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Abstract
Bose Einstein condensates (BEC) is regarded as the

control system in this paper. In the viewpoint of math-
ematics and physics, a completely synthesis for con-
trolling of particles in BEC status will be considered
using fundamental analysis via variational framework
in Hilbert space theoretically, although it’s not clear to
execute with present quantum optical equipments, such
as laser cooling, optical lattices.
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1 Physical background
With the rapidly growth of quantum control study in

a variety fields, the physical and chemical researches
have made a great deal significant contributions. For
example, optimal control theory apply to molecule for-
mations in a BEC see [Sklarz, 2002]. Genetic-learning
algorithm to atomic BEC is reported in [Potting, 2001].
The remote physical controlling using coefficient con-
cerned with soliton see [Radha, 2008]. Coherent con-
trol see [Holthaus, 2001] in a double well for steer-
ing the self-trapping N particle at zero temperature, for
single particle see [Abdullaev, 2003] in high dimen-
sions. Theoretical study for BEC also refer to [Choi,
2005]. Overall physical investigation for BEC reported
in [Morsch, 2006].
To boost the development of the control in quantum

system, it is quiet interesting to consider the Bose Ein-
stein Condensates as the control target.
In the viewpoint of physics, if an ultracold vapor of

bosonic atoms are trapped in magnetic well, pure con-
densates will be created as they are cooled to a tem-
perature below the BEC threshold. After that creation,
these BEC are located into a optical lattice potential
which can be realized experimentally by a far-detuned,
retroreflected laser beam. The real BEC picture see

Figure 1 (top panel).

Figure 1. BEC image

This phenomenon of macroscopic quantum system
consisting of ultracold atoms in unique in precision and
flexibility for experimental control and manipulation.
What would be happen if external forcing acting at

the particles in BEC? Did optical technology will pro-
vide the achievement of the controlling goal? Can laser
pulse with high intensity drive the BEC to change their
states and transfer energy during this control process.
For this purpose, what kinds of ultra-fast (femisec-
ond/attosecond) laser pulse should meet our satisfac-
tion?
Mathematically, the BEC is usually modeled by the

celebrated Gross-Pitaevskii equation, a cubically non-
linear Schrödinger equation (NLS), see [Pitaevskii,
2003],

i~ψt = − ~2

2m
∆ψxx + u(x)ψ

+v(x)ψ + Nα|ψ|2ψ, (1)

where ψ denote the condensate wave function (i.e.
probability amplitudes) of one particle in BEC, m de-
note the atomic mass, ~ is the Planck constant, N is the
number of atoms in the condensate, and

α = 4π~2a/m,



with a ∈ R denoting the characteristic scattering
length of the particles. The external potential u(x) is
confining in order to describe the electromagnetic trap
needed for the experimental realization of a BEC. Typ-
ically it is assumed to be of harmonic form

u(x) = mω2
0

|x|2

2
, ω0 ∈ R. (2)

A particular example for the periodic potentials used
in physical experiments is then given by [Deconinck,
2002; Pitaevskii, 2003]

v(x) = s
3∑

i=1

~2x2

m
sin2(xixi), xi ∈ R, (3)

where x = (x1,x2,x3) denotes the wave vector of the
applied laser field and s > 0 is a dimensionless pa-
rameter describing the depth of the optical lattice (ex-
pressed in terms of the recoil energy).
The GP equation (1) provides an interesting test case

for NLS codes since it features high frequency oscil-
lations, two-scale external potentials, and a (focusing
or defocusing) nonlinearity. More precisely, the non-
linear cubic term in the GP equation accounts for the
interatomic (many body) interactions, the coefficient
in front of the nonlinear cubic term is proportional to
the atomic scattering length. The size and sign of the
atomic scattering length can be adjusted due to Fesh-
bach resonances.

Remark 1.1. For multi-species case located at optical
wells, it need to consider the interspecies interactions
between equations of ‘ψ’. Our study is restricted to
single specie case temporarily.

Remark 1.2. Chemically, the BEC experiment should
be available for 7Li, 85Rb and 133Cs, etc.

This paper will be organized in following contents.
After above introduction of physical model in Section
1, we will propose the BEC quantum system in the
mathematical setting in Hilbert space. Section 3 is to
state the control theory for BEC quantum dynamics.
Section 4 summarize and draw some conclusions and
discussions.

2 BEC quantum system
It is natural to specially consider the optimal control

problem for BEC described by (1), it permit us to re-
gard the problem into mathematical setting in Hilbert
space.
Let Ω be an open bounded set of R3 and Q = (0, T )×

Ω for T > 0. Then (x, t) ∈ Q. Regarding u(x)
and v(x) are control variables. Introduce two Hilbert
spaces H = L2(Ω) and V = H1

0 (Ω) with usual norm
and inner products (cf. [Lions, 1971]). Then the em-
bedding in Gelfand triple space V ↪→ H ↪→ V ′ are
continuous, dense and compact.

Suppose U = L2(Ω) is the space of laser controls u
and v. Let Uad be a closed and convex admissible set of
U . Assume initial ground states ψ(u, v, 0) = ψ0. The
objective function associated with (1) is given by

J(u, v) = ε1‖ψf (u, v) − ψtarget‖2
V

+ε2(u, u)U + ε3(v, v)U . (4)

Here u, v ∈ Uad, ψtarget is target state, ψf (u, v) is ob-
served final state, respectively. Moreover, εi, i = 1, 2, 3
are weighted coefficients for balancing the values of in-
herent and running costs.
Our goal is to find quantum optimal control u∗ or v∗ in

GP system (1). Here u∗ and v∗ are called quantum opti-
mal control for system (1) subject to objective function
(4). We wish to drive the GP equation the optimality
system for the OCT fields that allow efficient channel-
ing of the condensate between given initial and desired
states.
To do this, we define two basic concepts, weak solu-

tion and solution space, for preparation.

Definition 2.1. For the theoretical control study for (1)
with objective function (4), referring [Wang,ACC2006;
Wang & Cao, CDC2007] to define weak solution’s so-
lution space by Hilbert space:

W (0, T ;V, V ′) =
{

ψ
∣∣∣ ψ ∈ L2(0, T ;V ),

ψ′ ∈ L2(0, T ;V ′)
}

.

Definition 2.2. The function ψ is called weak solution
of (1) if ψ ∈ W (0, T ;V, V ′) and satisfy

∫ T

0

∫
Ω

i~ψtdtdx = − ~2

2m

∫ T

0

∫
Ω

∆ψxxdxdt

+
∫ T

0

∫
Ω

u(x)ψdxdt +
∫ T

0

∫
Ω

v(x)ψdxdt

+
∫ T

0

∫
Ω

Nα|ψ|2ψdx. (5)

3 Control theory for BEC
Previously established mathematical setting permit us

to study the quantum system (1) in the framework
of variational method and quantum mechanics theory.
Therefore, using the same manipulation as in [Lions,
1971; Wang,ACC2006; Wang & Cao, CDC2007] and
refer (5), it’s easy to obtained the next theorems.

Theorem 3.1. For initial given ψ0 ∈ V , there exists
weak solution ψ ∈ W (0, T ;V, V ′) for system (1) sat-
isfy the weak form (5).

Theorem 3.2. For ψ0 ∈ V , there exists at least one
quantum optimal control pairing (u∗, v∗) for system
(1) subject to objective function (4).



Remark 3.3. It is worth noting that, for real physical
meaningful u and v, how to adjust the parameters (e.g.
wire currents or radio-frequency fields) in (2) and (3), it
needs to treat carefully in real physical experiments. In
here, what we discussed is that such a optimal control
pairing would be existed theoretically in the framework
of variational method.

Theorem 3.4. For initial state ψ0 ∈ V and control
problem for system (1) associated with (4), the opti-
mality system is given by


i~ψt = − ~2

2M
∆ψ + u∗(x)ψ

+v∗(x)ψ + Nα|ψ|2ψ in Q,
ψ(u∗, v∗, 0) = ψ0 in Ω,

(6)

 i~pt = − ~2

2M
∆p + 2|ψ|ψp + |ψ|2p in Q,

ipf = ψf (u∗, v∗) − ψtarget in Ω,
(7)

(u∗, u − u∗)U +
∫

Q

p(u∗)(u − u∗) dxdt

+(v∗, v − v∗)U +
∫

Q

p(v∗)(v − v∗) dxdt ≥ 0 (8)

for all u, v ∈ Uad. In here, p ∈ W (0, T ;V, V ′) is
solution of the adjoint systems (7) corresponding to ψ
in state systems (6) respectively. As is well known that
the inequality (8) is necessary optimality condition for
(u∗, v∗).

By considering [Wang & Cao, CDC2007; Wang,
GRC2007], quantum optimal control u∗and v∗ can be
found efficiently.

Remark 3.5. It’s easy to characterize the optimal con-
trol solution with above systems and inequality theoret-
ically. For computational study to solve such quantum
optimal solution pairing (u∗, v∗), it needs to employ
the numerical approach methodologies to minimize the
objective cost function (4).

Remark 3.6. Particularly, to select optimal laser
pulse in real lab experiment, it’s quite incredible to find
the exactly optimal solution (u∗, v∗), besides to obtain
the set of ‘optimal’ solution which much better than
others.

4 Conclusions and Discussions
In summary, the controlling for BEC has been solved

regarding the quantum dynamics to seek the opti-
mal solution (cf. [Wang, 2008; Wang, ESF2008]).
This research exploration extremely acquire the real
laboratory evidence for quantum controlling achieve-
ment. The attempt progress would become the promis-
ing research direction, see [Wang & Cao, ECC2009;
Wang, ACS2009; Wang, 2009; Wang & Belavkin,
PhysCon2009] and [Wang Cao & Luo, 2009].
Observing the literatures of researches on controlling

of BEC in physical and chemical fields, see relevant

contributed papers [Chacon, 2008; Deconinck, 2002;
Hohenester,2007; Parker, 2004; Perez-Garcia, 2007;
Bulatov, 1999; Roberts, 2001; Rodas, 2005; Stickney,
2007; Trotzky, 2008]. What we interested is control-
ling the BEC theoretically and computationally.
On the other hand, decoherence effects, which also

play a role in atom condensate, can be naturally incor-
porated into OCT calculations. It has been quested in
PhysCon 2009 conference.
Future perspective will be combining the predictions

with real laboratory experiments with toiled advanced
optical technologies.
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