parameters: 
   84.6, Pr 10, 3.0703, 3r bδ= = = =  (36) 
These parameters represent a viscoelastic fluid 
with 0.022De = .[Cross and Hohenberg, 1993] For 



these parameters, the phase plane diagrams of the 
system chaotic attractor are shown in Fig. (1).  
The simulation consists of two parts. First in absence 

of disturbance, the described controller in section 3.2 
is implemented. Then, by considering a bounded 
disturbance in the model, the controller proposed in 
section 3.3 is applied to the system. In both methods 
the controller signal is equal to zero for the first T=20  
time units. For time greater than T, the controller 
turned. 
 

 

 

  
Figure 1.  Chaotic attractor of the system in the 

phase space projected on (a)XYZ space, (b) XYP 
space, (b) YZP space 

 
The controller in backstepping design of the model in 
the absence of disturbance follows the pattern defined 
in Eq. (13). Figure 2 shows the results for this case 
regulating the ( )1 1d dx P b r= = − . As this point is 

the P-component of the equilibrium of the system in 
Eq. (1), one may conclude from Eq. (24) that the X,Y 
and Z components of the system are converging to 
their corresponding equilibrium components.  
Thus the state variable of the system is converging to 

its equilibrium point. It is to be noted as the system 
stabilized on its equilibrium point; the control action 
will converge to zero in a finite time. On the other 
hand as the system has got the strange attractor, 
controlling a state would result the system 
stabilization on equilibrium manifold.  
In Fig. 3 we represent the result of the P-component 

of the system tracks the desired trajectory, 
( )1 2sind dx P t= = . 

In presence of disturbance in the system, the second 

control algorithm which is introduced in section 3.3 is 
used to control the chaotic motion of the system. 
Regarding Eq. (26), the following bound is considered 
in the simulation: 
   0.1σ =  (37)
Also, in Eq. (32) θ  is set to 0.1 .  
Figure (4) represents the results of the proposed 
controller in presence of bounded disturbance. This 
bounded uncertainties assumed to be ( )0.1sin 10d t= . 
 

  
Figure 2. Regulation time response of the states and 

control input for the controlled system, the controller is 
turned at t=20 

 

 
Figure 3. (a) Time response of the P state and control 
input and (b) phase space projected on YZP for the 
controlled system which tracks ( ) ( )2sindP t t=  , the 

controller is turned at t=20. 
 
As can be seen from the simulation results, the 

stability of desired trajectory orbits is completely 
achieved in less than 50 time units. 

a 

b 

c 

a

b



 

  

Figure 4. Time response of the P state and control 
input for the controlled system with disturbance which 

tracks ( ) ( )2sindP t t=  , the controller is turned at 
t=20. 

 

5 Conclusion 
In this paper, the problem of controlling chaos in 
Rayleigh- Bénard Convection in Maxwellian Fluids is 
considered. A backstepping design is developed to 
eliminate chaos based on stabilizing the P-component 
of the system on a desired trajectory. The modified 
version of the proposed controller is applied to the 
system by considering a bounded disturbance in the 
system. Both techniques are successfully implemented 
to stabilize the desired trajectory in the system in a 
reasonable small time and control action. Simulation 
results confirm the performance of the designed 
controllers. 
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