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We study the effect of a non-Gaussian noise on interstate switching activated primarily by Gaus-
sian noise. Even weak non-Gaussian noise can strongly change the switching rate. The effect is
determined by all moments of the noise distribution. It is expressed in a closed form in terms of the
noise characteristic functional. The analytical results are compared with the results of simulations
for an overdamped system driven by white Gaussian noise and a Poisson noise. Switching induced
by a purely Poisson noise is also discussed.
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Much progress has been made recently in the studies
of switching between coexisting stable states, primarily
because switching can be now investigated for a large
variety of well-controlled micro- and mesoscopic systems
ranging from trapped electrons and atoms to Josephson
junctions and to nano- and micro-mechanical oscillators
[2–11]. Fluctuations in these systems are usually due to
thermal or externally applied Gaussian noise. However,
as the systems become smaller, an increasingly important
role may be played also by non-Gaussian noise. It may
come, for example, from one or a few two-state fluctua-
tors hopping at random between the states; the fluctuator
noise may be often described as a telegraph noise [12].

The switching probability is sensitive to a non-
Gaussian noise. This sensitivity attracted much atten-
tion after it was proposed [13] to use switching in Joseph-
son junctions to measure the full counting statistics in
electronic circuits [14, 15]. Several theoretical [16–19]
and experimental [20, 21] papers on measuring the 3rd
moment of the current distribution from the switching
rates were published recently, and different theoretical
approaches were compared in Refs. 22, 23.

In this paper we study switching induced by Gaus-
sian noise in the presence of an additional non-Gaussian
noise. Even where the latter has a smaller intensity than
the Gaussian noise, its effect on the switching rate may
be exponentially strong. We show that it can be de-
scribed in a simple form in terms of the noise character-
istic functional, thus accounting for all moments of the
noise distribution. The analytical results are compared
with simulations for an overdamped system driven by
white Gaussian noise and a Poisson noise. We also con-
sider switching induced by a Poisson noise alone; here,
the result for the rate may be qualitatively different from
that in the weakly non-Gaussian noise approximation.

The potentially strong effect of an extra modulation,
whether random or regular, on the rate of Gaussian
noise induced switching can be understood from the well-
established picture of the switching dynamics. Switching
events result from large rare noise outbursts. For Gaus-
sian noise, the switching rate is W ∝ exp(−R/D), where

R is the activation energy and D is the noise intensity
[24]. Even though switching happens at random, the
system trajectories followed in switching form a narrow
tube in the space of dynamical variables q = (q1, q2, . . .)
centered at the most probable (optimal) switching path
qopt(t), as observed in recent experiment [25].

One can think of the effect of an additional modulation
in terms of a generalized work done by the modulation
on the system moving along qopt(t) [26, 27]. This work
changes the activation barrier. The change δR is pro-
portional to the modulation amplitude. Therefore the
overall change of the switching rate ∝ exp(−δR/D) de-
pends on the modulation amplitude exponentially. The
switching rate gives the probability current from the oc-
cupied state [28]. It is an observable quantity. As such,
it has to be averaged over realizations of the modulation,
if the modulation is random, i.e., for random modulation
one has to average exp(−δR/D).

Since δR is linear in the characteristic amplitude of
random modulation, the ratio δR/D does not have to
be small even where the modulation intensity, which is
quadratic in the amplitude, is smaller than D. However,
the distribution of non-Gaussian modulation may decay
slower than Gaussian on the tail. To determine whether
the effect of a non-Gaussian noise on switching may be
regarded as a perturbation one has to compare the prob-
abilities of appropriate large fluctuations induced by the
Gaussian and non-Gaussian noises, taking into account
all moments of the distribution.

We study switching for a system described by the
Langevin equation

q̇ = K(q) + f(t) + ξ(t). (1)

We assume that, in the absence of noise, the system has
a stable stationary state qA and a saddle point qS on the
boundary of the basin of attraction to qA, with K(qA) =
K(qS) = 0. Switching from the stable state is due to the
forces f(t) and ξ(t), which are the Gaussian and non-
Gaussian noises, respectively. We separate them, since
physically they often come from different sources. It is
convenient to characterize f(t) by its probability density
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functional Pf [f(t)] = exp (−Rf/D),

Rf [f(t)] =
1
4

∫
dt dt′ f(t)F̂(t − t′)f(t′), (2)

where F̂(t − t′)/2D is the inverse of the pair correlator
of f(t). The characteristic noise intensity D is small, so
that the switching rate W � t−1

r , t−1
c , where tr is the

relaxation time of the system and tc is the noise correla-
tion time. The non-Gaussian noise is more conveniently
described for our purpose by the characteristic functional

P̃ξ[k] =
〈

exp
[
i

∫
dtk(t)ξ(t)

]〉
ξ

, (3)

where 〈. . .〉ξ means averaging over ξ(t).
We first consider the case where the intensity of the

non-Gaussian noise ξ is smaller than D. We will disre-
gard corrections proportional to this intensity, but the
ratio of the characteristic amplitude g0 of ξ to D will not
be assumed small. The switching rate can be written as

W = C 〈exp[−R[ξ]/D]〉ξ , (4)

R[ξ] = min
{
Rf + i

∫
dtk(t) [q̇ − K − f(t) − ξ(t)]

}
,

where prefactor C weakly depends on g0, D. The min-
imum is taken over trajectories f(t),q(t),k(t) that sat-
isfy boundary conditions f(t),k(t) → 0 for t → ±∞,
qt→−∞ → qA,qt→∞ → qS . This formulation was pro-
posed in the weak-noise limit [29, 30] for a time-periodic
ξ(t), in which case qA,S are also periodic and there is no
averaging over ξ. The variational problem (4) describes
coupled optimal trajectories fopt(t),qopt(t),kopt(t), with
fopt(t) being the most probable noise realization that
brings the system to the saddle on the basin boundary of
the initially occupied state.

It is known from variational calculus that, to first order
in ξ, the effect of ξ(t) on R can be calculated along the
optimal trajectory unperturbed by ξ(t). Such a trajec-
tory is an instanton. Its typical duration is ∼ max(tr, tc).
It is translation-invariant with respect to time and can be
centered at any time t0. The time-translation symmetry
(degeneracy) requires special care when using perturba-
tion theory. In particular, a periodic in time ξ(t) lifts
the degeneracy by fixing t0 (modulo the period) so as to
minimize R[ξ] and maximize the rate W [26].

If ξ(t) is a stationary noise, the switching rate W is in-
dependent of time. In this case one can think not of the
adjustment of the instanton center t0 to ξ(t), but, equiv-
alently, of the adjustment of ξ(t) to t0 so as to maximize
the overall probability of switching. This adjustment pro-
vides the major contribution to the value of W when the
averaging over realizations of ξ(t) is performed in Eq. (4)
using a solution with a given t0.

From Eqs. (3), (4) one obtains a simple expression for
the switching rate

W = W (0)Asw, Asw = P̃ξ[iχ/D], (5)

where W (0) is the switching rate in the absence of non-
Gaussian noise. The factor Asw describes the effect of
non-Gaussian noise. It is expressed in a closed form in
terms of the noise characteristic functional calculated for
function χ(t) = −ik(0)

opt(t), where k(0)
opt(t) is the solution of

the variational problem (4) for ξ = 0. The real function
χ(t) is the logarithmic susceptibility which describes the
linear response of log W to a perturbation [26, 27, 31].
The structure of Eq. (5) resembles that of the expression
for a large fluctuation probability in a birth-death system
with non-Gaussian modulation of reaction rates [32].

From Eq. (5), the effect of a non-Gaussian noise on
the switching rate is determined by the ratio of the noise
amplitude to the Gaussian noise intensity D. Equa-
tion (5) applies to both underdamped and overdamped
systems. Examples of calculating k(0)

opt can be found in
Refs. 26, 27, 31 and papers cited therein.

As an illustration we will consider the case of a one-
component δ-correlated Poisson noise ξ(t) = g

∑
n δ(t −

tn) with mean pulse frequency ν. Using the explicit form
of the noise characteristic functional [33], we obtain

Asw = exp
{
−ν

∫
dt [1 − exp (−χ(t)g/D)]

}
, (6)

where χ(t) is the corresponding component of the loga-
rithmic susceptibility. If |g|/D � 1, log Asw is a series in
g/D. The coefficients in this series describe the effects
of the moments of the Poisson noise on the switching
rate. In the opposite case, |g|/D 	 1 (but the Poisson
noise intensity νg2 � D), if gχ(t) becomes negative, then
log Asw ≈ ν [2πD/gχ̈(tm)]1/2 exp[−χ(tm)g/D] where tm
is the instant where −gχ(t) is maximal. If gχ(t) ≥ 0
for all t and |g|/D 	 1, the major contribution to Asw

comes from the region of small |χ(t)|. If gχ(t) is small
only for |t| → ∞, where it decays exponentially with |t|,
then log Asw ∝ νtr log(|g|/D), to leading order in g/D.

The Poisson noise distribution does not fall off as
steeply as Gaussian. This imposes a limitation on the
range of g/D where Poisson noise may be treated as a
perturbation and the above theory applies. To see the
far-tail effect we consider switching due to a purely Pois-
son noise, where f = 0 in equation of motion (1). We
will use the method of optimal fluctuation, as for some
other types of non-Gaussian noise [34].

The switching rate is determined, to logarithmic ac-
curacy, by the integral over trajectories k(t),q(t) of the
functional

〈
exp

{−i
∫

dtk(t)[q̇ − K− ξ(t)]
}〉

ξ
[35]. We

consider a zero-mean noise, ξ(t) → ξ(t) − 〈ξ〉, K →
K + 〈ξ〉 and assume that qA,qS are also appropriately
shifted. The formulation is more compact if different
components of the Poisson noise are independent short
pulses with areas g = (g1, . . . , gM ) and average frequen-
cies ν = (ν1, . . . , νM ). Of interest for switching are tra-
jectories that approach the saddle point [29]. In the spirit
of the method of optimal fluctuation, for small |g| and
for |ν| � t−1

r the integral over trajectories q(t),k(t) can



3

be calculated by steepest descent. This gives

W = C′ exp[−RP ], RP = min
∫

dt (ikq̇− H) , (7)

H(q, ik) = −
∑

j
νj

(
1 + igjkj − eigjkj

)
+ ikK(q).

The variational problem (7) determines the optimal
switching trajectory qopt(t),kopt(t). It starts at t → −∞
at q → qA,k → 0 and goes to q → qS ,k → 0 for t → ∞.
On this trajectory H = 0. As in systems driven by white
Gaussian noise [24], the optimal trajectory is a Hamilto-
nian trajectory of an auxiliary system with coordinate q,
momentum ik, and Hamiltonian H . A similar formula-
tion, but in different terms and with extra assumptions,
was developed for fluctuations in electric circuits [18, 23].
In our approach the noise is characterized by average
pulse frequencies νi and, independently, by pulse areas
gi (gi ≷ 0); the approach can be immediately generalized
to a noise with a finite correlation time.

The switching exponent in Eq. (7) is RP 	 1 for small
|g|. However, in contrast to the case of Gaussian noise,
RP is not proportional to the reciprocal noise intensity
νg2. Nor does it scale like reciprocal noise amplitude
|g|−1, although RP |g| appears to slowly vary with |g|.

An explicit dependence of the switching rate on the
Poisson noise parameters can be found for a one-variable
overdamped system with equation of motion

q̇ = −U ′(q) + f(t) + ξ(t). (8)

Here, U(q) is the effective potential. The stationary
states qA and qS correspond to the minimum and the
barrier top of U(q).

If f(t) is white Gaussian noise, 〈f(t)f(t′)〉 = 2Dδ(t −
t′), and the Poisson noise is weak, the Poisson-noise in-
duced factor in the switching rate Asw is described by
Eq. (6) with χ(t) = −f

(0)
opt(t)/2 = −q̇

(0)
opt(t) and with

q̇
(0)
opt = U ′

(
q
(0)
opt

)
.

In the opposite case where switching is due to purely
Poisson noise, i.e., f = 0 in Eq. (8), from Eq. (7)

RP =
1
g

∫ q̃S

q̃A

dqκ(q), κ = log {1 + [κU ′(q)/gν]} . (9)

Here, q̃A and q̃S are the shifted extrema of the potential
given by equation U ′(q) = gν. From Eq. (9), RP ∼
rP log(rP /νtr), with rP = (q̃S − q̃A)/g.

A qualitative feature of unipolar (pulses of one sign)
Poisson noise is that, for an overdamped system, it causes
switching only provided the noise pulses push the system
from the stable state towards the saddle. In this case
rP > 0. There is no switching for pulses of the oppo-
site sign. The “one-sidedness” of fluctuations in over-
damped systems has other manifestations, which includes
the work fluctuation distribution [36]. On the other hand,
we expect that an underdamped system should be able to
switch for Poisson pulses of any sign, in which case there
should be a critical value of damping for which switching

from the state is possible for a given sign of g. Equations
(7), (9) apply if rP , rP /νtr 	 1.

As a cause of switching, a Poisson noise is effectively
weaker than a Gaussian noise only if the switching ex-
ponent RP is larger than the switching exponent for
the Gaussian noise, which for white noise is ΔU/D
with ΔU = U(qS) − U(qA) [28]. The condition RP >
ΔU/D also effectively limits the range of applicability of
Eq. (6). We saw that log Asw becomes large provided
−χ(tm)g/D 	 1. An order of magnitude estimate shows
that −χ(tm)g/D ∼ (ΔU/D)R−1

P log(rP /νtr), and there-
fore from Eq. (9) the large log Asw asymptotics applies
provided log(rP /νtr) 	 1. This condition is compatible
with −χ(tm)g/D 	 1 only for very small D.

We now apply the above results to an overdamped sys-
tem (8) with a double-well potential

U(q) = −q2/2 + q4/4, (10)

which has been extensively studied in the context of
white-noise driven systems. In the absence of Pois-
son noise, the escape rate in this case is W (0) =
(
√

2/π) exp(−1/4D), and the logarithmic susceptibil-
ity for escape from the negative-q well (qA = −1) is
χ(t) = − exp(t/2)(2 cosh t)−3/2 (χ(t) has opposite sign
for switching from qA = 1).
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FIG. 1: Poisson noise induced change of the switching expo-
nent for an overdamped Brownian particle in potential (10).
The dimensionless Poisson noise frequency is ν = 0.5. The
data of numerical simulations are shown with circles and
squares for the cases where in escape the particle moves along
and opposite to Poisson pulses, respectively. The solid curves
show Eq. (6) for these cases, and the dashed curves show the
approximation adopted in Ref. 17–19 where only three mo-
ments of Poisson noise are taken into account.

In Fig. 1 we present results of Monte Carlo simula-
tions of switching of an overdamped Brownian particle
described by Eqs. (8), (10). They are compared with pre-
diction (6) and with the approximation where only terms
up to g3 are kept in Eq. (6). The Poisson noise intensity
νg2 < D in the whole range of studied g/D. For g/D � 1
the effect of Poisson noise is small and comes, primarily,
to the change of the activation barrier, ΔU → ΔU ± νg,
and the effective noise intensity, D → D+νg2. For larger
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FIG. 2: Switching exponent RP = − lnW for an overdamped
particle in a potential (10) driven by a Poisson noise with di-
mensionless mean frequency ν = 0.5 and pulse area g. Squares
show the results of Monte-Carlo simulations, the solid line is
the asymptotic theory (9).

g/D � 3 the switching exponent changes significantly, as
expected.

For switching in the direction opposite to Poisson noise
pulses, where log W/W (0) < 0, the numerics agrees well
with Eq. (6). This is to be expected, since the far
tail of Poisson noise distribution is immaterial here; for
g/D � 5 the results differ noticeably from the three-
moments approximation. For switching along the pulses,
because of the far-tail effect, with increasing g Poisson
noise quickly becomes as important as white noise for

chosen D. Therefore the perturbation theory fails and
the dependence of the switching exponent on g is much
weaker than the exponential dependence expected from
Eq. (6).

Numerical simulations of the switching rate for purely
Poisson noise are shown in Fig. 2. There is good agree-
ment between the data and the asymptotic theory (9) for
small g. In this range RP g slowly varies with g.

In conclusion, we have considered switching in systems
simultaneously driven by a Gaussian and a non-Gaussian
noise. Even where the non-Gaussian noise has intensity
smaller than that of the Gaussian, it may strongly change
the switching rate. The effect is determined by the ra-
tio of the non-Gaussian noise amplitude to the Gaussian
noise intensity. It is described by the characteristic func-
tional of the non-Gaussian noise calculated for a function
determined by the system dynamics without this noise. A
non-Gaussian tail of the noise distribution may strongly
modify the switching rate even for a small noise intensity.
We demonstrate this effect using Poisson noise as an ex-
ample. Analytical results and Monte Carlo simulations
show agreement in the appropriate parameter regions.
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