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Abstract external cause, resulting from the interaction occur-

The mechanical behavior of a non-conservative ring between the structure and the surrounding air (see,
non-linear beam, internally and externally damped, e.g. [Detinko, 2003], where both damping forces and
undergoing codimension-1 (static or dynamic) and couples acting on a tip mass were taken into account).
codimension-2 (double-zero) bifurcations, is analyzed. However, damping is also due by amternal dissipa-
The system consists of a purely flexible, planar, visco- tion of the material, to be modelled by a proper rhe-
elastic beam, fixed at one end, loaded at the tip by a fol- ological model. A general treatment of the effect of
lower force and a dead load, acting simultaneously. An distributed, internal and external small dampings, on
integro-differential equation of motion in the transver- the linear stability of a continuous beam under non-
sal displacement, with relevant boundary conditions, is conservative loads, can be found in [Kirillov and Seyra-
derived. Then, the linear stability diagram of the triv- nian, 2005].
ial rectilinear configuration is built-up in the space of Stability is strongly influenced by damping, which is
the two loading parameters. Emphasis is given to the responsible of a well-known phenomenon, called “the
role of the two damping coefficients on the critical sce- destabilization paradox”, according to which the loss of
nario. Attention is then focused on the double-zero bi- stability of a non-conservative system with vanishingly
furcation, for which a post-critical analysis is carried small damping occurs at a load significantly lower than
out without anya-priori discretization. An adapted the critical value relevant to the undamped system. This
version of the Multiple Scale Method, based on a frac- problem was firstly studied by Ziegler [Ziegler, 1952]
tional series expansion in the perturbation parameter, isand subsequently observed in many non-conservative
employed to derive the bifurcation equations. Finally, mechanical systems, [Bolotin and Zhinzher, 1969],
bifurcation diagrams and bifurcation charts are evalu- [Andreichikov and Yudovich, 1974], [Denisov and
ated, able to illustrate the system behavior around the Novikov, 1975], [Seyranian, 1990], [Kirillov, 2004].
codimension-2 bifurcation point. Follower forces can also act simultaneously to gravi-
tational forces, as for example analyzed in [Langthjem
and Sugiyama, 2000], [Adali, 1982], this interaction
resulting in richer bifurcation scenarios.

All previous studies have been devoted to analyze
the linear stability behaviour of systems. However,
nonlinear systems have also been investigated in the
framework of general bifurcation theory [Troger and
1 Introduction Steindl, 1991], [Luongo, Di Egidio and Paolone, 2002],

Stability of columns subjected to follower forces, af- mostly under purely non-conservative forces [Troger
ter the pioneering paper by [Beck, 1952], have re- and Steindl, 1991]. Therefore, it seems interesting,
cently attracted the attention of many researchers, par-to investigate nonlinear systems under both types of
ticularly in aerospace, where tangential forces are pro-forces, and in presence of both types of damping, in
duced by jets and rocket motors [Ryu, Katajama and order to analyze the mutual interactions.

Sugiyama, 1998], [Langthjem and Sugiyama, 2000]. In this paper non linear bifurcations of beams, inter-
In many studies, damping is mainly considered as an nally and externally damped, loaded by a gravitational
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and a follower force acting simultaneously, are studied. three displacements, however, are not independent, be-
The paper is thus organized. In Section 2 the equa-cause of the internal constraints, expressing no shear
tions of motions are derived. In Section 3 the eigen- and no stretching, respectively:

value problem is addressed for the linearized system

and its adjoint. In Section 4 the linear stability prob- 5
lem is studied in the parameter space and the critical sin(¢9) =u’, e:=\/(1+w')" + u?—1=0 (1)
scenario is depicted, by focusing the attention on the

effects of damping. In Section 5 a post-critical anal- where a dash denotes differentiation with respect to

ysIs Zrougd a (?jouble_-zerc; br:fulr\;l:aflpr; pglntl lsl\;lzarge(;i The curvaturex (s, t) is assumed as the (unique) strain
out. An adapted version of the Multiple Scale Metho measure; from Equation {}it follows that:

is used, which is based on a fractional series expansion

in terms of the perturbation parameter, similarly to the

analysis carried out in [Luongo and Di Egidio, 2005], ooy = @)
[Di Egidio, Luongo and Paolone, 2007], [Luongo and V1 —u?

Di Egidio, 2006]. The bifurcation equations are de-
rived and numerically studied to built-up equilibrium

paths and bifurcation diagrams. Finally, in Section 6
some conclusions are drawn.

The equations of motion are derived by the generalized
Hamiltonian principle, by introducing the constraint
equation (3) by a Lagrangian multiplieN (s, t), hav-

ing the meaning of (reactive) axial force. The varia-
2 Model tional principle reads:

A planar beam is considered, fixed at the ehdnd, ity
simultaneously loaded at the t#p by a follower force 6H = / / [m (46t + wé) — Elkék — nlkdk+
of intensity F’ (tangential to the actual configuration of 7o to
the beam axis) and by a dead load of intengityact- —ctdu — & (Ne)] dsdt +/ [(P+ Fcos(95)) dwp+
ing in the direction of the originally rectilinear axis, t

Fig. 1). The material behavior of the beam obeys to —#'sin () dugs]dt =0, V(éu,dw,éN)

the Kelvin-Voigt rheological model, with elastic mod- , , ()
ulus E and viscous coefficient (acting as an internal where ET is the flexural stiffness of the beam, a dot

damping); moreover, the beam is considered to lie on adenotes time-differentiation, and the indéxevalua-

purely viscous linear soil of constan(simulating the ~ tion ats = (. By using Equation (J) to eliminate

external damping). The beam is assumed to be inexten{N€ rotationJ (s), expanding: (s) in Taylor series, the
sible and shear-indeformable, Formulation closely fol- duations of motion, corrected up to the third-order, are

lows the procedure of [Luongo and Di Egidio, 2005], derive_q. By introducing the following non-dimensional
where a similar system was considered, with, however, duantities:
no dead load nor internal damping, but a lumped visco-

elastic device. t=wt, 5=s/l, u=u/l, ©=w/l,
N = N/mf?w?, w* = EI/mt*, a =nw/E, (4)
L 0(s, 1) F / B=cwl*/EI, p=F*/2EI, v=P{*/2E]
P

omitting the tilde symbol, and still denoting by dashes
and dots differentiations with respect non-dimensional
quantities, the equations read:

’
ii—i—u'v + [u/(u/u//)/} —i—OallV—i-

l l l
T T

+o { [u’(u’u”)’] /}. + Bu— .FNu’)/ ~0 -

Figure 1. Visco-elastic beam on viscous soil under follovegce
and dead load: model and displacements.

The actual configuration of the beam is described by with the relevant boundary conditions, of geometrical
the transversal displacement fields,¢), the longi-  type:

tudinal displacementv (s,t) of the beam axis, and,

moreover, the rotation of the sectioh(s,t), where

1
s € [0, /] is a curvilinear abscissa ands the time. The wa=0, ua=0, uy+ Eu’j’ =0 (6)



and mechanical type:

12

B

NB+2M(1—U7>+2V—O

" ", 12 "2, .1

— [(v +uBuE + uFu) — (2u+ Np)up +

+a (W + uhup +ufup)’ ] =0
(u%g + u%ug) + « (u%g + u%ug). =0
Q)
In deriving Egs. (5)-(7),N’ was considered as a
second-order quantity, in accordance with Eqgs. 55
so that terms a8/'u/? were neglected.
The longitudinal displacement (s, ¢) and the axial

force N (s,t) follow from integration of Egs. (53)
with the boundary conditions (and (7 ), namely:

1
w:—i/uﬂds
0
9 1 S S
N =-2u 1= LB —21/——/ /U’st ds
2 2
1 \0

(8)
By substituting Eqg. (8) in Eqg. (5) and in the remain-
ing boundary conditions, the following (condensed)
equations in the unique variablg(s, t) are finally de-
rived:

/
iV o+ [u’(u’u”)/] +adV +

)'}/}.+2 [u (1— “715) —i—u} u +

oo /

+a { [u'(u’u”

S S

/ /U/st ds|v'| =0

1 0

o1

ua =0, uf4+6ui§’:O,
2
)+2(V—,uu—B

2)u'B+

" ", 12 n2, 1 \*
+a (uB +ugup +up uB) ] =0,

)+ (up —i—u’]’gug). =0
)
They are of integro-differential type and contain cubic
nonlinearities only. It should be noticed that lineariza-
tion of the geometrical conditions does not entail any
error at this order.
In view of further developments, it is convenient to
recast Eqgs. (9) in an operator form, in which the me-

", 12 "2 1

12
- [(UB +upup +upup

" ", 12
(uB +upup

where:

U (100 0+ aD*00
u:=<ug,,M:=1000]|, C:= —aDBB 00},
uly 000 aD% 00
" [D*+2(u+v)D?00
gu _{u;“},K =| -D%-2wDy 00|,
A I D?, 00
/
_ {u/(u/u//)/} + ,LLU/B?UH‘F
/ L]
—x {u/(u’u”)/} +
s s (X li
N
n ((uv u) ) = —% / /u/2ds ds | v
1 0
U + UE U — g+
+o¢(u’é’ug + u?u%}).
—uud - a(upu)’

(11)
In Equations (10), (11M, C and K are the mass,
damping and stiffness operators, respectively, acting on
the vectom € H, with H := H®R2, which collects the
field displacement. and the displacement and its spa-
tial derivative evaluated at the et n((u, 1)?) is the
vector of nonlinearities (which are cubic homogeneous
forms in their arguments and their spatial derivatives
and integrals), both in the domain and at the bound-
ary B; gu is the vector of the constrained displace-
ments at the end; moreoverD™ := 9" /Js™, D} :
0"/0s"| 5. Equations (10) are then rewritten in the
following state-form:

BU = AU + N (U?)

GU=0 (12)
where:
Y I0
o (- () o= 8]
Up
1o I . 0 (13)
e [5  vefu)
Gu = {uf‘}
Up

in whichv := u is the velocity field, andJ € H? the
state-vector.

chanical boundary conditions are appended to the field

equations [Luongo and Di Egidio, 2005]. The problem
accordingly reads:

Mii+ Ca+ Ku=n ((u, u)3) (10

gu=20

3 Eigenvalue analysis

Bifurcation analysis calls for evaluation of the (right)
eigenvalues and eigenvectors of the equations of mo-
tion (12). Since the problem is not self-adjoint, also the
(left) eigenvectors of the adjoint problem must be de-
termined. The procedure, detailed in [Luongo and Di
Egidio, 2005], is here briefly resumed.



3.1 Right and left eigenvalue problems

The equations of motion (12), when linearized, admit
the solutionU = ®e* which leads to the differential
eigenvalue problem:

(A-XB)®=0
(14)
G®=0
or, equivalently:
¢ =\
K¢+ Co+ AM¢p =0 (15)

pa=0, ¢y =0

. AT o T
having set® := {gb,gb} € H? ¢ = {¢, 65,95}

_ R S INT
€ Handg := {qS, 0B, qug} € H. By introducing the
scalar products iil andH?2, respectively:

1
(.9) = [ 51 (50 (5)ds+
0
+ o ¢ € H
U (16)
(P, T) ::/ D, (s) W, (s)ds+
o =14
+ ) B0, @ WeH
j=2,3.5,6
and using the bilinear identity:
(T, (A—-)B)®) = ((A" - /_\B*) v, ) (17)
the adjoint eigenvalue problem follows:
A* - \B*)¥ =0
( )* (18)
G'¥r=0
also written as:
K+ \p =0
P —C*'p—AM*p =0 (19)

Ya=0, P, =0

in which:
N ) . [o-K*
B e [OM*},A - [1 _C*],
s 100
G*\Il:{_d‘;‘,},M*:: 000 =M,
A 000
[B4+aD*00 (20)
C*:= | —aD} 00| =C,
| aD% 00
[ D*+2(u+v)D?* 00
K*:= |-D% —2(u+v)D5 00
D% +2u 00

) T
and¥ = {w,qp} . It should be noticed that whilsl

andC are self-adjointK is not self-adjoint, because of
the presence of the follower force at the boundary.

3.2 Generalized eigenvectors associated with a
double-zero eigenvalue

The case in which\ = 0 is a double eigenvalue for

Eq (14) (and 18)) is of particular interest in bifurca-

tion analysis (Takens-Bogdanov bifurcation). In this

occurrence, there exist only one proper right eigenvec-

tor &; = {¢1,O}T and only one proper left eigen-

vector¥, = {C*ng,wg}T; moreover, they are mu-

tually orthogonal, i.e{¥y, ®1) = (C*3, 1) = 0.

To complete the right basis, a generalized eigenvector

“ T
P, = {qbg, ¢2} is needed, which is solution to:

Ad, = P,
(21)
GP, =0
or, equivalently:
b2 = ¢
K¢z — Cz =0 (22)

¢2A - 07 ¢12A =0

The generalized eigenvect® is not unique, sincé

is singular. To select it univocally, a normalization con-
dition must be enforced, e.¢o5 = 0; once®, has
been normalized, als&, is normalized, by requiring
(Uy, ®9) = 1.

4 Linear stability analysis
4.1 Bifurcation loci

Stability of the trivial, rectilinear configuration of the
beam is governed by the linear eigenvalue problem



(10). In extended form, it reads:

L+aN)eV +2(u+v)¢"+ (XN +BN)o=0
¢A = 01 ¢£4 = 07
—(14+aX)gy — 2wl =0, (1+aN)g =0
(23)
The field equation (23 and the boundary conditions
at A lead to the solution:

¢ (5) =c1 [cos (ps) — cosh (gs)] +
1. 1. (24)
+ co L; sin (ps) — p sinh (gs)

where

s ) = () (BA+X2) — (u+v)
' (1+al)

- \/(u+u)2—(1+a/\)(ﬁ/\+/\2)+(u+u)
b= (1+ah)

(25)
andc := (Cl,Cg)T are arbitrary constants. It should
be noted that factors/p, 1/¢q have been introduced in
Eq. (24), in order it holds even when— 0 org — 0.
By enforcing boundary conditions &, two algebraic
equations follow:

Syc =0 (26)
where:
[ - (p3 + p?’od) sin (p) + (p2 + pzak) cos(p)+ |
+2pv sin (p) + —2v cos (p) +
+ <q3 + qga)\) sinh (p) + + <q2 + q2ak) cosh (q) +
Sy =

+2qv sinh (p) +2v cosh (q)
(4 ad) (P eos®) £ — (14 a2 (psin () +
—(1+ar) (q2 cosh (q)) — (1 + o) (gsinh (g))

@7
is the “dynamic stiffness matrix” of the system, de-
pending on the eigenvalue This matrix, however,
also depends on thentrol parameters, (i, ) and the
auxiliary parametersa, ), i.e. Sy = Sa(u, v; a, B).
The characteristic equatiaiat S (¢, v; a, ) = 0 sup-
plies the eigenvaluesas a function of 4, v; v, 3). To

(1, v; a, B), each of these equations describes a curve
in the (¢, w)- plane, which intersect each other in an in-
finite number of points, representing the eigenvalues of
the systems.

In order to find the divergence boundary in the con-
trol parameter space, the lo& of the roots¢ =
0, w = 0 must be found. Since (0,0; i, v; «, )
is found to vanish identically for anfu, v; «, 3), and
£(0,0; u,v; 0, B8) is found to be independent of the
damping coefficients, 3, Eq. (28) assumes the follow-
ing simple form:

(;L—i—u)?’/z{u—l-ucos( 2(;L+V))]:O (29)

This equation implicitly defines a multi-branch curve
D on the(v, u)-plane.

Hopf bifurcation occurs at the manifold of the pa-
rameter plane on which= 0, w # 0, defined by:

{ fO0,wip,v;a,08) =0 (30)

g (0,w;p, v, 3) =0

These equations, for a given pair of damping coeffi-
cients(«, 3), implicitly define a multi-branch curvél

in the (v, u)-plane, parameterized by theparameter.
No closed-form solutions, but only numerical, can be
pursued for Egs. (30).

4.2 Linear stability diagrams

The linear stability diagram of the beam, is depicted in
Fig. 2. All quadrants of thév, 1)-plane have been dis-
played, to account for both tensile/compressive forces.
Equation (29) (divergence locus) defines a family of
curves (independent of damping) labelled with.
Equation (29) also defines an additional straight line
N, of equationu = —v, but, as it will be shown ahead,
this is not a bifurcation locus, since the transversal-
ity condition of the eigenvalues is not satisfied on it.
Equations (30) (Hopf locus) define a second family of
curves labelled with{ (depending on damping). Of
this family, the curves relevant to the undamped system
(a« = 8 = 0, also referred asirculatory system) have
been denoted b#*, and curves relevant to a slightly
damped sample systemy (= 0.01,3 = 0.1) by H<.

Loci D andH represent codimension-1 bifurcations.

restate the problem in real variables, the eigenvaluesThe divergence-locup intersects the-axis at points

are written as\ = £ + iw, with £, w € R, and then the
characteristic equation re-written in the form:

f&wipvia,B)+ig(§ wipv;a,3)=0 (28)

with f,g € R. For a fixed set of parameter
(u,u;a,ﬁ)T, the system of two real equationfs =
0, g = 0furnishes the unknowrfs w. From a geomet-

FE4, Es,---, each corresponding to an Eulerian critical
load,vg, = 72/8, vg, = 97%/8,---. The Hopf- lo-
cus’H intersects thes-axis at the Beck’s loads. Only
the lower intersection is depicted in Fig. 2, both for
the undamped systenB} := (0, 10.025), and for the
damped systemB{ := (0,6.464). Consistently with
the destabilizing effect phenomenon, a small amount of
damping considerably reduces the critical load.

The Hopf-curves die at intersections with the diver-

rical point of view, for given values of the parameters gence curves, according to the well-known mechanism



ure; it undergoes a contraction when a small damping
is added.

The stability diagram of Fig. 2 is zoomed in Fig. 3,
to focus the interest on the boundaries of the stable
zone and to investigate the behaviour of the eigenval-
ues aroundV. Figures 3, describe the scenario for
the undamped and damped cases, respectively, and give
a sketch of the eigenvalues in the different zones. The
undamped case is analyzed first (Fig).3Here, the
system is (not asymptotically) stable if all its eigen-
values lie on the imaginary axis, as it occurs in the
grey zone. The transition through the divergence curve,
moving from the left, occurs as follows: a couple of
imaginary eigenvalues first collides at zero @phand
then split into a couple of opposite in sign real eigenval-
ues. The transition trough the Hopf curve happens as
20 o 20 40 60 follows: two couples of purely-imaginary eigenvalues
moves towards each other, coalesce in double eigen-
Figure 2. Linear stability diagram for the undamped system Values (o), and then splits again into two couples

(o, 3 = 0; u superscript) and a sample damped system = of complex and conjugate eigenvalues, having opposite
0.01, 8 = 0.1; d superscript):D: divergence locusH: Hopf real parts. The straight lin&’, instead, does not affect
locus, \: zero-stress locusE: Eulerian bifurcations;B: Beck’s stability. Indeed, by crossing them in the stable zone, a
bifurcations: D Z: double-zero bifurcations. couple of purely imaginary eigenvalues collides at the

origin (on\), then splits again into two purely imagi-

nary eigenvalues. Therefore, no zero eigenvalue passes

through the imaginary axis, and therefore no bifurca-
of the double-zero (or Takens-Bogdanov) bifurcation tions occurs. Similarly, by crossing the line in the un-
(see for example [Luongo, Paolone and Di Egidio, Stable zone, a couple of opposite in sign real eigenval-
2000]). Such codimension-2 bifurcation occurs at ues collides at zero (o), then it splits again into op-
points DZ} := (5.51,3.02), DZY := (45.87,11.76), posite in sign real eigenvalues. At the critical paint
in the undamped case, andZ{ := (2.88,2.81), a more degenerate condition occurs, where four eigen-
ng := (22.26,22.26), in the damped case. For the values coalesce at zero. The eigenvalues of the unsta-
former, circulatory system, the two loci merge with the ble region, further to the right, are also sketched for low
same tangent, whereas, in the damped case, they crosand high values of:.
each other transversally. The high sensitivity of the When the system is damped (Fig,):3 (asymptotic)
double-zero points should be noted, consequent to thestability requires that all the eigenvalues have nega-
large shift of the Hopf loci caused by damping. tive real parts, while the system is unstable if at least
The straight line\ represents a one-parameter family one eigenvalue has positive real part. Loss of stabil-
of beams unstressed in the undeformed configuration,ity through divergence and Hopf loci occurs via the
since the two forces balance themselves when aligned classical mechanisms, namely: (a) two stable complex-
However, when the beam moves to an adjacent config-conjugate eigenvalues first collide on the real axis, then,
uration, and due to the different behaviour of the two one of them crosses the imaginary axis at zero (on
forces, a (nondimensional) transversal force propor- D); (b) a couple of stable complex conjugate eigenval-

tional to the tip rotation rises, namelz := —pu's. ues simultaneously crosses the imaginary axis{n
Sinceup andu/y are concordant in sign in the result-  Again, theN line does not influence stability, since the
ing static deflection, (a) whem > 0 (compressive fol-  mechanism is identical to that of the undamped case.

lower force)Vp is opposite ta:, and therefore is sta- At the critical pointC, three eigenvalues coalesce at
bilizing; (b) wheny < 0 (tensile follower force), the  zero. Eigenvalues in the rightmost region are also indi-

force is concordant with: 5, and therefore is (poten- cated.

tially) destabilizing. However, for values ofi| < 1 A parametric study on the influence of both internal
(corresponding to theC' segment in the figure)/s (a) and external §) damping coefficients is then car-
is smaller than the elastic forces necessary to keep theried out. First, the effect of a single parameter is stud-
beam in the deformed configuration, so that the triv- ied in Figs. 4.1, In Fig. 4, the « coefficient is zeroed,
ial equilibrium is still stable; the opposite occurs for while the 3 coefficient is varied in a wide range. It is
|| > 1 (below pointC), so that the trivial equilibrium  found that, for any value of, all the Hopf loci origi-

is unstable. Therefor€ := (1,—1) is a critical point nate from the same double-zero point of the undamped

for this family of systems. syssem DZz = DZi = (5.51,3.02). However, curves
As a final results of the previous analysis, the stable modify their shape; in particular, the attack angle with
zone of the(v, u)-plane is denoted in grey in the fig- the divergence curve increases from zero for increas-
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damped systemy, 3 = 0); (b) damped system@ = 0.01,5 = i
0.1). b 1
5L ]
ing 5. As a consequence, the Beck’s load also in- I
creases withs (e.g.up = 10.05, 12.13, 18.60 when, o ‘ ‘
B = 0.01,10, 100 respectively). In Fig. 4 3 is ze- ((;) T s 20,

roed, while« is varied. Again, the double-zero point

DZ, := (2.46,2.46) is found to be independent of the  Figure 4. Linear stability diagrams varying damping coefits
damping value, but does not coincide with that of the for: (a) purely externally damped systems; (b) purely inddy
undamped system. Moreover, whenx — 0, the angle damped systems; (c), (d) externally and internally dampstems.

of attack to the divergence curve tendsti(®, instead

of zero. Due to the deformation @, the Beck’s load

highly increases witlx (e.g. up = 5.48, 6.82, 10.75

whena = 0.01, 0.1, 0.2, respectively). 5.61, 6.46, 8.90, 12.60, whengs = 0.01, 0.1, 1, 10,
To analyze the combined effect of the two parameters, respectively). For fixed3 = 0.1 and increasingx
one is kept constant and non-zero, and the other is var-(Fig. 4;), the Hopf locus moves to the right and ro-
ied (Fig. 4 4). For fixeda = 0.01 and increasing, the tates, intersecting the divergence locus at double-zero
scenario of Fig. 4is found. The Hopflocus movesto points tending taDZ,,. Accordingly, the Beck’s load
the right, and the double-zero pointtend€i& 3. Con- increases withy (e.g.up = 6.46, 7.04, 10.99, when
sequently, the Beck’s load increases withe.g.up = a=0.01, 0.1, 0.2).



5 Bifurcation analysis around a double-zero point
5.1 Bifurcation equation

A nonlinear bifurcation analysis is carried out around
a double-zero bifurcation point. The partial, integro-
differential equations (12) are directly attacked (i.e.
without introducing anya-priori discretization) by an

adapted version of the Multiple Scale Method (see also

[Luongo and Di Egidio, 2006]).
A perturbation parametér < ¢ < 1, of the order of

the response amplitude, is introduced via the rescaling

U(s,t) = /20(s,1), WhereO(HfJ(s,t)H) —1.
Increments (i, ©) of the bifurcation paramete(g, v/)
with respect their bifurcation valuegio, ) are in-
troduced, i.eu = po + e, v = vy + v, where
O (1) = O (¥) = 1. Consequently:

K =Ko + ¢ (iK, + ?K,) + O (’I) (31)

whereK,,, K, are the derivatives aK with respect

the parameters. Hats will be omitted ahead for nota-

The first perturbation equation (33admits the (gener-
ating) not-diverging solution:

{32} — a(ty, b, ) {%1} (34)

where®; := {¢1, 0}T is an eigenvector for Eq. (15),
anda(to,t1,-- ) is a real unknown amplitude, which
is modulated on the slower time-scales. Whit equations
(34), the problem (33 reads:

0=

dou; — vy = —d1a¢,
Mdovi: + Kgu; + Cvy =0

/
UlAZO, UIAZO

el/?. (35)

Since the known term belongs to the range of the oper-
ator (recall Eq. (22)), Eq. (35) admits the steady solu-

tion:
- {Ei} — dya(tr, b, ) {ij} (36)

tional convenience. Several independent time scales

are defined, namely, := ¢*/?t, (k = 0,1,---), so
thatd/dt = dg + £'/2d; + edy + - - -. The unknowns
are expanded in series of fractional powers ab:

(32)

After substitution of the previous expansions in Egs.
(12), a chain ofinear perturbation equations and rele-
vant boundary conditions follow (hats omitted):

douo — Vg = 0
EO : MdQVO + Kouo + CVO =0

!/
U()A:O, UOA:O

dou; — vi = —djug
/2. { Mdgvi + Kou; + Cvy = —Md; vo
ua =0, uj, =0
dous — vo = —doug — djuy
Mdgvs + Kguy + Cvy = —Mdovg+
° — Mdivi — (uK, + vK,) ug + n (U})
uga =0, uh, =0
douz — vz = —dsug — dou; — djus
Mdgvs + Kgusg + Cvy = —Md3vy+
e3/2 . — Mdavi — Mdive — (0K, +vK,) w1+
+3n (U%Ul)
usa =0, us, =0

(33)

“ T
in which @, := {qbg,qbg = {¢2, qbl}T is the order-
2 generalized eigenvector. With equations (34) and
(36), the problem (33 reads:

dous — v = —dagpy — diag
Mdovy + Kouy + Cvy = —d2aMe; +
—a (LK, +vK,) ¢ + a’n (@?)
uga =0, uh, =0
(37)

In order it can be solved, the known term
Fy, = {—d2a¢1 — d%ad)g, —d%aMd)l +a’n (<I>?)
—a(uK, +vK,) ¢>1}T, must belong to the range of
the operator; thisolvability condition requires that:

(U, F3) =0 V¥ : (A*—AB*) ¥ =0 (38)
and it furnishes:
dia = (c1up + c1v) a+ cza® (39)

wherec;,, c1,, c3 are real coefficients given in the Ap-
pendix. By using Eq. (39) and solving Eq. (37), it fol-

lows:
R N
Z, 3 Zg
efe}eefe)

wherez,, 2., z,, Z,, z., Z, are solutions to linear
problems (see Appendix). To make the solution to the



Table 1. Coefficientcs in the bifurcation equation vs. damping

singular problem (37) unique, the normalization condi-
coefficientscx and 3.

tion usp = 0 was enforced.
By using the results so far achieved, Eqs.,j3®@ad:

B8=0.1
a=001 a=00 a=01

douz — v3 = —dza¢p; — did2a¢s — dju

Mdovs + Kous + Cvs = —d;dyaMepy + ~29.707  —35.669 —30.692

e3/2. ¢ —Mdyvy — dya (K, + vK,) ¢+
+ 3a’d1an (27 P;)

I
UgAZO, U3A:O

a=0.3 a=0.8 a=1.5
—12.033 —2.348 —0.703

(41) _
Its solvability condition entails: a=001
=025 pg=03 pB=05
2d1d2a = (bl,uﬂ + bll,V) dla + bgazdla (42) —-3.221 8.544 62.603

. . s=1 g=5 6=10

whereb,,, b1, b3 are real coefficients (see Appendix).
Finally, by coming back to the original time and quan- 235.510  958.717  574.504
tities, EQ. (39) and Eq. (42) are recombined, furnishing:

found to be a straight line and a half-straight line, re-
spectively tangent to the exa®® and H loci at the
—[er (0= po) + 1o (v — o)l @ — c3a® = 0 double-zero poinDZ.

o . ) .(43) When the non-trivial solutioa; = ayr = 0 is con-
which is the well-known bifurcation equation for gjgered, and use is made of Eq. (44), the divergence lo-
do_uble-zero bifurcation, |n_t_he Bogdanov normal f(_)rm. cusls (u,v;ant) = =215 (1, v;0) = —2C3a§VT =0
Init, all thec’s andb’s coefficients depend on damping. 1,rns out to be coincident with the lirf® previously

defined, this entailing that the non-trivial solution does
5.2 Bifurcation scenarios not undergo any other divergence, in addition to that
The bifurcation equation (43) admits two equilibrium one from which it arises. Moreover, since the stable
branchess = ag, as = ds = 0,Vi: (a) the trivial zone lies in the half-plané, (u,v;0) > 0, the static
ar = 0, which exists in the wholéy, v)- plane and, bifurcation is supercritical it3 < 0, and subcritical if

i — [bry (e = po) + buy (v — vo)] @ — bga®a+

(b) the non-trivial: cs > 0. In contrast, the non-trivial solution experiences
a Hopf bifurcation at the half-straight lin& y; :=
12 .{(,u, V) |Il (1, u;.aNT) = Q, Is (p, v; aNT_) >0}. The
ang =+ | G (1 — po) — e (v — 10) (a4)  inequality entails the existence conditiop < 0; if
c3 this is the caseHr and H 7 lie in the half planes

I (,v;0) > 0 and Iz (u,v;0) < 0, respectively,

which exists in a half-plane of the parameter space. Which are separated by the lide

Stability of both branches is governed by the variational 1h€ Pprevious qualitative analysis highlighted the
equation: strong dependence of the bifurcation scenario on the

sign of the coefficients. In order to investigate the in-
fluence of damping, this coefficient has been evaluated
6a+ I (n,vias)da+ Iz (p,vias) da =0 (45)  for different values ofx and 3, and results displayed
in Table 1. Itis seen thaty < 0 wheng is fixed at a
small value (weakly externally damped systems) and

where: : ) - />
is varied on a range; in contrast, the coefficient changes
sigh wheng is sufficiently large (strongly externally
I (s vias) === [bip (B — po) + by (v — 10) + damped systems). A similar analysis carried out on the
+b3a§] coefficientbs shows that this coefficient is always neg-
I (1, v; a5) o= — [e1, (1 — o) + e1n (v — ) + ative, this entailing that the Hopf bifurcation is always
9 supercritical.
+3C3as] Guided by these results, two sample system have
- . . (4_6) been considered, exhibiting supercritical and subcriti-
The trivial solutiona, = ar = 0 is consid- . qanc hifreation, respectively:
ered first. It loses stability through divergence
at the locusD := {(u,v)|l2(u,v;0)=0}, and (S1) for whicha = 0.01, 8 = 0.1, entailing
through Hopf bifurcation at the locus{y := po = 2.806, vy = 2.884 andc;, = —10.641,

{(p, ) |I1 (1, v;0) = 0, Iy (u,;0) > 0}, which are ¢, = 6.907, ¢z = —29.707, by, = 0.246,



b1, = 0.127, by = —6.077. a
(S2) for whicha = 0.01, 8 = 10, entailingug = 0.2

3.076, vy = 5.302 ande;, = —22.324, ¢, =

~5.156, c3 = 574.504, by, = 4.522, by, = 0.1

6.014, b = —1153.303.
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Figure 5. Bifurcation chart for system S1 in the parametangi -0.2
(a) large view around the double-zero point and exact anthpsy (d)
totic bifurcation loci; (b) small neighborhood around thtutration
point; (c) sketches of the phase-plan in the different nmi&m ho-
moclinic bifurcation locus.

274 276 278 U 2.8 282 284 2.86

Figure 6. Bifurcation diagrams for system S1; path | to |V kear

in Fig. 5 ; stable (continuous lines) and unstable (dashed lines) equ
libria and cycles (shaded diagrams); labBls H , h.,,, denote diver-
gence, Hopf and homoclinic bifurcation points.

Results relevant to S1 are reported in Fig. 5, display-
ing the bifurcation chart, and Fig. 6, illustrating bifur-
cation diagrams, these latter having been obtained by
a numerical continuation procedure. Figureshows cation, it loses stability in region 2, where two (buck-
a large view of the neighborhood of the double-zero led) stable nontrivial equilibria take place; due to su-
point; here the tangency between asymptotic and ex-percritical Hopf bifurcation, it loses stability in region
act bifurcation loci can be appreciated. Figurgis 5, where a (large) stable limit cycle exists, causing pe-
a zoom of a small region (also marked in Fig) tn riodic motion of the beam. In region 4 two equilib-
which exact loci can be confused with their tangents. ria appear, but, in spite of the supercritical character
Finally, Figure 5 depicts, in each significant region, of the static bifurcation, they are unstable, as an effect
sketches of the two-dimensional phase-plane.) for of the interaction with the dynamic bifurcation; in re-
the bifurcation equation (43). In region 1 the trivial gion 3 two small unstable limit cycles arise (denoting
solution is stable; due to the supercritical static bifur- periodic motions around the buckled configurations),



which render stable the nontrivial equilibria. Then, at
the straight linef,,, a homoclinic bifurcation occurs
(caused by the contact of the small cycles with the
trivial equilibrium and, simultaneously, with the large
cycles); after that, all cycles disappear, so that only
stable equilibria survive in region 2. Figure 6 shows
the bifurcation diagrams relevant to the paths | to IV
marked in Fig. §; labelsD, H, h,, denote divergence,
Hopf and homoclinic bifurcation, respectively. Path |
shows the static bifurcation, from which stable non-
trivial equilibria arise. Path Il displays, in sequence,
(a) the Hopf bifurcation from the trivial solution, lead-
ing to the appearance of large cycles, whose amplitude
range is shadow in the figure; (b) the static bifurcation,
leading to initially unstable nontrivial equilibria; ()&
Hopf bifurcation from the nontrivial equilibria, leading

to the appearance of small cycles and the simultaneous

regain of stability of the nontrivial equilibria; (d) the
homoclinic bifurcation, causing the disappearing of all
the cycles. Path lll illustrates the loss of stability of the
trivial equilibrium through divergence (for smal) or
Hopf bifurcation (for largeu). Finally, path IV shows
the transition from nontrivial equilibria to large limit
cycles, passing through homoclinic bifurcation. As a
final comment on the scenario relevant to S1, there ex-
ist an attractor in any region, namely: one or two equi-
libria in regions 1 and 2, one cycle in regions 4 and 5,
and two equilibria and a cycle in region 3. Therefore
the bifurcation is not catastrophic. On the other hand,
the regions (3 and 4) in which static and dynamic bi-
furcations interact are of small extension.

Numerical results relevant to system S2 are reported
in Figs. 7, 8. Since:s > 0, the static bifurcation is
subcritical and, according to the previous qualitative
analysis, the bifurcated equilibria do not suffer Hopf
bifurcation, so that no a curvE yr exists and, conse-
quently, no homoclinic bifurcatio,, occurs. In con-
trast, a new heteroclinic bifurcatidn manifests itself.

In region 1 (Fig. 7) the trivial equilibrium is stable, but
two unstable equilibrium points coexist. In region 2 the
trivial equilibrium loses stability by divergence, and no
other local attractors exist. In region 4 the equilibrium
loses stability by supercritical Hopf bifurcation, giving
rise to a stable limit cycle internal to the nontrivial equi-
libria. In region 5, however, due to a heteroclinic bifur-
cation caused by the collision of cycle with the non-
trivial equilibria, the cycle itself disappears. Paths |
and IV (Fig. 8) show the static bifurcation; path Il il-
lustrates the succession of (a) static, (b) Hopf and (c)
heteroclinic bifurcations; path Ill the loss of stability
by divergence (smalk) or Hopf bifurcation (large.).
Therefore, system S2 has stable attractors only in re-
gion 1 (trivial equilibrium) and 4 (limit cycle); in the
remaining regions no attractors exist. The bifurcation
is therefore catastrophic.

3.0 4.0 5.0 6.0
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2.95
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Figure 7. Bifurcation chart for system S2 in the parametangi
(a) large view around the double-zero point and exact anthptic
bifurcation loci; (b) small neighborhood around the bifation point;
(c) sketches of the phase-plan in the different regiaﬁ;sheteroclinic
bifurcation locus.

5.1 5.4

6 Conclusion

A nonlinear, visco-elastic, externally dumped col-
umn, subjected to two independent axial loads, one
gravitational, the other tangential, has been studied.
By enforcing internal kinematical constrains, a sin-
gle nonlinear integro-differential equation of motion
in the transversal displacement field has been derived,
equipped with proper boundary conditions. The lin-
ear stability diagram of the trivial equilibrium has
been studied in detail in the plane of the two loading
parameters, both for tensile and compressive forces.
The existence of divergence and Hopf bifurcations
has been highlighted, leading to double-zero (Takens-
Bogdanov) bifurcations. A nonlinear bifurcation analy-
sis, based on a fractional-power version of the Multiple
Scale Method, has been performed around the double-
zero point, by directly attacking the continuous prob-
lem (i.e. by avoiding anya priori discretization). An
extensive parametric analysis has been carried out, with
the aim to investigate the role of damping on such a
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Figure 8. Bifurcation diagrams for system S2; path | to IV kear

in Fig. 7},; stable (continuous lines) and unstable (dashed lines) equ
libria and cycles (shaded diagrams); lab&ks H, h; denote diver-
gence, Hopf and heteroclinic bifurcation points.

codimension-2 bifurcation, both in linear and nonlinear
problems. The following main conclusions are drawn.

1. The position of the bifurcation point and the an-
gle of attack between the incident, divergence and
Hopf, bifurcation loci depend on the damping co-
efficients. However, when one of the coefficients

is zeroed and the other is rendered small, the prop-

erties of the undamped (circulatory) system are re-

covered only for evanescent external damping, not
for internal damping, this case beiirgdiscontinu-

ity with the circulatory case. Therefore, some new
features of the well-known “destabilization para-
dox” are revealed.

. Also the nonlinear scenario around the double-

zero bifurcation is strongly affected by damping.
When the external damping is small, the static bi-
furcation issupercritical, this entailing the exis-
tence of one or more attractor, equilibria o limit cy-
cles, in the whole neighborhood. In contrast, when
the external damping is large, the static bifurcation
is subcritical, this entailing a catastrophic charac-
ter of the bifurcation, for the lack of attractors in
some region around the bifurcation point. In the
whole range studied, instead, the Hopf bifurcation
has supercritical character.

. The interaction between static and dynamic bifur-

cations manifests itself viaomoclinic or hetero-
clinic bifurcations, due to the collision between
limit cycles and equilibria, or between cycles.

Appendix
Thez-solutions appearing in equation (40) satisfy the
following linear problems:

doz, — 2, = —ci.P2

Mdoz, + Koz, + Cz, = —c1,M¢o1 — K, 1
2ua =0, 2,,=0

dozy — 2, = —c1, P2

Mdoz, + Koz, + C2, = —c1,M¢1 — K, @1
2,4=0, 2,,=0

doza — 24 = —c3¢p2

Mdoz, + Kozo + C2, = —csM¢ + n (9})

244=0, 2, =0
(A1)

under the normalization conditions:

ZuB = 0, 2,=0, 2,3=0 (A2)

Due to their cumbersome expressions, they are not re-
ported here.
Coefficients in equation (43) take the following forms:

1
Clu = — 2/¢2¢/{d8
0
1

cly =— 2/1/)2¢/1/d5 + 2¢opd] 5

/ (A.3)

1

cs :/1112”1 (@3)ds + Papns (®F) +
0
+ oz (27)



and:

1

blu = - / [(Oﬂﬁ;v + ﬁ¢2) Em + w22u+

0
+21/12¢12/] ds + 041#/211/9%3
1

bll/ = - / [(Oﬂﬁ;v + ﬁ¢2) zZy + 1!]221/4_

" /
— oty ZuB

0
+2’L/12¢12/] ds + Oﬂb/QHBZVB

+ 22 ¢/23
1

by=—3 / (0l + Bn) za + taat
0
— Yomy (<I>§<I>2) ds + 3 [z zap+
—abypzyp + bapng (¢%¢2) +
+iphpns (BT P2)]

1 !
— aypz, gt

(A.4)

References

Beck, M. (1952). Die Knicklast des einseiting einges-
pannten tangential gedriickten Stabés, Angew.
Math. Phys,, (3), pp. 225-228.

Ryu, B.R., Katayama, K., Sugiyama, Y. (1998). Dy-
namic stability of Timoshenko columns subjected to
subtangential force§omput. Sruct., (68), pp. 499—
512.

Langthjem, M. A., Sugiyama, Y. (2000). Dynamic sta-
bility of columns subjected to follower loads: A sur-
vey.,J. Sound. Vib., 23§(5), pp. 809-851.

Detinko, F.M. (2003). Lumped damping and stability
of Beck column with a tip massnt. J. Solids. Sruct.,
(40), pp. 4479-4486.

Kirillov, O.N., Seyranian, A.P. (2005). The effect of
small internal and external damping on the stability of
distributed non-conservative systendsAppl. Math.
Mech., (69) pp. 529-552.

Ziegler, H. (1952). Die Stabilit/itskriterien der Elas-
tomechaniklng.-Arch., 20(1), pp. 49-56.

Bolotin, V. V., Zhinzher, N. I. (1969). Effects of
damping on stability of elastic systems subjected to
non-conservative forcesnt. J. Solids. Sruct., 5(9),
pp. 965-989.

Andreichikov . R, Yudovich, V. I. (1974). The stability
of visco-elastic roddzu. Akad. Nauk SSSR. MTT, (2),
pp. 78-87.

Denisov, G. G., Novikov, V. V. (1975). The stability of
a rod loaded by a "follower” forcelzv. Akad. Nauk
SSSR. MTT, (1), pp. 150-154.

Seyranian, A. R. (1990). The destabilization paradox in
stability problems for non-conservative systetsp.
Mekh., 13(2), pp. 89-124.

Kirillov, O. N. (2004). The destabilization paradox,
Dokl. Ross. Akad. Nauk, 3955), pp. 614-620.

Langthjem, M. A., Sugiyama, Y. (2000). Optimum
design of cantilevered columns under the combined

action of conservative and nonconservative loads:
Part I: The undamped cas€pmput. Sruct., 74(4),
pp. 385—-398.

Adali, S. (1982). Stability of a rectangular plate un-
der nonconservative and conservative fordes, J.
Solids. Sruct., 18(12), pp. 1043-1052.

Troger, H., Steindl, A., (1991)Nonlinear Sability
and Bifurcation Theory, Appendix L, pp. 366—-375
Springer, Wien, New York.

Luongo, A., Di Egidio, A., Paolone, A. (2002). Mul-
tiple scale bifurcation analysis for finite-dimensional
autonomous systems, ifRecent Research Develop-
ments in Sound and Vibration, (1), Transworld Re-
search Network, Kerala, India, ISBN:81-7895-031-6
pp. 161-201.

Luongo, A., Di Egidio, A. (2005). Bifurcation equa-
tions through multiple-scale analysis for a continuous
model of a planar beanifonLinear Dynam., (41),
pp. 171-190.

Di Egidio, A., Luongo, A., Paolone, A. (2007). Lin-
ear and non-linear interactions between static and dy-
namic bifurcations of damped planar bearhs, J.
Nonlinear Mech., (42), pp. 88—98.

Luongo, A.., Di Egidio, A. (2006). Divergence, Hopf
and Double-Zero Bifurcations of a Nonlinear Planar
Beam,Comput. Sruct., (84), pp. 1596—1605.

Luongo, A., Paolone, A., Di Egidio, A. (2000). Sensi-
tivities and linear stability analysis around a double
zero eigenvaluedl AA Journal, 38(4), pp. 702-710.



