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Abstract
We discuss new phenomena of energy localization

and transition to chaos in the finite system of cou-
pled pendula (which is a particular case of the Frenkel-
Kontorova model), without any restrictions on the am-
plitudes of oscillations. The direct significant appli-
cations of this fundamental model comprise numerous
physical systems. In the infinite and continuum limit
the considered model is reduced to integrable sine-
Gordon equation or certain non-integrable generaliza-
tions of it. In this limit, the chaotization is absent,
and the energy localization is indicated by the existence
of soliton-like solutions (kinks and breathers). As for
more realistic finite models, analytical approaches are
lacking, with the exception of cases limited to two and
three pendula. We propose a new approach to the prob-
lem based on the recently developed Limiting Phase
Trajectory (LPT) concept in combination with a semi-
inverse method. The analytical predictions of the con-
ditions providing transition to energy localization are
confirmed by numerical simulation. It is shown that
strongly nonlinear effects in finite chains tend to disap-
pear in the infinite limit.
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1 Introduction
The applications of finite Frenkel-Kontorova model

[Frenkel and Kontorova, 1938; Frenkel and Kon-
torova, 1939] include dislocation motion, ferromag-

netic chains, Josephson junction, paraffin crystals,
DNA macromolecule etc. [Atkinson and Cabrera,
1965; Caudrey et al, 1975; Cataliotti et al, 2001;
Likharev, 1986; Yakushevich, Savin, and Manevitch,
2002; Braun and Kivshar, 2004]. Because of its com-
plexity, the absolute majority of studies are based on
the infinite and continuum limit leading to sine-Gordon
equation, and many physical effects were explained in
terms of soliton-like solutions of this equation [Scott,
2003; Braun and Kivshar, 2004]. As for more realis-
tic discrete finite model, mostly numerical studies were
so far proposed, with the exception of systems with
few degrees of freedoms [Braun and Kivshar, 2004]
in which new significant nonlinear effects are cumber-
some and difficult to predict, especially for strongly
non-stationary dynamics. In previous studies, devoted
to different fields of nonlinear dynamics, ranging from
forced oscillator to wave propagation in carbon nan-
otubes [Manevitch, 2007; Manevitch and Smirnov,
2010; Smirnov and Manevitch, 2011; Manevitch and
Romeo, 2015; Smirnov, Shepelev, and Manevitch,
2014], it was shown that adequate description of
strongly non-stationary processes can be achieved by
resorting to a new framework, which is based on the
notion of Limiting Phase Trajectory (LPT). Similarly
to Nonlinear Normal Modes (NNMs), LPTs turn out
to be a fundamental notion, as they describe maximum
possible energy exchange between oscillators, clusters
of oscillators or different parts of the system. Their role
in understanding and describing non-stationary pro-
cesses is similar to the role played by NNMs in sta-
tionary dynamics. By relying on LPT-concept new
significant nonlinear effects were predicted, such as
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self-sustained vibrations of a bi-harmonically excited
Duffing oscillator [Starosvetsky and Manevitch, 2011],
non-conventional synchronization in weakly coupled
autogenerators [Manevitch, Kovaleva, and Pilipchuk,
2013], energy exchange and clusters mobility in finite
oscillatory chains, energy localization in carbon nan-
otubes [Manevitch and Smirnov, 2010; Smirnov and
Manevitch, 2011; Smirnov, Shepelev, and Manevitch,
2014]. All these effects were revealed in quasi-linear
approximation, i.e. in the small-amplitude assumption,
in which the effect of the oscillations amplitude on the
oscillation frequency is negligible. However, in many
important applications of nonlinear dynamics, such as
target energy transfer [Aubry et al, 2001; Memboeuf
and Aubry, 2005], energy harvesting, etc., strongly
nonlinear behaviour, which cannot be linearized even
in the main asymptotic approximation, has to be taken
into account; thus, such problems are usually merely
numerically tackled.
The main goal of this paper is to study the non-

stationary dynamics of an essentially nonlinear system,
the Frenkel-Kontorova lattice, undergoing arbitrary os-
cillation amplitudes. At first, we consider the spectrum
of the NNMs in the framework of an asymptotic semi-
inverse method. Then, by analysing the resonant inter-
action of NNMs, we show the instability of the modes
with lowest wave number (uniform modes) as well as
the transition to energy localization in some domain of
the lattice. The corresponding threshold values of the
system parameters are eventually identified.

2 The Model
Let us consider the periodic system of weakly cou-

pled particles in the field of the local (on site) potential.
As it was mentioned in the introductory section, the
best known examples of such systems are the Frenkel-
Kontorova and Klein-Gordon models, in particular, the
model φ4. In the linear approximation these models
are described by the same equation, the linear discrete
Klein-Gordon equation, the properties of which are
well studied in the continuum limit. However, for rel-
atively small systems, discreteness plays an important
role and the traditional approach relies on the applica-
tion of the linear normal modes technique. In the quasi-
linear case, at first glance, the nonlinear normal modes
[Pilipchuk, 2011; Pilipchuk, 1996] could also be used
with their stability being usually studied in the linear
approximation. However, for finite systems, this analy-
sis turns out to be quite cumbersome and does not give
information on the dynamic regimes resulting from loss
of stability. The only aspect captured by the linear anal-
ysis is the existence of the maximum growth mode.
Let us write the energy of the chain consisting of N

coupled pendula in the form:

H =

N∑
j=1

[
1

2
(
dqj
dt

)2+
β

2
(qj+1−qj)2+(1−cos qj)] (1)

under periodic boundary conditions: qN+1 = q1.
The corresponding equation of motion

d2qj
dt2

− β∆2qj + sin qj = 0

∆2qj = qj+1 − 2qj + qj−1,

(2)

may be represented in the terms of complex variables

Ψj =
1√
2
(

1√
ω

dqj
dt

+ i
√
ωqj), (3)

where ω is a frequency of the oscillations, which will
be later defined.
Taking into account definition (3) of the functions Ψj

one can rewrite equation (2) as

i
dΨj

dt
+
ω

2

(
Ψj +Ψ∗

j

)
− β

2ω
∆2

(
Ψj −Ψ∗

j

)
+

1

2ω

∞∑
k=0

1

(2k + 1)!

(
1

2ω

)k (
Ψj −Ψ∗

j

)2k+1
= 0

(4)

Let us represent the solution of equation (4) as fol-
lows:

Ψj(t) = ψje
iωt, (5)

where ψj is a slow-changing function of time t. An al-
ternative interpretation is that the function ψj is a func-
tion of “slow time”, the scale of which is defined by a
small parameter entering the problem, such as a weak
enough coupling between pendula. In such a case, the
derivation with respect to time can be written as

d

dt
=

∂

∂τ0
+

∂

∂τ1
+ . . . , (6)

where τ1 is a “slow” time.
Substituting expression (5) into equation (4) and tak-

ing into account expansion (6), the resonant (secular)
equation for the functions ψj is obtained:

i
∂ψj

∂τ1
− β

2ω
∆2ψj+

1√
2ω

ψj

|ψj |
J1

(√
2

ω
|ψj |

)
− ω

2
ψj = 0, (7)

where J1 is the Bessel function of the first kind.
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The origin of the frequency ω can now be clarified by
noticing that any function

ψj(τ1) =
√
Xei(ω

′τ1−κj) (8)

is the solution of equation (7) with dispersion ratio

ω′ =
2β sin2 κ/2

ω
+

1√
2ωX

J1(

√
2X

ω
)− ω

2
(9)

If the wave number κ is equal to zero, the frequency
ω′ is defined by the expression

ω′ =
1√
2ωX

J1(

√
2X

ω
)− ω

2
. (10)

If the right hand side of equation (10) is equal to zero,
the function ψj = const, i.e. the solution (3), describes
uniform oscillations, with frequency ω, of the chain of
pendula. According the definition of the functions Ψj

(see eq. (3)) their modules X can be expressed in the
term of the oscillation amplitude Q:

X =
ωQ2

2

and the frequency may be written as follows:

ω =

√
2

Q
J1(Q). (11)

The comparison between expression (11) and the one
providing with the exact value of the oscillation fre-
quency of single pendulum, i.e.:

ω =
π

2K(sin (Q/2))
, (12)

where K is the complete elliptic integral of the first
kind, is shown in Fig. 1. One can see, that their values
are in good agreement in a wide interval of oscillation
amplitudes.
So, taking into account relation (11), the dispersion

ratio for equation (7) may be written as follows

ω′ =
β sin2(κ/2)

2ω
(13)
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Figure 1. (Color online) Comparison of resonant frequencies that
are computed according to equations (12) and (11) (black and blue
curve, respectively). Dashed curves show the eigenfrequencies ob-
tained from the dispersion ratio (13) for the chain with 20 pendula
and wave numbers k = 1, . . . 10. The inset shows the dispersion
relations (the frequency vs mode’s number) for some values of the
oscillation amplitude. The coupling parameter is β = 0.1.

The preceding results allow to conclude that the
mono-frequency vibrations (normal modes — NMs)
of the chain of pendula obey the linearized version of
equation (7) and they represent quasilinear waves with
dispersion law (13). The feature of this dispersion ratio
is the spectrum crowding near the left edge (ω′ ∼ κ2).
The nonlinearity of the system appears when the chain
motion corresponds to a combination of NMs. In such
a case the NMs interaction leads to the non-zero con-
tribution of the last terms in eq. (7).
Equation (7) corresponds to the Hamilton function in

the form:

Ha =
N∑
j=1

β

2ω
|ψj+1 − ψj |2−

N∑
j=1

(
J0(

√
2

ω
|ψj |) +

1

2
ω|ψj |2

) (14)

The additional integral of motion is the “excitation”
number:

X =
1

N

N∑
j=1

|ψj |2. (15)

Let us consider the nonlinear NMs interaction. It is
known that if the chain’s length N is large enough, two
low-frequency NMs interaction leads to the “coherent”
motion of the pendula corresponding to some parts
of the chain [Manevitch and Smirnov, 2010; Smirnov
and Manevitch, 2011]. These parts of the chain, pre-
viously named as “effective particles”, are here more
suitably defined as “coherent domains”. The proper
”coordinates” of the domains can also be introduced
to describe the specific dynamics of the chain. Let
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us consider the combination of the NMs near the left
edge of the spectrum. Under periodic boundary con-
ditions the first NMs correspond to the wave numbers
κ0 = 0 (uniform motion) and κ1 = 2π/N (one node
mode), the latter being twice degenerated. It is obvi-
ous that any linear combination of the NMs leads to
a non-uniform distribution of the pendulum displace-
ments along the chain. The group of pendula with sim-
ilar displacements represent the above mentioned “co-
herent domains” . The periodic change of the predom-
inant displacement of the pendula from one coherent
domain to another is the consequence of the eigenfre-
quency difference in the exactly linear chain, in anal-
ogy with the classic beating process in a system of two
weakly coupled oscillators. In the nonlinear system this
process is not ordinary and may depend on the system
parameters and vibration amplitudes.
Let us introduce the “domain coordinates” as follows:

χ1 =
1√
2N

N∑
j=1

ψj [1 + (cosκ1j + sinκ1j)]

χ2 =
1√
2N

N∑
j=1

ψj [1− (cosκ1j + sinκ1j)].

(16)

The inverse transformation leading to the complex am-
plitude of the particles is written as follows:

ψj =
1√
2N

[(χ1 + χ2)+

(χ1 − χ2) (cosκ1j + sinκ1j)] .

(17)

One can see that the amplitude vectors (χ1, χ2) =
(1, 0) and (χ1, χ2) = (0, 1) correspond to the maxi-
mum pendulum displacements in the first and second
domains, respectively. (It is easy to check out that the
domain coordinates χj coincide with the coordinates of
the pendula in the case N = 2.)
Substituting the relation (17) into equation (14), the

equations of motion for the domain coordinates in
terms of complex amplitudes may be obtained imme-
diately by the Hamiltonian variation with respect to
the domain coordinates χ1, χ2. However, the resulting
equations are quite lengthy and they do not allow to
analyse clearly the chain dynamics. Therefore, a sim-
plified formulation is sought. First of all, one can see
that transformation (17) preserves the integral of exci-
tation number (15):

X = |χ1|2 + |χ2|2. (18)

Using the integral (18), the dimension of the system’s
phase space may be reduced by introducing the relative

amplitudes of the domain coordinates χj [Manevitch
and Smirnov, 2010]:

χ1 =
√
X cos θeiδ1 , χ2 =

√
X sin θeiδ2 . (19)

In such a case the parameter X specifies the total ex-
citation of the system, while the “angle” θ shows the
relative excitation of the coherent domains. In fact, the
energy of the system does not depend on the absolute
values of the phases δ1 and δ2, but it depends on their
difference ∆ = δ1 − δ2 only:

H(θ,∆) =
βX sin2 (κ1/2)

ω
(1− cos∆ sin 2θ)−

X
ω

2
−

N∑
j=1

J0(ξj),

ξj = [
2X

ωN
(1 + cos 2θ (cos (κ1j) + sin (κ1j))+

sin (κ1j) cos (κ1j) (1− cos∆ sin 2θ)]1/2

(20)

The Hamiltonian (20) allows to analyse the phase por-
trait of the system and to define the bifurcations of the
phase trajectories under different excitation levels, as
specified by the excitation number X .
This procedure was well discussed for the coupled

nonlinear oscillators [Manevitch, 2007] as well as
for the nonlinear chains [Manevitch and Smirnov,
2010; Smirnov and Manevitch, 2011]. These stud-
ies concerned with small-amplitude oscillations in long
enough nonlinear chains. The typical phase portraits
for the different dynamical regimes in the nonlinear
chain are shown in Fig. 2. The dispersion ratio (11) and
the asymptotic equation (5) are not restricted by any
assumptions about the smallness of the oscillation am-
plitudes. Therefore the bifurcations at any given ampli-
tude as a function of the chain parameters can be found;
this result is obtained by considering the coupling of
the pendula as the crucial parameter of the asymptotic
procedure. Using the dispersion ratio (11) in addition
to the Hamiltonian (20), one can estimate the threshold
values of coupling parameter ε.
As it was mentioned above, a linear combination of

the NMs leads to the slow redistribution of the energy
along the chain if the dynamical regime is far from the
instability bifurcation (see Fig. 2(a)). The stationary
points (θ = π/4,∆ = 0) and (θ = π/4,∆ = π)
correspond to the stable NMs, while the trajectories
surrounding these points are associated with combina-
tions of NMs. The Limiting Phase Trajectory (LPT)
separates the attractive area of NMs and it is closed at
the values θ = 0 and θ = π/2. These states corre-
spond to the domain ”vectors” (χ1 =

√
X,χ2 = 0)

and (χ1 = 0, χ2 =
√
X), respectively. One should
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Figure 2. (Color online). Typical phase portraits of the system (20). The states corresponding to domains χ1 and χ2 link with θ = 0 and
θ = π/2, respectively. (a) Before the instability bifurcation. Intensive energy exchange associates with the phase trajectory (LPT, red dashed
curve) that separates the stationary points (θ = π/4,∆ = 0) and (θ = π/4,∆ = π). The latter correspond to the NMs. (b) Before the
localization bifurcation. Two new nonlinear normal modes at ∆ = 0 are surrounded by the separatrix (blue long dashed curve) that crosses the
unstable NM. (c) After the localization bifurcation. The separatrixes (black dashed curves) surround the stable NMs at ∆ = ±π. No trajectory
starting outside the separatrix can cross the line θ = π/4.

note that the NMs themselves correspond to the domain
“vectors” with (χ1 = χ2) and (χ1 = −χ2).
The first bifurcation of the phase portrait is associated

with the instability of uniform mode (stationary point
at θ = π/4,∆ = 0). This bifurcation leads to the
creation of two new stationary states that correspond
to a stationary weakly non-uniform distribution of the
oscillation energy (Fig. 2(b)); any trajectory lying in-
side the separatrix cannot cross the ideal line θ = π/4.
Therefore, any energy excess contained in one of the
domains will remain in it. Nevertheless, the slow en-
ergy exchange between two domain is preserved for the
motion occurring along the LPT.
The instability threshold is obtained from the condi-

tion

∂2H(θ,∆)

∂θ2
|(θ=π/4,∆=0)= 0 (21)

Solving equation (21) with respect to coupling param-
eter β, one can obtain the following threshold

βins =
J2(Q)

2 sin2(κ1/2)
. (22)

The localization bifurcation occurs when the energy of
unstable stationary point (θ = π/4,∆ = 0) becomes
equal to the energy of “domain state” (θ = π/2,∆ =
±π/2) or (θ = 0,∆ = ±π/2). Under this condition
the solution of the corrisponding equation leads to the
localization threshold in the form:

βloc = 2

1
N

∑N
j=1 J0

(
Q√
2
fj

)
− J0(Q)

Q2 sin2 (κ1/2)

fj = 1 + cos (κ1j) + sin (κ1j)

(23)
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Figure 3. (Color online) The instability (red) and localization (blue,
pink and orange dashed curves) “effective” thresholds for the chains
with various lengths (see text). The dashed pink curve shows the
“effective” localization threshold for the chain with 3 pendula.

3 Discussion
The instability threshold (22) as well as the local-

ization one (23) are both inversely proportional to the
square of sin (κ1/2). Taking into account that κ1 ∼
1/N , it can be inferred that the critical coupling values
grow as the chain length increases. However, it is clear
that the real parameter, which determines the resonant
conditions, is the value of the gap between uniform and
first non-uniform modes. This value is defined by the
“effective coupling constant” given by β sin2 (π/N)
[Smirnov and Manevitch, 2011]. For a pair of coupled
pendula, the gap becomes βins sin2 κ1/2 and it does
not depend on the length of the chain, in agreement
with [Manevitch and Romeo, 2015]. Moreover, again
for N = 2, it should be noticed that also the localiza-
tion threshold, given by (23), exactly coincide with the
threshold obtained in [Manevitch and Romeo, 2015].
Fig. 3 shows the ”effective” threshold values for the
instability and localization bifurcations.
Apart from the case of a chain with three pendula, the
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localization thresholds for other chains with different
length are all extremely close. We suppose that such
an exception is associated with the ambiguity of the
division of three pendula into two clusters.
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