
PHYSCON 2011, Léon, Spain, September, 5–September, 8 2011

NONLINEAR BIFURCATIONS OF DAMPED
VISCO-ELASTIC PLANAR BEAMS UNDER

SIMULTANEOUS GRAVITATIONAL AND FOLLOWER
FORCES

Angelo Luongo
Dipartimento di Ingegneria delle Strutture,

delle Acque e del Terreno
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Abstract
The mechanical behavior of a non-conservative

non-linear beam, internally and externally damped,
undergoing codimension-1 (static or dynamic) and
codimension-2 (double-zero) bifurcations, is analyzed.
The system consists of a purely flexible, planar, visco-
elastic beam, fixed at one end, loaded at the tip by a fol-
lower force and a dead load, acting simultaneously. An
integro-differential equation of motion in the transver-
sal displacement, with relevant boundary conditions, is
derived. Then, the linear stability diagram of the triv-
ial rectilinear configuration is built-up in the space of
the two loading parameters. Emphasis is given to the
role of the two damping coefficients on the critical sce-
nario. Attention is then focused on the double-zero bi-
furcation, for which a post-critical analysis is carried
out without anya-priori discretization. An adapted
version of the Multiple Scale Method, based on a frac-
tional series expansion in the perturbation parameter, is
employed to derive the bifurcation equations. Finally,
bifurcation diagrams and bifurcation charts are evalu-
ated, able to illustrate the system behavior around the
codimension-2 bifurcation point.
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1 Introduction
Stability of columns subjected to follower forces, af-

ter the pioneering paper by [Beck, 1952], have re-
cently attracted the attention of many researchers, par-
ticularly in aerospace, where tangential forces are pro-
duced by jets and rocket motors [Ryu, Katajama and
Sugiyama, 1998], [Langthjem and Sugiyama, 2000].
In many studies, damping is mainly considered as an

external cause, resulting from the interaction occur-
ring between the structure and the surrounding air (see,
e.g. [Detinko, 2003], where both damping forces and
couples acting on a tip mass were taken into account).
However, damping is also due by aninternal dissipa-
tion of the material, to be modelled by a proper rhe-
ological model. A general treatment of the effect of
distributed, internal and external small dampings, on
the linear stability of a continuous beam under non-
conservative loads, can be found in [Kirillov and Seyra-
nian, 2005].
Stability is strongly influenced by damping, which is

responsible of a well-known phenomenon, called “the
destabilization paradox”, according to which the loss of
stability of a non-conservative system with vanishingly
small damping occurs at a load significantly lower than
the critical value relevant to the undamped system. This
problem was firstly studied by Ziegler [Ziegler, 1952]
and subsequently observed in many non-conservative
mechanical systems, [Bolotin and Zhinzher, 1969],
[Andreichikov and Yudovich, 1974], [Denisov and
Novikov, 1975], [Seyranian, 1990], [Kirillov, 2004].
Follower forces can also act simultaneously to gravi-

tational forces, as for example analyzed in [Langthjem
and Sugiyama, 2000], [Adali, 1982], this interaction
resulting in richer bifurcation scenarios.
All previous studies have been devoted to analyze

the linear stability behaviour of systems. However,
nonlinear systems have also been investigated in the
framework of general bifurcation theory [Troger and
Steindl, 1991], [Luongo, Di Egidio and Paolone, 2002],
mostly under purely non-conservative forces [Troger
and Steindl, 1991]. Therefore, it seems interesting,
to investigate nonlinear systems under both types of
forces, and in presence of both types of damping, in
order to analyze the mutual interactions.
In this paper non linear bifurcations of beams, inter-

nally and externally damped, loaded by a gravitational



and a follower force acting simultaneously, are studied.
The paper is thus organized. In Section 2 the equa-
tions of motions are derived. In Section 3 the eigen-
value problem is addressed for the linearized system
and its adjoint. In Section 4 the linear stability prob-
lem is studied in the parameter space and the critical
scenario is depicted, by focusing the attention on the
effects of damping. In Section 5 a post-critical anal-
ysis around a double-zero bifurcation point is carried
out. An adapted version of the Multiple Scale Method
is used, which is based on a fractional series expansion
in terms of the perturbation parameter, similarly to the
analysis carried out in [Luongo and Di Egidio, 2005],
[Di Egidio, Luongo and Paolone, 2007], [Luongo and
Di Egidio, 2006]. The bifurcation equations are de-
rived and numerically studied to built-up equilibrium
paths and bifurcation diagrams. Finally, in Section 6
some conclusions are drawn.

2 Model
A planar beam is considered, fixed at the endA and,

simultaneously loaded at the tipB by a follower force
of intensityF (tangential to the actual configuration of
the beam axis) and by a dead load of intensityP (act-
ing in the direction of the originally rectilinear axis,
Fig. 1). The material behavior of the beam obeys to
the Kelvin-Voigt rheological model, with elastic mod-
ulusE and viscous coefficientη (acting as an internal
damping); moreover, the beam is considered to lie on a
purely viscous linear soil of constantc (simulating the
external damping). The beam is assumed to be inexten-
sible and shear-indeformable, Formulation closely fol-
lows the procedure of [Luongo and Di Egidio, 2005],
where a similar system was considered, with, however,
no dead load nor internal damping, but a lumped visco-
elastic device.
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Figure 1. Visco-elastic beam on viscous soil under followerforce

and dead load: model and displacements.

The actual configuration of the beam is described by
the transversal displacement fieldu (s, t), the longi-
tudinal displacementw (s, t) of the beam axis, and,
moreover, the rotation of the sectionϑ (s, t), where
s ∈ [0, `] is a curvilinear abscissa andt is the time. The

three displacements, however, are not independent, be-
cause of the internal constraints, expressing no shear
and no stretching, respectively:

sin(ϑ) = u′, ε :=

√

(1 + w′)
2
+ u′2 − 1 = 0 (1)

where a dash denotes differentiation with respect tos.
The curvatureκ (s, t) is assumed as the (unique) strain
measure; from Equation (11) it follows that:

κ := ϑ′ =
u′′

√

1 − u′2
(2)

The equations of motion are derived by the generalized
Hamiltonian principle, by introducing the constraint
equation (12) by a Lagrangian multiplierN (s, t), hav-
ing the meaning of (reactive) axial force. The varia-
tional principle reads:

δH =

∫

t2

t1

∫

`

0

[m (u̇δu̇ + ẇδẇ) − EIκδκ − ηIκ̇δκ+

−cu̇δu − δ (Nε)] dsdt +

∫

t2

t1

[(P + F cos (ϑB)) δwB+

−F sin (ϑB) δuB] dt = 0, ∀ (δu, δw, δN)
(3)

whereEI is the flexural stiffness of the beam, a dot
denotes time-differentiation, and the indexB evalua-
tion at s = `. By using Equation (11) to eliminate
the rotationϑ (s), expandingu (s) in Taylor series, the
equations of motion, corrected up to the third-order, are
derived. By introducing the following non-dimensional
quantities:

t̃ = ωt, s̃ = s/`, ũ = u/`, w̃ = w/`,

Ñ = N/m`2ω2, ω2 = EI/m`4, α = ηω/E,

β = cω`4/EI, µ = F`2/2EI, ν = P`2/2EI

(4)

omitting the tilde symbol, and still denoting by dashes
and dots differentiations with respect non-dimensional
quantities, the equations read:

ü+ uIV +
[

u′(u′u′′)
′

]

′

+ αu̇IV +

+α

{

[

u′(u′u′′)
′

]

′

}

•

+ βu̇− (Nu′)
′

= 0

ẅ −N ′ = 0

w′ +
u′

2

2
= 0

(5)

with the relevant boundary conditions, of geometrical
type:

wA = 0, uA = 0, u′A +
1

6
u′3A = 0 (6)



and mechanical type:

NB + 2µ

(

1 −
u′2B
2

)

+ 2ν = 0

−
[(

u′′′B + u′′′Bu
′2
B + u′′2B u′B

)

− (2µ+NB)u′B +

+α
(

u′′′B + u′′′Bu
′2
B + u′′2B u′B

)

•
]

= 0
(

u′′B + u′′Bu
′2
B

)

+ α
(

u′′B + u′′Bu
′2
B

)

•

= 0
(7)

In deriving Eqs. (5)-(7),N ′ was considered as a
second-order quantity, in accordance with Eqs. (52,3),
so that terms asN ′u′2 were neglected.
The longitudinal displacementw (s, t) and the axial

forceN (s, t) follow from integration of Eqs. (52,3)
with the boundary conditions (61) and (71), namely:

w = −
1

2

s
∫

0

u′
2
ds

N = −2µ

(

1 −
u′2B
2

)

− 2ν −
1

2

s
∫

1





s
∫

0

u′2ds





••

ds

(8)
By substituting Eq. (82) in Eq. (51) and in the remain-
ing boundary conditions, the following (condensed)
equations in the unique variableu (s, t) are finally de-
rived:

ü+ uIV +
[

u′(u′u′′)
′

]

′

+ αu̇IV +

+α

{

[

u′(u′u′′)
′

]

′

}

•

+ 2

[

µ

(

1 −
u′2B
2

)

+ ν

]

u′′ +

+βu̇+
1

2









s
∫

1





s
∫

0

u′
2
ds





••

ds



u′





′

= 0

uA = 0, u′A +
1

6
u′3A = 0,

−

[

(

u′′′B + u′′′Bu
′2
B + u′′2B u′B

)

+ 2

(

ν − µ
u′2B
2

)

u′B +

+α
(

u′′′B + u′′′Bu
′2
B + u′′2B u′B

)

•
]

= 0,
(

u′′B + u′′Bu
′2
B

)

+ α
(

u′′B + u′′Bu
′2
B

)

•

= 0
(9)

They are of integro-differential type and contain cubic
nonlinearities only. It should be noticed that lineariza-
tion of the geometrical conditions does not entail any
error at this order.
In view of further developments, it is convenient to

recast Eqs. (9) in an operator form, in which the me-
chanical boundary conditions are appended to the field
equations [Luongo and Di Egidio, 2005]. The problem
accordingly reads:

Mü + Cu̇ + Ku = n
(

(u, u̇)
3
)

gu = 0
(10)

where:

u :=







u
uB

u′B







, M :=





1 0 0
0 0 0
0 0 0



 , C :=





β + αD4 0 0
−αD3

B 0 0
αD2

B 0 0



 ,

gu :=

{

uA

u′A

}

, K :=





D4 + 2 (µ+ ν)D2 0 0
−D3

B − 2νD1
B 0 0

D2
B 0 0



 ,

n
(

(u, u̇)3
)

:=































































−
[

u′(u′u′′)
′

]

′

+ µu′2Bu
′′+

−α

{

[

u′(u′u′′)
′

]

′

}

•

+

−
1

2









s
∫

1





s
∫

0

u′
2
ds





••

ds



u′





′

u′′′Bu
′2
B + u′′2B u′B − µu′2Bu

′

B+

+α
(

u′′′Bu
′2
B + u′′2B u′B

)

•

−u′′Bu
′2
B − α

(

u′′Bu
′2
B

)

•































































(11)
In Equations (10), (11)M, C and K are the mass,
damping and stiffness operators, respectively, acting on
the vectoru ∈ H̃, with H̃ := H⊕R

2, which collects the
field displacementu and the displacement and its spa-
tial derivative evaluated at the endB; n((u, u̇)3) is the
vector of nonlinearities (which are cubic homogeneous
forms in their arguments and their spatial derivatives
and integrals), both in the domain and at the bound-
ary B; gu is the vector of the constrained displace-
ments at the endA; moreoverDn := ∂n/∂sn, Dn

B :=
∂n/∂sn|B. Equations (10) are then rewritten in the
following state-form:

BU̇ = AU + N
(

U3
)

GU = 0
(12)

where:

U :=

{

u

v

}

,v :=







u̇
u̇B

u̇′B







, B :=

[

I 0

0 M

]

,

A :=

[

0 I

−K −C

]

, N
(

U3
)

:=

{

0

n
(

U3
)

}

,

Gu :=

{

uA

u′A

}

(13)

in whichv := u̇ is the velocity field, andU ∈ H̃
2 the

state-vector.

3 Eigenvalue analysis
Bifurcation analysis calls for evaluation of the (right)

eigenvalues and eigenvectors of the equations of mo-
tion (12). Since the problem is not self-adjoint, also the
(left) eigenvectors of the adjoint problem must be de-
termined. The procedure, detailed in [Luongo and Di
Egidio, 2005], is here briefly resumed.



3.1 Right and left eigenvalue problems

The equations of motion (12), when linearized, admit
the solutionU = Φeλt which leads to the differential
eigenvalue problem:

(A − λB)Φ = 0

GΦ = 0
(14)

or, equivalently:

φ̂ = λφ

Kφ+ Cφ̂+ λMφ̂ = 0

φA = 0, φ′A = 0

(15)

having setΦ :=
{

φ, φ̂
}T

∈ H̃
2, φ := {φ, φB , φ

′

B}T

∈ H̃ andφ̂ :=
{

φ̂, φ̂B , φ̂
′

B

}T
∈ H̃. By introducing the

scalar products iñH andH̃
2, respectively:

(φ,ψ) :=

1
∫

0

φ̄1 (s)ψ1 (s) ds+

+
∑

j=2,3

φ̄jψj φ,ψ ∈ H̃

〈Φ,Ψ〉 :=

1
∫

0

∑

i=1,4

Φ̄i (s)Ψi (s) ds+

+
∑

j=2,3,5,6

Φ̄jΨj Φ,Ψ ∈ H̃
2

(16)

and using the bilinear identity:

〈Ψ, (A − λB)Φ〉 =
〈(

A∗ − λ̄B∗
)

Ψ,Φ
〉

(17)

the adjoint eigenvalue problem follows:

(

A∗ − λ̄B∗
)

Ψ = 0

G∗Ψ = 0
(18)

also written as:

K∗ψ + λ̄ψ̂ = 0

ψ̂ − C∗ψ − λ̄M∗ψ = 0

ψA = 0, ψ′

A = 0

(19)

in which:

B∗ :=

[

I 0

0 M∗

]

, A∗ :=

[

0 −K∗

I −C∗

]

,

G∗Ψ :=

{

ψA

−ψ′

A

}

, M∗ :=





1 0 0
0 0 0
0 0 0



 = M,

C∗ :=





β + αD4 0 0
−αD3

B 0 0
αD2

B 0 0



 = C,

K∗ :=





D4 + 2 (µ+ ν)D2 0 0
−D3

B − 2 (µ+ ν)D1
B 0 0

D2
B + 2µ 0 0





(20)

andΨ :=
{

ψ̂,ψ
}T

. It should be noticed that whileM

andC are self-adjoint,K is not self-adjoint, because of
the presence of the follower force at the boundary.

3.2 Generalized eigenvectors associated with a
double-zero eigenvalue

The case in whichλ = 0 is a double eigenvalue for
Eq (14) (and 18)) is of particular interest in bifurca-
tion analysis (Takens-Bogdanov bifurcation). In this
occurrence, there exist only one proper right eigenvec-
tor Φ1 = {φ1,0}

T and only one proper left eigen-
vectorΨ2 = {C∗ψ2,ψ2}

T; moreover, they are mu-
tually orthogonal, i.e.〈Ψ2,Φ1〉 = (C∗ψ2,φ1) = 0.
To complete the right basis, a generalized eigenvector

Φ2 =
{

φ2, φ̂2

}T
is needed, which is solution to:

AΦ2 = Φ1

GΦ2 = 0
(21)

or, equivalently:

φ̂2 = φ1

−Kφ2 − Cφ̂2 = 0

φ2A = 0, φ′2A = 0

(22)

The generalized eigenvectorΦ2 is not unique, sinceA
is singular. To select it univocally, a normalization con-
dition must be enforced, e.g.φ2B = 0; onceΦ2 has
been normalized, alsoΨ2 is normalized, by requiring
〈Ψ2,Φ2〉 = 1.

4 Linear stability analysis
4.1 Bifurcation loci
Stability of the trivial, rectilinear configuration of the

beam is governed by the linear eigenvalue problem



(10). In extended form, it reads:

(1 + αλ)φIV + 2 (µ+ ν)φ′′ +
(

λ2 + βλ
)

φ = 0

φA = 0, φ′A = 0,

−(1 + αλ)φ′′′B − 2νφ′B = 0, (1 + αλ)φ′′B = 0
(23)

The field equation (231) and the boundary conditions
atA lead to the solution:

φ (s) =c1 [cos (ps) − cosh (qs)] +

+ c2

[

1

p
sin (ps) −

1

q
sinh (qs)

]

(24)

where

q2 :=

√

(µ+ ν)
2 − (1 + αλ) (βλ+ λ2) − (µ+ ν)

(1 + αλ)

p2 :=

√

(µ+ ν)
2 − (1 + αλ) (βλ+ λ2) + (µ+ ν)

(1 + αλ)
(25)

andc := (c1, c2)
T are arbitrary constants. It should

be noted that factors1/p, 1/q have been introduced in
Eq. (24), in order it holds even whenp → 0 or q → 0.
By enforcing boundary conditions atB, two algebraic
equations follow:

Sλc = 0 (26)

where:

Sλ :=

































−

(

p3 + p3αλ
)

sin (p)+

+2pν sin (p) +

+
(

q3 + q3αλ
)

sinh (p) +

+2qν sinh (p)

(

p2 + p2αλ
)

cos (p) +

−2ν cos (p) +

+
(

q2 + q2αλ
)

cosh (q) +

+2ν cosh (q)

− (1 + αλ)
(

p2 cos (p)
)

+

− (1 + αλ)
(

q
2

cosh (q)
)

− (1 + αλ) (p sin (p))+

− (1 + αλ) (q sinh (q))

































(27)

is the “dynamic stiffness matrix” of the system, de-
pending on the eigenvalueλ. This matrix, however,
also depends on thecontrol parameters, (µ, ν) and the
auxiliary parameters(α, β), i.e. Sλ = Sλ(µ, ν;α, β).
The characteristic equationdetSλ(µ, ν;α, β) = 0 sup-
plies the eigenvaluesλ as a function of(µ, ν;α, β). To
restate the problem in real variables, the eigenvalues
are written asλ = ξ + iω, with ξ, ω ∈ R, and then the
characteristic equation re-written in the form:

f (ξ, ω;µ, ν;α, β) + i g (ξ, ω;µ, ν;α, β) = 0 (28)

with f, g ∈ R. For a fixed set of parameter
(µ, ν;α, β)

T, the system of two real equationsf =
0, g = 0 furnishes the unknownsξ, ω. From a geomet-
rical point of view, for given values of the parameters

(µ, ν;α, β), each of these equations describes a curve
in the(ξ, ω)- plane, which intersect each other in an in-
finite number of points, representing the eigenvalues of
the systems.
In order to find the divergence boundary in the con-

trol parameter space, the lociD of the rootsξ =
0, ω = 0 must be found. Sinceg (0, 0;µ, ν;α, β)
is found to vanish identically for any(µ, ν;α, β), and
f (0, 0;µ, ν;α, β) is found to be independent of the
damping coefficientsα, β, Eq. (28) assumes the follow-
ing simple form:

(µ+ ν)
3/2

[

µ+ ν cos
(

√

2 (µ+ ν)
)]

= 0 (29)

This equation implicitly defines a multi-branch curve
D on the(ν, µ)-plane.
Hopf bifurcation occurs at the manifoldH of the pa-

rameter plane on whichξ = 0, ω 6= 0, defined by:

{

f (0, ω;µ, ν;α, β) = 0

g (0, ω;µ, ν;α, β) = 0
(30)

These equations, for a given pair of damping coeffi-
cients(α, β), implicitly define a multi-branch curveH
in the (ν, µ)-plane, parameterized by theω-parameter.
No closed-form solutions, but only numerical, can be
pursued for Eqs. (30).

4.2 Linear stability diagrams
The linear stability diagram of the beam, is depicted in

Fig. 2. All quadrants of the(ν, µ)-plane have been dis-
played, to account for both tensile/compressive forces.
Equation (29) (divergence locus) defines a family of
curves (independent of damping) labelled withD .
Equation (29) also defines an additional straight line
N , of equationµ = −ν, but, as it will be shown ahead,
this is not a bifurcation locus, since the transversal-
ity condition of the eigenvalues is not satisfied on it.
Equations (30) (Hopf locus) define a second family of
curves labelled withH (depending on damping). Of
this family, the curves relevant to the undamped system
(α = β = 0 , also referred ascirculatory system) have
been denoted byHu, and curves relevant to a slightly
damped sample system, (α = 0.01, β = 0.1) by Hd.
Loci D andH represent codimension-1 bifurcations.
The divergence-locusD intersects theν-axis at points
E1, E2, · · · , each corresponding to an Eulerian critical
load,νE1

= π2/8, νE2
= 9π2/8, · · · . The Hopf- lo-

cusH intersects theµ-axis at the Beck’s loads. Only
the lower intersection is depicted in Fig. 2, both for
the undamped system,Bu

1 := (0, 10.025), and for the
damped system,Bd

1 := (0, 6.464). Consistently with
the destabilizing effect phenomenon, a small amount of
damping considerably reduces the critical load.
The Hopf-curves die at intersections with the diver-

gence curves, according to the well-known mechanism
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Figure 2. Linear stability diagram for the undamped system

(α, β = 0; u superscript) and a sample damped system (α =
0.01, β = 0.1; d superscript);D: divergence locus,H: Hopf

locus,N : zero-stress locus;E: Eulerian bifurcations;B: Beck’s

bifurcations;DZ : double-zero bifurcations.

of the double-zero (or Takens-Bogdanov) bifurcation
(see for example [Luongo, Paolone and Di Egidio,
2000]). Such codimension-2 bifurcation occurs at
pointsDZu

1 := (5.51, 3.02), DZu
2 := (45.87, 11.76),

in the undamped case, andDZd
1 := (2.88, 2.81),

DZd
2 := (22.26, 22.26), in the damped case. For the

former, circulatory system, the two loci merge with the
same tangent, whereas, in the damped case, they cross
each other transversally. The high sensitivity of the
double-zero points should be noted, consequent to the
large shift of the Hopf loci caused by damping.
The straight lineN represents a one-parameter family

of beams unstressed in the undeformed configuration,
since the two forces balance themselves when aligned.
However, when the beam moves to an adjacent config-
uration, and due to the different behaviour of the two
forces, a (nondimensional) transversal force propor-
tional to the tip rotation rises, namelyVB := −µu′B.
SinceuB andu′B are concordant in sign in the result-
ing static deflection, (a) whenµ > 0 (compressive fol-
lower force)VB is opposite touB, and therefore is sta-
bilizing; (b) whenµ < 0 (tensile follower force), the
force is concordant withuB, and therefore is (poten-
tially) destabilizing. However, for values of|µ| < 1
(corresponding to theOC segment in the figure),VB

is smaller than the elastic forces necessary to keep the
beam in the deformed configuration, so that the triv-
ial equilibrium is still stable; the opposite occurs for
|µ| > 1 (below pointC), so that the trivial equilibrium
is unstable. ThereforeC := (1,−1) is a critical point
for this family of systems.
As a final results of the previous analysis, the stable

zone of the(ν, µ)-plane is denoted in grey in the fig-

ure; it undergoes a contraction when a small damping
is added.

The stability diagram of Fig. 2 is zoomed in Fig. 3,
to focus the interest on the boundaries of the stable
zone and to investigate the behaviour of the eigenval-
ues aroundN . Figures 3a,b describe the scenario for
the undamped and damped cases, respectively, and give
a sketch of the eigenvalues in the different zones. The
undamped case is analyzed first (Fig. 3a). Here, the
system is (not asymptotically) stable if all its eigen-
values lie on the imaginary axis, as it occurs in the
grey zone. The transition through the divergence curve,
moving from the left, occurs as follows: a couple of
imaginary eigenvalues first collides at zero (onD) and
then split into a couple of opposite in sign real eigenval-
ues. The transition trough the Hopf curve happens as
follows: two couples of purely-imaginary eigenvalues
moves towards each other, coalesce in double eigen-
values (onH), and then splits again into two couples
of complex and conjugate eigenvalues, having opposite
real parts. The straight lineN , instead, does not affect
stability. Indeed, by crossing them in the stable zone, a
couple of purely imaginary eigenvalues collides at the
origin (onN ), then splits again into two purely imagi-
nary eigenvalues. Therefore, no zero eigenvalue passes
through the imaginary axis, and therefore no bifurca-
tions occurs. Similarly, by crossing the line in the un-
stable zone, a couple of opposite in sign real eigenval-
ues collides at zero (onN ), then it splits again into op-
posite in sign real eigenvalues. At the critical pointC,
a more degenerate condition occurs, where four eigen-
values coalesce at zero. The eigenvalues of the unsta-
ble region, further to the right, are also sketched for low
and high values ofµ.

When the system is damped (Fig. 3b), (asymptotic)
stability requires that all the eigenvalues have nega-
tive real parts, while the system is unstable if at least
one eigenvalue has positive real part. Loss of stabil-
ity through divergence and Hopf loci occurs via the
classical mechanisms, namely: (a) two stable complex-
conjugate eigenvalues first collide on the real axis, then,
one of them crosses the imaginary axis at zero (on
D); (b) a couple of stable complex conjugate eigenval-
ues simultaneously crosses the imaginary axis (onH).
Again, theN line does not influence stability, since the
mechanism is identical to that of the undamped case.
At the critical pointC, three eigenvalues coalesce at
zero. Eigenvalues in the rightmost region are also indi-
cated.
A parametric study on the influence of both internal

(α) and external (β) damping coefficients is then car-
ried out. First, the effect of a single parameter is stud-
ied in Figs. 4a,b. In Fig. 4a theα coefficient is zeroed,
while theβ coefficient is varied in a wide range. It is
found that, for any value ofβ, all the Hopf loci origi-
nate from the same double-zero point of the undamped
system DZβ ≡ DZu

1 = (5.51, 3.02). However, curves
modify their shape; in particular, the attack angle with
the divergence curve increases from zero for increas-
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Figure 3. Linear stability diagrams and eigenvalue sketches; (a) un-

damped system (α, β = 0); (b) damped system (α = 0.01,β =
0.1).

ing β. As a consequence, the Beck’s load also in-
creases withβ (e.g.µB = 10.05, 12.13, 18.60 when,
β = 0.01, 10, 100 respectively). In Fig. 4b β is ze-
roed, whileα is varied. Again, the double-zero point
DZα := (2.46, 2.46) is found to be independent of the
damping value, butit does not coincide with that of the
undamped system. Moreover, whenα → 0, the angle
of attack to the divergence curve tends toπ/2, instead
of zero. Due to the deformation ofH, the Beck’s load
highly increases withα (e.g.µB = 5.48, 6.82, 10.75
whenα = 0.01, 0.1, 0.2, respectively).
To analyze the combined effect of the two parameters,

one is kept constant and non-zero, and the other is var-
ied (Fig. 4c,d). For fixedα = 0.01 and increasingβ, the
scenario of Fig. 4c is found. The Hopf locus moves to
the right, and the double-zero point tends toDZβ. Con-
sequently, the Beck’s load increases withβ ( e.g.µB =
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Figure 4. Linear stability diagrams varying damping coefficients

for: (a) purely externally damped systems; (b) purely internally

damped systems; (c), (d) externally and internally damped systems.

5.61, 6.46, 8.90, 12.60, whenβ = 0.01, 0.1, 1, 10,
respectively). For fixedβ = 0.1 and increasingα
(Fig. 4d), the Hopf locus moves to the right and ro-
tates, intersecting the divergence locus at double-zero
points tending toDZα. Accordingly, the Beck’s load
increases withα ( e.g.µB = 6.46, 7.04, 10.99, when
α = 0.01, 0.1, 0.2).



5 Bifurcation analysis around a double-zero point
5.1 Bifurcation equation
A nonlinear bifurcation analysis is carried out around

a double-zero bifurcation point. The partial, integro-
differential equations (12) are directly attacked (i.e.
without introducing anya-priori discretization) by an
adapted version of the Multiple Scale Method (see also
[Luongo and Di Egidio, 2006]).
A perturbation parameter0 6 ε � 1, of the order of

the response amplitude, is introduced via the rescaling

U(s, t) = ε1/2Û(s, t), whereO
(∥

∥

∥Û(s, t)
∥

∥

∥

)

= 1 .

Incrementsε (µ̂, ν̂) of the bifurcation parameters(µ, ν)
with respect their bifurcation values(µ0, ν0) are in-
troduced, i.e.µ = µ0 + εµ̂, ν = ν0 + εν̂, where
O (µ̂) = O (ν̂) = 1. Consequently:

K = K0 + ε (µ̂Kµ + ν̂Kν) + O
(

ε2I
)

(31)

whereKµ, Kν are the derivatives ofK with respect
the parameters. Hats will be omitted ahead for nota-
tional convenience. Several independent time scales
are defined, namelytk := εk/2t, (k = 0, 1, · · · ), so
thatd/dt = d0 + ε1/2d1 + εd2 + · · · . The unknowns
are expanded in series of fractional powers ofε as:

U =
∑

k=0,1,...

εk/2

{

uk

vk

}

(32)

After substitution of the previous expansions in Eqs.
(12), a chain oflinear perturbation equations and rele-
vant boundary conditions follow (hats omitted):

ε0 :











d0u0 − v0 = 0

Md0v0 + K0u0 + Cv0 = 0

u0A = 0, u′0A = 0

ε1/2 :











d0u1 − v1 = −d1u0

Md0v1 + K0u1 + Cv1 = −Md1v0

u1A = 0, u′1A = 0

ε :























d0u2 − v2 = −d2u0 − d1u1

Md0v2 + K0u2 + Cv2 = −Md2v0+

− Md1v1 − (µKµ + νKν)u0 + n
(

U3
0

)

u2A = 0, u′2A = 0

ε3/2 :































d0u3 − v3 = −d3u0 − d2u1 − d1u2

Md0v3 + K0u3 + Cv3 = −Md3v0+

− Md2v1 − Md1v2 − (µKµ + νKν)u1+

+ 3n
(

U2
0U1

)

u3A = 0, u′3A = 0
(33)

The first perturbation equation (331) admits the (gener-
ating) not-diverging solution:

U0 ≡

{

u0

v0

}

= a (t1, t2, · · · )

{

φ1

0

}

(34)

whereΦ1 := {φ1,0}
T is an eigenvector for Eq. (15),

anda(t0, t1, · · · ) is a real unknown amplitude, which
is modulated on the slower time-scales. Whit equations
(34), the problem (332) reads:

ε1/2 :











d0u1 − v1 = −d1aφ1

Md0v1 + K0u1 + Cv1 = 0

u1A = 0, u′1A = 0

(35)

Since the known term belongs to the range of the oper-
ator (recall Eq. (22)), Eq. (35) admits the steady solu-
tion:

U1 ≡

{

u1

v1

}

= d1a (t1, t2, · · · )

{

φ2

φ1

}

(36)

in whichΦ2 :=
{

φ2, φ̂2

}T
= {φ2,φ1}

T is the order-

2 generalized eigenvector. With equations (34) and
(36), the problem (333) reads:

ε :























d0u2 − v2 = −d2aφ1 − d2
1aφ2

Md0v2 + K0u2 + Cv2 = −d2
1aMφ1+

− a (µKµ + νKν)φ1 + a3n
(

Φ3
1

)

u2A = 0, u′2A = 0
(37)

In order it can be solved, the known term
F2 :=

{

−d2aφ1 − d2
1aφ2,−d2

1aMφ1 + a3n
(

Φ3
1

)

−a (µKµ + νKν)φ1}
T, must belong to the range of

the operator; thissolvability condition requires that:

〈Ψ,F2〉 = 0 ∀Ψ :
(

A∗ − λ̄B∗
)

Ψ = 0 (38)

and it furnishes:

d2
1a = (c1µµ+ c1νν) a+ c3a

3 (39)

wherec1µ, c1ν , c3 are real coefficients given in the Ap-
pendix. By using Eq. (39) and solving Eq. (37), it fol-
lows:

U2 ≡

{

u2

v2

}

=d2a

{

φ2

φ1

}

+ µa

{

zµ

ẑµ

}

+

+ νa

{

zν

ẑν

}

+ a3

{

za

ẑa

} (40)

wherezµ, ẑµ, zν , ẑν , za, ẑa are solutions to linear
problems (see Appendix). To make the solution to the



singular problem (37) unique, the normalization condi-
tion u2B = 0 was enforced.
By using the results so far achieved, Eqs. (334) read:

ε3/2 :































d0u3 − v3 = −d3aφ1 − d1d2aφ2 − d1u2

Md0v3 + K0u3 + Cv3 = −d1d2aMφ1+

− Md1v2 − d1a (µKµ + νKν)φ2+

+ 3a2d1an
(

Φ2
1Φ2

)

u3A = 0, u′3A = 0
(41)

Its solvability condition entails:

2d1d2a = (b1µµ+ b1νν) d1a+ b3a
2d1a (42)

whereb1µ, b1ν , b3 are real coefficients (see Appendix).
Finally, by coming back to the original time and quan-

tities, Eq. (39) and Eq. (42) are recombined, furnishing:

ä− [b1µ (µ− µ0) + b1ν (ν − ν0)] ȧ− b3a
2ȧ+

− [c1µ (µ− µ0) + c1ν (ν − ν0)] a− c3a
3 = 0

(43)
which is the well-known bifurcation equation for
double-zero bifurcation, in the Bogdanov normal form.
In it, all thec’s andb’s coefficients depend on damping.

5.2 Bifurcation scenarios
The bifurcation equation (43) admits two equilibrium

branchesa = as, ȧs = äs = 0, ∀t: (a) the trivial
aT = 0, which exists in the whole(µ, ν)- plane and,
(b) the non-trivial:

aNT = ±

[

−c1µ (µ− µ0) − c1ν (ν − ν0)

c3

]1/2

(44)

which exists in a half-plane of the parameter space.
Stability of both branches is governed by the variational
equation:

δä+ I1 (µ, ν; as) δȧ+ I2 (µ, ν; as) δa = 0 (45)

where:

I1 (µ, ν; as) := − [b1µ (µ− µ0) + b1ν (ν − ν0)+

+b3a
2
s

]

I2 (µ, ν; as) := − [c1µ (µ− µ0) + c1ν (ν − ν0)+

+3c3a
2
s

]

(46)
The trivial solution as = aT = 0 is consid-
ered first. It loses stability through divergence
at the locusD := {(µ, ν) |I2 (µ, ν; 0) = 0}, and
through Hopf bifurcation at the locusHT :=
{(µ, ν) |I1 (µ, ν; 0) = 0, I2 (µ, ν; 0) > 0}, which are

Table 1. Coefficientc3 in the bifurcation equation vs. damping

coefficientsα andβ.

β = 0.1

α = 0.01 α = 0.05 α = 0.1

−29.707 −35.669 −30.692

α = 0.3 α = 0.8 α = 1.5

−12.033 −2.348 −0.703

α = 0.01

β = 0.25 β = 0.3 β = 0.5

−3.221 8.544 62.603

β = 1 β = 5 β = 10

235.510 958.717 574.504

found to be a straight line and a half-straight line, re-
spectively tangent to the exactD and H loci at the
double-zero pointDZ.
When the non-trivial solutionas = aNT = 0 is con-

sidered, and use is made of Eq. (44), the divergence lo-
cusI2 (µ, ν; aNT ) ≡ −2I2 (µ, ν; 0) ≡ −2c3a

2
NT = 0

turns out to be coincident with the lineD previously
defined, this entailing that the non-trivial solution does
not undergo any other divergence, in addition to that
one from which it arises. Moreover, since the stable
zone lies in the half-planeI2 (µ, ν; 0) > 0, the static
bifurcation is supercritical ifc3 < 0, and subcritical if
c3 > 0. In contrast, the non-trivial solution experiences
a Hopf bifurcation at the half-straight lineHNT :=
{(µ, ν) |I1 (µ, ν; aNT ) = 0, I2 (µ, ν; aNT ) > 0}. The
inequality entails the existence conditionc3 < 0; if
this is the case,HT andHNT lie in the half planes
I2 (µ, ν; 0) > 0 and I2 (µ, ν; 0) < 0, respectively,
which are separated by the lineD.
The previous qualitative analysis highlighted the

strong dependence of the bifurcation scenario on the
sign of the coefficientc3. In order to investigate the in-
fluence of damping, this coefficient has been evaluated
for different values ofα andβ, and results displayed
in Table 1. It is seen that,c3 < 0 whenβ is fixed at a
small value (weakly externally damped systems) andα
is varied on a range; in contrast, the coefficient changes
sign whenβ is sufficiently large (strongly externally
damped systems). A similar analysis carried out on the
coefficientb3 shows that this coefficient is always neg-
ative, this entailing that the Hopf bifurcation is always
supercritical.
Guided by these results, two sample system have

been considered, exhibiting supercritical and subcriti-
cal static bifurcation, respectively:

(S1) for which α = 0.01, β = 0.1, entailing
µ0 = 2.806, ν0 = 2.884 andc1µ = −10.641,
c1ν = 6.907, c3 = −29.707, b1µ = 0.246,



b1ν = 0.127, b3 = −6.077.
(S2) for whichα = 0.01, β = 10, entailingµ0 =

3.076, ν0 = 5.302 andc1µ = −22.324, c1ν =
−5.156, c3 = 574.504, b1µ = 4.522, b1ν =
6.014, b3 = −1153.303.
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Figure 5. Bifurcation chart for system S1 in the parameter plane:

(a) large view around the double-zero point and exact and asymp-

totic bifurcation loci; (b) small neighborhood around the bifurcation

point; (c) sketches of the phase-plan in the different regions;hm ho-

moclinic bifurcation locus.

Results relevant to S1 are reported in Fig. 5, display-
ing the bifurcation chart, and Fig. 6, illustrating bifur-
cation diagrams, these latter having been obtained by
a numerical continuation procedure. Figure 5a shows
a large view of the neighborhood of the double-zero
point; here the tangency between asymptotic and ex-
act bifurcation loci can be appreciated. Figure 5b is
a zoom of a small region (also marked in Fig. 5a) in
which exact loci can be confused with their tangents.
Finally, Figure 5c depicts, in each significant region,
sketches of the two-dimensional phase-plane(a, ȧ) for
the bifurcation equation (43). In region 1 the trivial
solution is stable; due to the supercritical static bifur-

2.74 2.76 2.78 2.8 2.82 2.84 2.86

-0.1

0

0.1

2.74 2.76 2.78 2.8 2.82 2.84 2.86

-0.2

-0.1

0.1

0.2

0

2.8 2.85 2.9 2.95

-0.1

0

0.1

2.8 2.85 2.9 2.95

-0.2

-0.1

0.1

0.2

0

IV

III

I

II

a

a

a

a

µ

µ

ν

ν

(a)

(b)

(c)

(d)

D

D

D

D

H

H

H

H

hm

hm

Figure 6. Bifurcation diagrams for system S1; path I to IV marked

in Fig. 5b; stable (continuous lines) and unstable (dashed lines) equi-

libria and cycles (shaded diagrams); labelsD,H ,hm denote diver-

gence, Hopf and homoclinic bifurcation points.

cation, it loses stability in region 2, where two (buck-
led) stable nontrivial equilibria take place; due to su-
percritical Hopf bifurcation, it loses stability in region
5, where a (large) stable limit cycle exists, causing pe-
riodic motion of the beam. In region 4 two equilib-
ria appear, but, in spite of the supercritical character
of the static bifurcation, they are unstable, as an effect
of the interaction with the dynamic bifurcation; in re-
gion 3 two small unstable limit cycles arise (denoting
periodic motions around the buckled configurations),



which render stable the nontrivial equilibria. Then, at
the straight linehm , a homoclinic bifurcation occurs
(caused by the contact of the small cycles with the
trivial equilibrium and, simultaneously, with the large
cycles); after that, all cycles disappear, so that only
stable equilibria survive in region 2. Figure 6 shows
the bifurcation diagrams relevant to the paths I to IV
marked in Fig. 5b; labelsD,H , hm denote divergence,
Hopf and homoclinic bifurcation, respectively. Path I
shows the static bifurcation, from which stable non-
trivial equilibria arise. Path II displays, in sequence,
(a) the Hopf bifurcation from the trivial solution, lead-
ing to the appearance of large cycles, whose amplitude
range is shadow in the figure; (b) the static bifurcation,
leading to initially unstable nontrivial equilibria; (c) the
Hopf bifurcation from the nontrivial equilibria, leading
to the appearance of small cycles and the simultaneous
regain of stability of the nontrivial equilibria; (d) the
homoclinic bifurcation, causing the disappearing of all
the cycles. Path III illustrates the loss of stability of the
trivial equilibrium through divergence (for smallµ) or
Hopf bifurcation (for largeµ). Finally, path IV shows
the transition from nontrivial equilibria to large limit
cycles, passing through homoclinic bifurcation. As a
final comment on the scenario relevant to S1, there ex-
ist an attractor in any region, namely: one or two equi-
libria in regions 1 and 2, one cycle in regions 4 and 5,
and two equilibria and a cycle in region 3. Therefore
the bifurcation is not catastrophic. On the other hand,
the regions (3 and 4) in which static and dynamic bi-
furcations interact are of small extension.

Numerical results relevant to system S2 are reported
in Figs. 7, 8. Sincec3 > 0, the static bifurcation is
subcritical and, according to the previous qualitative
analysis, the bifurcated equilibria do not suffer Hopf
bifurcation, so that no a curveHNT exists and, conse-
quently, no homoclinic bifurcationhm occurs. In con-
trast, a new heteroclinic bifurcationht manifests itself.
In region 1 (Fig. 7) the trivial equilibrium is stable, but
two unstable equilibrium points coexist. In region 2 the
trivial equilibrium loses stability by divergence, and no
other local attractors exist. In region 4 the equilibrium
loses stability by supercritical Hopf bifurcation, giving
rise to a stable limit cycle internal to the nontrivial equi-
libria. In region 5, however, due to a heteroclinic bifur-
cation caused by the collision of cycle with the non-
trivial equilibria, the cycle itself disappears. Paths I
and IV (Fig. 8) show the static bifurcation; path II il-
lustrates the succession of (a) static, (b) Hopf and (c)
heteroclinic bifurcations; path III the loss of stability
by divergence (smallµ) or Hopf bifurcation (largeµ).
Therefore, system S2 has stable attractors only in re-
gion 1 (trivial equilibrium) and 4 (limit cycle); in the
remaining regions no attractors exist. The bifurcation
is therefore catastrophic.

3.0 4.0 5.0 6.0 7.0 8.0

2.0

3.0

4.0

5.0

5.0 5.1 5.2 5.3 5.4 5.5 5.6

2.95

3.00

3.30

3.25

3.20

3.15

3.10

3.05

5.0 5.1 5.2 5.3 5.4 5.5 5.6

2.95

3.00

3.30

3.25

3.20

3.15

3.10

3.05

II

III
IV

a

a

a

a

1

2

3

4

a

a

I

a

a

µ

µ

µ

ν

ν

ν

Dex

D

D

D

Hex

HT

HT

HT

DZ

DZ

DZ

ht

ht

(a)

(b)

(c)

Figure 7. Bifurcation chart for system S2 in the parameter plane:

(a) large view around the double-zero point and exact and asymptotic

bifurcation loci; (b) small neighborhood around the bifurcation point;

(c) sketches of the phase-plan in the different regions;ht heteroclinic

bifurcation locus.

6 Conclusion
A nonlinear, visco-elastic, externally dumped col-

umn, subjected to two independent axial loads, one
gravitational, the other tangential, has been studied.
By enforcing internal kinematical constrains, a sin-
gle nonlinear integro-differential equation of motion
in the transversal displacement field has been derived,
equipped with proper boundary conditions. The lin-
ear stability diagram of the trivial equilibrium has
been studied in detail in the plane of the two loading
parameters, both for tensile and compressive forces.
The existence of divergence and Hopf bifurcations
has been highlighted, leading to double-zero (Takens-
Bogdanov) bifurcations. A nonlinear bifurcation analy-
sis, based on a fractional-power version of the Multiple
Scale Method, has been performed around the double-
zero point, by directly attacking the continuous prob-
lem (i.e. by avoiding anya priori discretization). An
extensive parametric analysis has been carried out, with
the aim to investigate the role of damping on such a
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Figure 8. Bifurcation diagrams for system S2; path I to IV marked

in Fig. 7b; stable (continuous lines) and unstable (dashed lines) equi-

libria and cycles (shaded diagrams); labelsD,H , ht denote diver-

gence, Hopf and heteroclinic bifurcation points.

codimension-2 bifurcation, both in linear and nonlinear
problems. The following main conclusions are drawn.

1. The position of the bifurcation point and the an-
gle of attack between the incident, divergence and
Hopf, bifurcation loci depend on the damping co-
efficients. However, when one of the coefficients
is zeroed and the other is rendered small, the prop-
erties of the undamped (circulatory) system are re-

covered only for evanescent external damping, not
for internal damping, this case beingin discontinu-
ity with the circulatory case. Therefore, some new
features of the well-known “destabilization para-
dox” are revealed.

2. Also the nonlinear scenario around the double-
zero bifurcation is strongly affected by damping.
When the external damping is small, the static bi-
furcation issupercritical, this entailing the exis-
tence of one or more attractor, equilibria o limit cy-
cles, in the whole neighborhood. In contrast, when
the external damping is large, the static bifurcation
is subcritical, this entailing a catastrophic charac-
ter of the bifurcation, for the lack of attractors in
some region around the bifurcation point. In the
whole range studied, instead, the Hopf bifurcation
has supercritical character.

3. The interaction between static and dynamic bifur-
cations manifests itself viahomoclinic or hetero-
clinic bifurcations, due to the collision between
limit cycles and equilibria, or between cycles.

Appendix
Thez-solutions appearing in equation (40) satisfy the

following linear problems:











d0zµ − ẑµ = −c1µφ2

Md0ẑµ + K0zµ + Cẑµ = −c1µMφ1 − Kµφ1

zµA = 0, z′µA = 0










d0zν − ẑν = −c1νφ2

Md0ẑν + K0zν + Cẑν = −c1νMφ1 − Kνφ1

zνA = 0, z′νA = 0










d0za − ẑa = −c3φ2

Md0ẑa + K0za + Cẑa = −c3Mφ1 + n
(

Φ3
1

)

zaA = 0, z′aA = 0
(A.1)

under the normalization conditions:

zµB = 0, zνB = 0, zaB = 0 (A.2)

Due to their cumbersome expressions, they are not re-
ported here.
Coefficients in equation (43) take the following forms:

c1µ = − 2

1
∫

0

ψ2φ
′′

1ds

c1ν = − 2

1
∫

0

ψ2φ
′′

1ds+ 2ψ2Bφ
′

1B

c3 =

1
∫

0

ψ2n1

(

Φ3
1

)

ds+ ψ2Bn2

(

Φ3
1

)

+

+ ψ′

2Bn3

(

Φ3
1

)

(A.3)



and:

b1µ = −

1
∫

0

[(

αψIV
2 + βψ2

)

zµ + ψ2ẑµ+

+2ψ2φ
′′

2 ] ds+ αψ′′′

2BzµB − αψ′′

2Bz
′

µB

b1ν = −

1
∫

0

[(

αψIV
2 + βψ2

)

zν + ψ2ẑν+

+2ψ2φ
′′

2 ] ds+ αψ′′′

2BzνB − αψ′′

2Bz
′

νB+

+ 2ψ2Bφ
′

2B

b3 = − 3

1
∫

0

(

αψIV
2 + βψ2

)

za + ψ2ẑa+

− ψ2n1

(

Φ2
1Φ2

)

ds+ 3 [αψ′′′

2BzaB+

−αψ′′

2Bz
′

aB + ψ2Bn2

(

Φ2
1Φ2

)

+

+ψ′

2Bn3

(

Φ2
1Φ2

)]

(A.4)
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