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Abstract
The evaluation of unknown states for a given quantum

system is one of the key problems in quantum informa-
tion processing. The most efficient method of state char-
acterization is quantum state tomography (QST), where
the full-density matrices are reconstructed from the ex-
perimental measurements or numerical simulations per-
formed on quantum states. The improvement of the
computational performance in quantum state tomogra-
phy and its related problems is a challenging task for
modern theoretical physics. The general scheme of com-
puting deals with the input information that goes into a
quantum reservoir through a recurrent evolution. After
the evolution, the final output is obtained as the linear
combination of the readout elements.

In our approach, the quantum reservoir is modeled
with the Lindbladian equation. The control over per-
formance is made by the coherent coupling parameter
between the input quantum state and the reservoir. The
control feedback algorithm is represented with the set of
Kolesnikov’s target attractor algorithm to drive certain
parameters of quantum state tomography, particularly,
the outputs for the density matrix. Here we formulate
the target attractor feedback in a discrete form to im-
prove the training performance of QST and then develop
a basic example of the state tomography for the quantum
system of spin 1/2. We conclude by mentioning the basic
features of our algorithm and its possible development.
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1 Introduction
Cybernetic methods have a long history of their ap-

plications to different quantum systems [Fradkov, 2007;
Girolami, Schmidt, et al., 2015]. Adaptive control
[Uzhva, Granichin, 2021; Granichin, Uzhva, et al., 2022]
and machine learning [Knyazev, Pershin, et al. 2023]
algorithms serve as efficient tools for control over the
states of complex networks. An inspiring perspective is
hidden also in the implementation of small non-linear
neuron populations to control over performance of quan-
tum machines [Borisenok, 2022].

The concept of reservoir computing (RC) originates in
algorithms based on stable learning at a real-time lower
computational cost, such as echo state networks and liq-
uid state machines [Suzuki, Gao, et al., 2022]. The main
part of RC is a so-called ’reservoir’: a high-dimensional
dynamical system forms a neural network with fixed ran-
dom connections, such architecture allows to avoid the
overhead of controlling a large number of connections
[Schrauwen, Verstraeten, et al., 2007]. The reservoir gets
the temporal input data, adjusts the weights of the read-
out signal by training, and approximates the target output
signal [Mujal, Martinez-Pena, et al., 2021].
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Different physical realizations of reservoirs are based
on electronic circuits, photonic systems, spintronic sys-
tems, mechanical machines (soft and compliant robots),
and even biological networks (in-vitro cultured cells)
[Tanaka, Yamane, et al., 2019].

Quantum reservoir computing systems have features
that could not be simulated on conventional classical
computers [Fujii, Nakajima, 2021]. The evaluation of
unknown states for a given quantum system is one of the
key problems of quantum information processing.

In the typical architecture of a quantum reservoir net-
work, the information about the input system enters the
quantum reservoir, which goes through a recurrent evo-
lution. After the evolution, the final output is taken as the
linear combination of the readout elements. The weights
in the system are of two types: the weights representing
the coupling of the reservoir with the input and output
layers, and the bidirectional recurrent weights connect-
ing the reservoir nodes [Ghosh, Nakajima, et al., 2021].

The most efficient method of state characterization is
quantum state tomography (QST), where the density
matrices are reconstructed from experimental measure-
ments or numerical simulations performed on quantum
states [Ghosh, Nakajima, et al., 2021]. The improvement
of the computational performance in quantum state to-
mography and its related problems is a challenging task
for modern theoretical physics. The general scheme of
computing deals with the input information that goes
into a quantum reservoir through a recurrent evolution.
After the evolution, the final output is obtained as the lin-
ear combination of the readout elements [Ghosh, Opala,
et al., 2019].

Alternative approaches to QST use the universal com-
pilation method for the training process [Hai, Ho, 2023],
tensor network representations of mixed states through
locally purified density operators [Guo, Yang, 2024],
method of the high-performance lightweight in training
a truncated density matrix [Hsieh, Chen, et al., 2024],
constructing confidence regions [De Gois, Kleinmann,
2024], the tailor-made protocol [Binosi, Garberoglio, et
al., 2024], attention-based neural network architecture
[Palmieri, Müller-Rigat, et al., 2024], and others.

During the last years, QST devices started to get the ex-
perimental implementation for qubits [Ivanova-Rohling,
Rohling, et al., 2023; Aasen A. S., Di Giovanni, et al.,
2024; Hu, Wei, et al., 2024], photons [Czerwinski, 2024;
Fuenzalida, Kysela, et al., 2024], nitrogen-vacancy cen-
ters in diamond [Zhang, Hegde, et al., 2023].

In our case, the quantum reservoir is modeled with
the Lindbladian equation. The control over perfor-
mance is made by the coherent coupling parameter be-
tween the input quantum state and the reservoir [Pechen,
Borisenok, 2015; Pechen, Borisenok, et al, 2022]. Usu-
ally, the control during the quantum state tomography
is performed as an open-loop (feedforward) scheme
[Ghosh, Nakajima, et al., 2021; Ghosh, Opala, et al.,
2021], but here we discuss the closed-loop (feedback)
algorithm.

In Section 2 we present briefly the main ideas of QST.
Then in Section 3, the control feedback algorithm is rep-
resented with the discrete analog of Kolesnikov’s Target
Attractor approach [Kolesnikov, 2013] to improve the
training performance of QST, In Section 4 we develop
a basic example of the state tomography for the quan-
tum system of spin 1/2. In Section 5 we conclude by
mentioning the basic features of our algorithm and its
possible development.

2 Quantum state tomography
Quantum state tomography is a method to reconstruct

the density matrix of a given quantum system [Banaszek,
Cramer, et al., 2013; Toninelli, Ndagano, et al., 2019;
Czerwinski, 2022]. In finite D-dimensional Hilbert
space, the density matrix is described by D2 − 1 inde-
pendent real-valued parameters [Ghosh, Oppala, et al.,
2021]. The training states in the reservoir need to be lin-
early independent, by the set of D2 randomly generated
quantum states can be sufficient [Ghosh, Oppala, et al.,
2021].

The reservoir dynamics are described by the equation
[Ghosh, Nakajima, et al., 2021]:

iℏ
dρ

dt
=

[
ĤR, ρ

]
+
iγ

2
L̂(ρ) + T̂int(ρ) , (1)

where ĤR is the reservoir Hamiltonian, L̂(ρ) is a Lind-
bladian operator describing the dissipation in the system;
and T̂int(ρ) is the operator activating the coupling be-
tween the input modes and the reservoir.

The process of quantum state tomography can be per-
formed in the following steps [Ghosh, Opala, et al.,
2021]:
1. Initially the reservoir stays in the vacuum state or the
excited state only with the uniform field.
2. A coupling between the input modes and the reser-
voir is activated through a cascade coupling as a set of
the Heaviside delta-functions or through a coherent cou-
pling, see [Ghosh, Opala, et al., 2019; Ghosh, Nakajima,
et al., 2021; Ghosh, Opala, et al., 2021] for details.
3. The vector n consisting of the occupation numbers nj
of each readout mode is measured.
4. The desired output is evaluated as:

Yout = Moutn+m . (2)

In (2), the output weight matrix Mout and the constant
vector m are determined through the training process.

For the training stage, we chose: Yout = ρin (here the
density matrix is arranged in a column vector format).
Then in the tomographic process, we expect that: ρin =
Moutn+m.

In reality, the vector representation of the density ma-
trix reconstructed in the process of tomography is given
by:

ρtomo
in = Moutn+m . (3)
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To evaluate the error of QST, the fidelity is defined as
[Ghosh, Opala, et al., 2021; Ghosh, Krisnanda, et al.,
2021]:

F =

(
Tr

[√√
ρin ρtomo

in

√
ρin

])2

. (4)

For the multiple inputs j = 1, ..., N , the fidelity (4)
should be computed for each input separately: Fj , and
then the average fidelity is calculated:

F̄ =
1

N

N∑
j=1

Fj . (5)

In the case of ideal error-free quantum tomography, the
fidelity (4)-(5) must be equal to 1: F = 1, otherwise:
F < 1 [Ghosh, Opala, et al., 2021].

3 Control over the performance of quantum state
tomography

The absolute majority of theoretical [Thew, Nemoto, et
al., 2002; Choi, 2022] and experimental [Oren, Mutzafi,
et al., 2017; Torlai, Mazzola, et al., 2018; Striker, Meth,
et al., 2022] algorithms for QST follow open-loop pat-
terns, some methods also cover inherent noise in the
quantum systems [Schmied, 2016; Gupta, Xia, et al.,
2021]

To design a control over the quantum tomography per-
formance, we use here the concept of creating an artifi-
cial target attractor in the phase space locking the system
dynamics in the neighborhood of the target subspace.
Such a method has been proposed By Kolesnikov in the
form of tracking feedback control [Kolesnikov, 2013].

In this paper, we focus on the improvement of training
performance to reproduce the desired output (2).

3.1 Target attractor control over the QST training
performance

In the continuous formulation of target attractor feed-
back, one defines a goal function ψ to form an artificial
target attractor in the dynamical system as:

ψ(t) = v(t)− vt(t) . (6)

In (6), v(t) represents a target variable, while vt(t) stays
for the target function, i.e. we make a control tracking
for the variable v. Then one demands the exponential
convergence of the goal function:

T
dψ

dt
= −ψ . (7)

Here T is an arbitrary positive constant, corresponding
to the typical time scale of the control. The solution to
Eq.(6) has an exponential decay:

ψ(t) = e−t/Tψ(0) . (8)

We formulate here a matrix discrete analog of
Kolesnikov’s algorithm (6) as:

ψk = Yout
k −Yout

t , (9)

with the target vector outcome:

Yout
t = Mtn+m . (10)

This outcome is a sample for the process of network
training. The target outcome contains the target ma-
trix Mt. We demand the exponential convergence of the
control procedure, like in (8), as the discrete step k in-
creases:

ψk = e−γkψ0 ; γ = const > 0 . (11)

The training procedure for the discrete Kolesnikov algo-
rithm looks at the k-th steps as:

Yout
k = Yout

t + e−γk(Yout
0 −Yout

t ) . (12)

Presenting Yout
k in the form:

Yout
k = Mknk +m , (13)

we get by (12):

Mknk = Mtn+ e−γk(M0n0 −Mtn) . (14)

Asymptotically, by (13) and (14) we can evaluate:

Yout
k → Yout

t as k → ∞ ;

Mknk → Mtn as k → ∞ ; (15)
m = const for each k .

Thus, the discrete algorithm is converging exponen-
tially fast to the target vector Yout

t for any given set of n
and initial conditions.

In practice, we do not know the target Yout
t . So, we

need to evaluate it for each k-th step as Yout
t,k from the

series Yout
t . Then by (12):

Yout
t,k =

Yout
k − e−γkYout

0

1− e−γk
. (16)

Similarly, we restore the matrix Mk by (13):

Mknk = Yout
k −m . (17)

Eqs (16)-(17) are the main result of our discrete analog
for Kolesnikov’s approach (6)-(8). Now we can refor-
mulate it in the finalized algorithmic form.
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3.2 Finalization of the control algorithm
The finalized form of our discrete feedback

Kolesnikov-type algorithm becomes:
Step 1. Define the vector m.
Step 2. For the 0-th step, get the occupation number
vector n0 and define the outcome density matrix:

Yout
0 = ρin,0 , (18)

arranged in a column vector format, and the matrix

M0n0 = Yout
0 −Yout

t . (19)

Step 3. For the next k-th step, correct the occupation
number vector nk if necessary, get the outcome Yout

k ,
and compute:

Yout
t,k =

Yout
k − e−γkYout

0

1− e−γk
, (20)

and

Mknk = Yout
k −m . (21)

Step 4. Repeat Step 3 for the next (k + 1)-th algo-
rithmic cycle, until the required calculation precision is
achieved.
Step 5. Finally, for the lastK-th step, convert Yout

t,K back
into the matrix form:

ρin,K = Yout
t,K , (22)

and finalize M.
Thus, each vector and matrix variable will be com-

puted step-by-step in the frame of an exponentially con-
verging Kolesnikov-type algorithm.

4 Basic example: Tomography for the spin 1/2
The system of a single spin 1/2 without decay has a

2x2 density matrix as [Blum, 1996]:

ρ =
1

2
(I+ b · σ) , (23)

where I is the identity matrix, and the vector σ is based
on the Pauli matrices σi, where i = x, y, z.

The Bloch vector b determines whether the state of the
spin 1/2 is pure (|b| = 1, i.e. ρ2 = ρ) or mixed (|b| < 1).
A totally mixed state:

ρmix =
1

2
I (24)

corresponds to bi = 0 for all i.
The constant vector m must be independent on the

Bloch vector b, thus:

m =
1

2
I . (25)

Let’s take the state (24) as the target Yout
t :

Yout
t =

1

2


1
0
0
1

 =


0.500
0.000
0.000
0.500

 . (26)

Now we check whether we can reproduce (26) with our
algorithm.

Let’s choose the arbitrary initial state based on the
Pauli x-matrix as the 0-th outcome:

ρin,0 =
1

2
σx =

1

2

(
0 1
1 0

)
, (27)

which at the vector presentation corresponds to:

Yout
0 =


0.000
0.500
0.500
0.000

 . (28)

By that, we start from a totally wrong initial state.
To check the stability of our algorithm under the noisy

perturbation of the vector Yout
k , we add the white noise

emulated by a random number generator at the level of
0.01γ taking numerically γ = 1.

By Step 3 of the algorithm, we obtain:

Yout
1 =


0.488
0.040
0.017
0.499

 ; Yout
t,1 =


0.386
0.025
0.011
0.395

 ;

Yout
2 =


0.489
0.024
0.012
0.494

 ; Yout
t,2 =


0.566
0.023
0.010
0.572

 ;

Yout
3 =


0.457
0.036
0.049
0.461

 ; Yout
t,3 =


0.481
0.038
0.051
0.486

 ;

Yout
4 =


0.466
0.009
0.021
0.485

 ; Yout
t,4 =


0.475
0.009
0.021
0.494

 ,

and so on.
Thus, practically starting from the 3-rd iteration, the

restored density matrix up to the noise precision is:

ρin,4 =

(
0.475 0.009
0.021 0.494

)
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versus exact:

ρin,4 =

(
0.500 0.000
0.000 0.500

)
.

The same algorithm is applied toM . For the fermionic
case, let’s consider the constant occupation numbers:

nk =

(
1
1

)
. (29)

Then by (21):

M0n0 =


−0.500
+0.500
+0.500
−0.500

 ,

and

M1n1 =


−0.114
+0.025
+0.011
−0.105

 ; M2n2 =


+0.066
+0.023
+0.010
+0.072

 ;

M3n3 =


−0.019
+0.038
+0.051
−0.014

 ; M4n4 =


−0.025
+0.009
+0.021
−0.006

 ,

versus the exact:

Mtn =


0.000
0.000
0.000
0.000

 .

A similar approach can be applied to two spin-1/2
particles [Johnston, 2024] and to spin-1/2 XXZ chains
[Sato, Shiroishi, 2007].

5 Conclusions
The feedback control algorithm over the performance

of quantum state tomography proposed here demon-
strates many advantages:
- The invented algorithm works for the optimization of
the computational sources and decreases the computa-
tional cost in the real-time numerical process.
- The algorithm is robust in the sense that its dependence
on the initial conditions decays exponentially.
- The algorithm is stable under a relatively small noise
perturbation.
- The algorithm is valid for different types of interaction
between the input modes and the reservoir: cascade cou-
pling, and coherent coupling.

The algorithm also can be easily extended to different
control goals: preparation, estimation, and reconstruc-
tion of quantum states, quantum computing, compress-
ing quantum circuits, and others.
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(2024). Enhancing quantum state tomography via

resource-efficient attention-based neural networks.
Physical Review Research, 6, p. 033248.

Pechen A., Borisenok S. (2015). Energy transfer in two-
level quantum systems via speed gradient-based algo-
rithm. IFAC-PapersOnLine, 48, pp. 446–450.

Pechen A. N., Borisenok, S., Fradkov, A. L. (2022).
Energy control in a quantum oscillator using coherent
control and engineered environment. Chaos, Solitons
and Fractals, 164, p. 112687.

Sato J., Shiroishi, M. (2007). Density matrix elements
and entanglement entropy for the spin-1/2 XXZ chain
at ∆ = 1/2. Journal of Physics A: Mathematical and
Theoretical, 40, p. 8739.

Schmied R. (2016). Quantum state tomography of a sin-
gle qubit: comparison of methods. Journal of Modern
Optics, 63, pp. 1744–1758.

Schrauwen B., Verstraeten D., Van Campenhout J.
(2007). An overview of reservoir computing: theory,
applications and implementations. Proceedings of the
15th European Symposium on Artificial Neural Net-
works 2007, p. 471.

Stricker R., Meth M., Postler L., Edmunds C., Ferrie C.,
Blatt B., Schindler P., Monz T., Kueng R., Ringbauer
M. (2022). Experimental single-setting quantum state
tomography. PRX Quantum, 3, p. 040310.

Suzuki Y., Gao Q., Pradel K. C., Yasuoka K., Yamamoto
N. (2022). Natural quantum reservoir computing for
temporal information processing. Scientific Reports,
12, p. 1353.

Tanaka G., Yamane T., Heroux J. B., Nakane R.,
Kanazawa N., Takeda S., Numata H., Nakano D., Hi-
rose A. (2019). Recent advances in physical reservoir
computing: A review. Neural Networks, 115, pp.100–
123.

Thew R. T., Nemoto K., White A. G., Munro W. J.
(2002). Qudit quantum-state tomography. Physical
Review A, 66, p. 012303.

Toninelli E., Ndagano B., Vallés A., Sephton B., Nape
I., Ambrosio A., Capasso F., Padgett M. J., Forbes A.
(2019). Concepts in quantum state tomography and
classical implementation with intense light: a tutorial.
Advances in Optics and Photonics, 11, pp. 67–134.

Torlai G., Mazzola G., Carrasquilla J., Troyer M., Melko
R., Carleo G. (2018). Neural-network quantum state
tomography. Nature Physics, 14, pp. 447–450.

Uzhva D., Granichin O. (2021). Cluster control of com-
plex cyber-physical systems. Cybernetics and Physics,
10, pp. 191–200.

Zhang J., Hegde S. S., Suter D. (2023). Fast quantum
state tomography in the nitrogen vacancy center of di-
amond. Physical Review Letters, 130, p. 090801.


